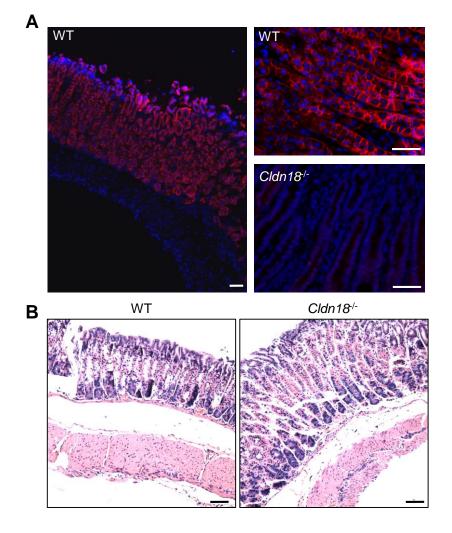
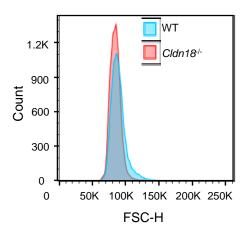
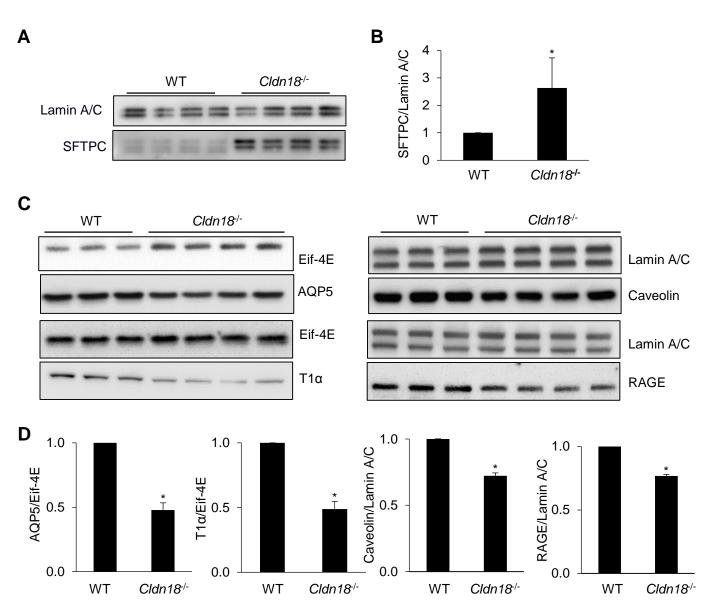
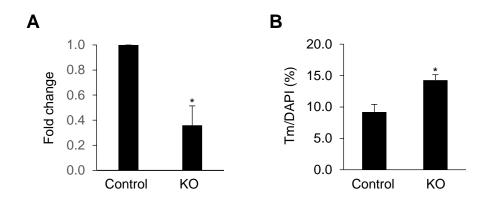


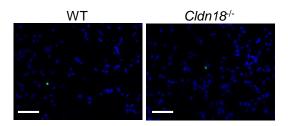
Supplemental Figure 1. Increased cellularity and mean linear intercept in lungs of $Cldn18^{l-}$ mice. (A) Hematoxylin and eosin staining of whole lung sections from WT and $Cldn18^{l-}$ mice at E18, 1 week and 2 and 6 months shows increased cellularity and enlarged alveolar airspaces. Scale bar: 50 µm. (B) Increased mean linear intercept (MLI) in lungs of $Cldn18^{l-}$ mice (WT 37.8 ± 1.8 µm and $Cldn18^{l-}$ 51.0 ± 1.3 µm) at 1 month of age. n = 4. Unpaired 2-tailed t-test. *, P < 0.05. Bar graphs represent mean ± SEM for **B**.

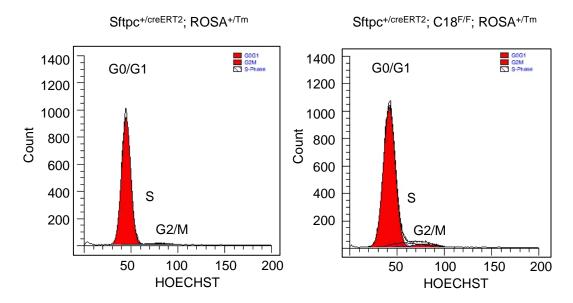


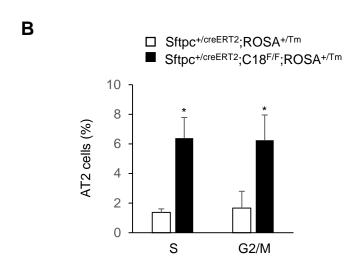

Supplemental Figure 2. Unchanged size and body weight of $Cldn18^{l-1}$ mice. (A) WT and $Cldn18^{l-1}$ mice are of similar size at age 7 months. (B) Weight of WT (29.1 \pm 0.7 g (male) and 23.5 \pm 0.6 g (female)) and $Cldn18^{l-1}$ (29.7 \pm 0.6 g (male) and 24.3 \pm 0.5 g (female)) mice is similar at ~7 months of age. $n \geq 6$. Two-way ANOVA with Bonferroni's correction. Bar graphs represent mean \pm SEM for **B**.


Supplemental Figure 3. Expression of *Cldn18* **in different organs.** (**A**) RT-PCR shows that lung, stomach, duodenum and kidney express *Cldn18* while other organs (heart, liver and spleen) do not. Stomach (**B**) and kidney (**C**) of *Cldn18*^{-/-} mice at age 2 and 7 months are visibly larger than those of WT mice. Duodenum (**B**) of *Cldn18*^{-/-} mice is visibly larger than that of WT mice at age 7 months (arrow). (**D**) RT-PCR shows that trachea, esophagus, brain, intestine, colon, uterus and muscle do not express *Cldn18*, and *Cldn18* is expressed in WT but not *Cldn18*^{-/-} lung (1 and 4: lung; 2 and 5: trachea; 3 and 6: esophagus; 7: brain; 8: trachea; 9: intestine; 10: colon; 11: uterus; 12: muscle; M: marker).

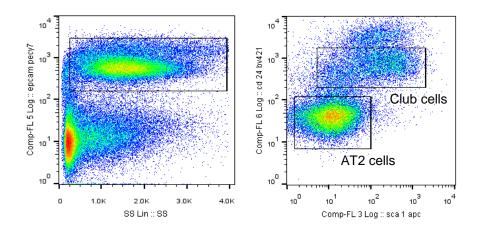

Supplemental Figure 4. Increased gastric mucosal thickness and expansion of proliferative zone in *Cldn18*½- mice. (A) Immunofluorescence shows CLDN18 (red) expression in stomach of WT but not *Cldn18*½- mice. DAPI (blue) is the nuclear counterstain. Scale bar: 50 μ m. (B) Hematoxylin and eosin staining shows increased gastric mucosal thickness in *Cldn18*½- compared to WT mice. Scale bar: 50 μ m.


Supplemental Figure 5. Unchanged type II (AT2) cell size in $Cldn18^{-1}$ lungs. Representative flow cytometric analysis reveals no difference in cell size between WT and $Cldn18^{-1}$ AT2 cells. n = 3.

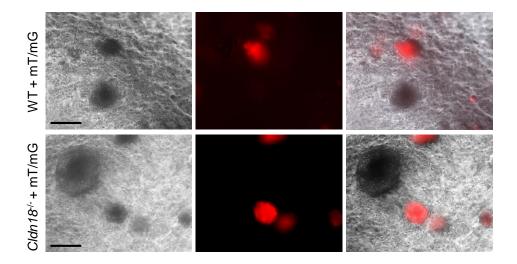

Supplemental Figure 6. Increased expression of type II (AT2) and decreased expression of type I (AT1) cell markers in lung of $Cldn18^{l-}$ mice. (A, B) Whole lung lysates show significantly higher levels of SFTPC in $Cldn18^{l-}$ compared to WT mice. n = 4. Z-test. *, P < 0.05. Western analysis (C) and quantification (D) in whole lung lysates show significantly decreased expression of AQP5, T1 α , caveolin-1 and RAGE in $Cldn18^{l-}$ compared to WT mice. n \geq 3. Z-test. *, P < 0.05. Bar graphs represent mean \pm SEM for B and D.

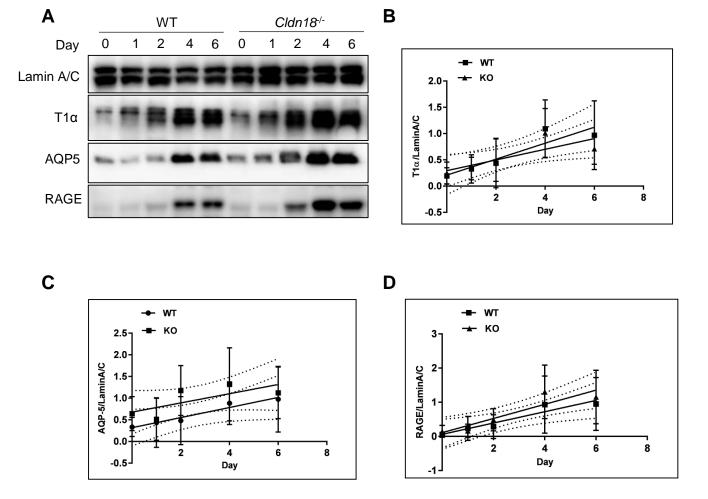


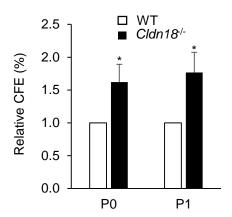
Supplemental Figure 7. Increased type II (AT2) cell number in AT2 cell-specific *Cldn18* **KO mice.** (**A**) *Cldn18* mRNA is decreased in isolated AT2 cells one week after administration of tamoxifen (Tmx) intraperitoneally for 2 days at a dose of 100 mg/kg to Sftpc+/creERT2;C18^{F/F};ROSA+/Tm</sup> mice (KO) compared to Sftpc+/creERT2;ROSA+/Tm</sub> mice (control). n = 3. Z-test. *, P < 0.05. (**B**). Tomato+ (Tm+) AT2 cells are increased in Sftpc+/creERT2;C18^{F/F};ROSA+/Tm</sup> compared to Sftpc+/creERT2;ROSA+/Tm</sup> mice ~ 5 months following Tmx injection at the age of 1-2 months. n = 5. Z-test. *, P < 0.05. Bar graphs represent mean \pm SEM for **A** and **B**.

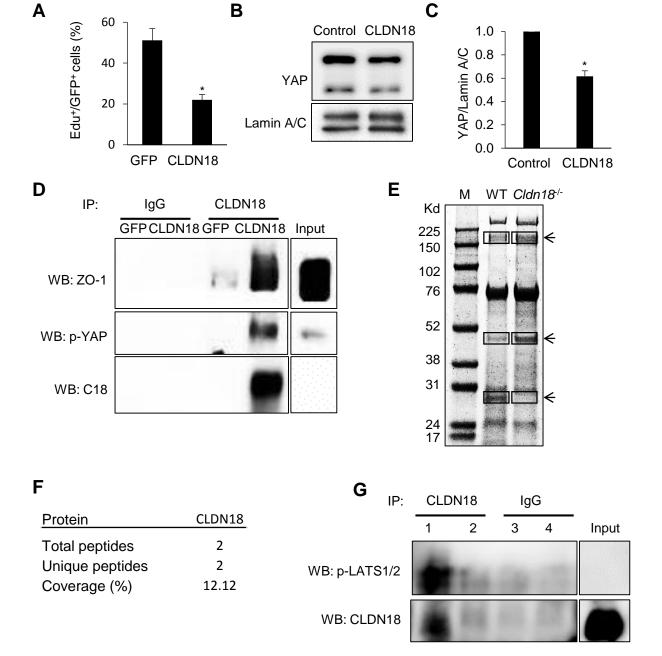


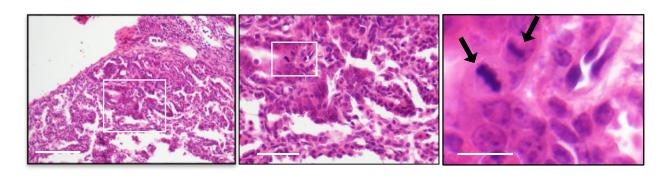
Supplemental Figure 8. Apoptosis in lungs of $Cldn18^{l-}$ mice. Representative TUNEL assay shows similarly low numbers of apoptotic cells (green) in distal lung of WT and $Cldn18^{l-}$ mice. n=3 mice for each genotype. Scale bar: 50 μ m.

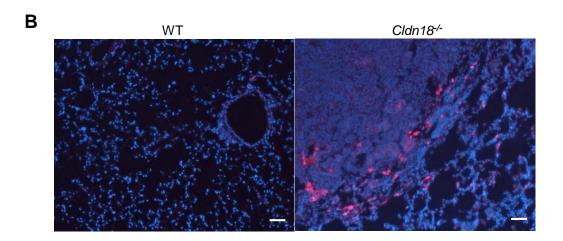



Supplemental Figure 9. Increased type II (AT2) cell proliferation in AT2 cell-specific *Cldn18* KO mice. Representative flow cytometry (A) and quantitation (B) show a greater percentage of AT2 cells in S and G2/M phase in Sftpc+/creERT2; C18^{F/F};ROSA+/Tm compared to control Sftpc+/creERT2;ROSA+/Tm mice (1-5 months following Tmx injection at the age of 3-4 months). n = 4 mice of each genotype. Two-way ANOVA. *, vs. control mice, P < 0.05. Bar graphs represent mean ± SEM for **B**.

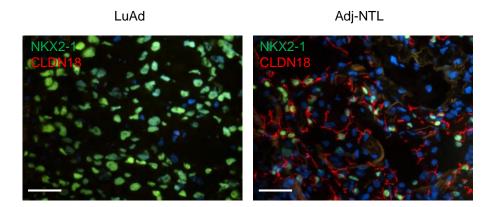

Supplemental Figure 10. Fluorescence activated cell sorting of type II (AT2) cells from WT mice. AT2 cells (EpCAMHi/CD45-CD34-CD31-CD24-SCA1-) were sorted from WT mouse lungs. Gates are shown for AT2 and club cells.


Supplemental Figure 11. Mixed 3D cultures of mT/mG (Tomato⁺) and unlabeled WT or *Cldn18*^{-/-} cells. Single sorted type II (AT2) cells from mT/mG mice and either WT or *Cldn18*^{-/-} mice were co-cultured with MLg fibroblasts in 3D Matrigel. Mixed cultures consisting of mT/mG and either WT or *Cldn18*^{-/-} cells formed colonies with either labeled or unlabeled cells, indicating clonality. Scale bar: 50 μ m.


Supplemental Figure 12. Type II (AT2) to type I (AT1) cell transdifferentiation is similar in *Cldn18*^{-/-} and WT mice. AT2 cells isolated from WT and *Cldn18*^{-/-} mice were cultured on polycarbonate filters coated with laminin-5 for 6 days. Representative Western blot (A) shows a similar increase in AT1 cell markers T1α, AQP5 and RAGE during transdifferentiation from AT2 (Day 0) to AT1 cell-like phenotype (Day 6) in WT and *Cldn18*^{-/-} KO AT2 cells. (B-D) Two-Way ANOVA and linear regression analyses yielded no significant difference (*P*>0.05) of slopes for increase in AT1 cell markers over time between WT and *Cldn18* KO AT2 cell cultures. n=3.



Supplemental Figure 13. Colony forming efficiency (CFE) following passage (P) of WT and $Cldn18^{l-}$ type II (AT2) cells. CFE remains increased in $Cldn18^{l-}$ compared to WT cells at P1. n=3. Z-test. *, vs. WT mice, P < 0.05. Bar graphs represent mean \pm SEM.



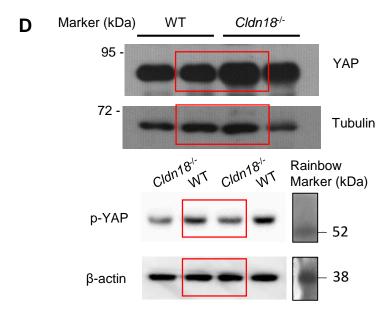
Supplemental Figure 14. CLDN18 regulates cell proliferation and YAP activity and interacts with p-YAP, p-LATS1/2 and ZO-1. CLDN18 overexpression in MLE-15 cells decreases proliferation (A) and nuclear YAP (B and C). $n \ge 3$ independent experiments. Unpaired 2-sided t-test for A, Z-test for C. * , P < 0.05. (D) Representative communoprecipitation (co-IP) shows increased CLDN18 association with ZO-1 and p-YAP in MLE-15 cell membranes following CLDN18 overexpression. GFP is control vector. Input is cell lysate before IP as positive control; however, CLDN18 cannot be detected in input. n=3. (E) Lysates from WT and $Cldn18^{-/-}$ AT2 cells were immunoprecipitated with anti-YAP antibody. Eluates were resolved by SDS-PAGE and highlighted Coomassie blue-stained bands (rectangle, arrow) were analyzed by mass spectrometry. (F) Mass spectrometry identified CLDN18 as a YAP-interacting protein in WT but not $Cldn18^{-/-}$ lung. (G) IP of WT (1 and 3) and $Cldn18^{-/-}$ (2 and 4) AT2 cell membrane lysates with anti-CLDN18 antibody shows endogenous CLDN18 associates with p-LATS1/2. IgG = negative control. Input is lung tissue lysate before IP as positive control; however, p-LATS1/2 cannot be detected in input. n=2. In D and G, input were run on the same gel but were non-contiguous.

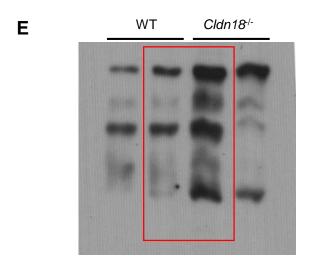
Supplemental Figure 15. Lung tumors in *Cldn18*^{-/-} mice. (A) Hematoxylin and eosin staining shows mitotic figures (arrows) in lung tumor in *Cldn18*^{-/-} mice. From left to right, bars = 400 μ m, 100 μ m and 40 μ m. (B) Immunofluorescence of lung tissue shows tumor infiltration with CD68⁺ macrophages (red). DAPI (blue) is the nuclear counterstain. Scale bar: 50 μ m.

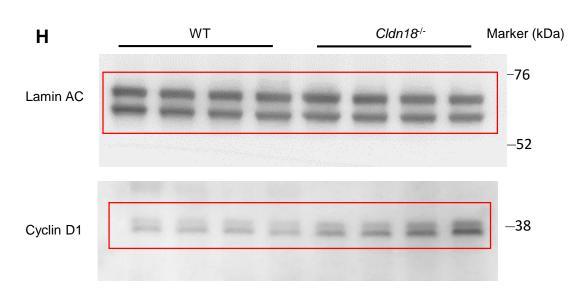
Supplemental Figure 16. Double labeling for CLDN18 and NKX2-1 in lung tumors. Immunofluorescence shows decreased CLDN18 protein expression in human LuAd compared to adjacent non-tumor lung (Adj-NTL). n=3. Scale bar: 50 μ m. DAPI is the nuclear counterstain.

Supplemental Table 1. Summary of volume measurement of WT and *Cldn18*^{-/-} lungs by micro-CT

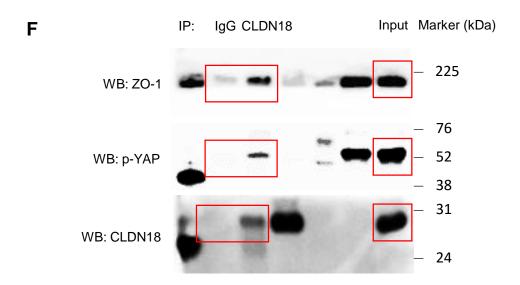
	Measurement	WT1	WT2	WT3	WT Average	Cldn18 ^{-/-} 1	Cldn18 ^{-/-} 2	Cldn18 ^{-/-}	Cldn18 ^{-/-} Average
Tot	al lung (V _{Tlung,} cm³)	0.644	0.591	0.613	0.616	1.166	1.022	0.966	1.051*
•	Conducting airway (V _{Cairway,} cm ³)	0.110	0.100	0.106	0.105	0.153	0.125	0.114	0.131
•	Alveolar airspace (V _{alv,} cm³)	0.424	0.393	0.397	0.404	0.362	0.363	0.370	0.365
	Volume fraction of alveolar airspace in alveoli (F _{alv})	0.790	0.790	0.780	0.790	0.360	0.400	0.430	0.400
•	Parenchyma (V _{par,} cm³)	0.111	0.098	0.110	0.106	0.651	0.534	0.483	0.556*
	 Volume fraction of parenchyma in alveoli (F_{par}) 	0.210	0.210	0.220	0.210	0.640	0.600	0.570	0.600

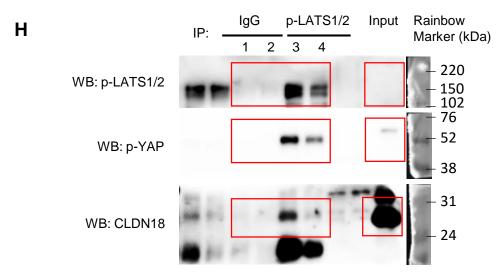

n = 3. Unpaired 2-tailed t-test. *, P < 0.05 compared to WT.

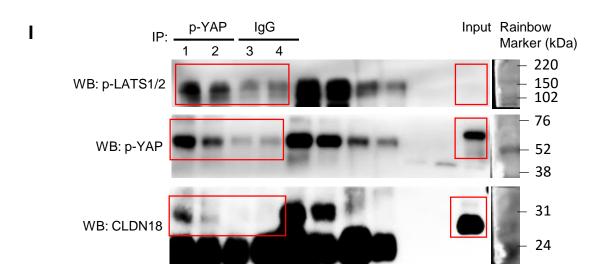

Supplemental Table 2. Tumor number and volume in aged *Cldn18*¹- mice

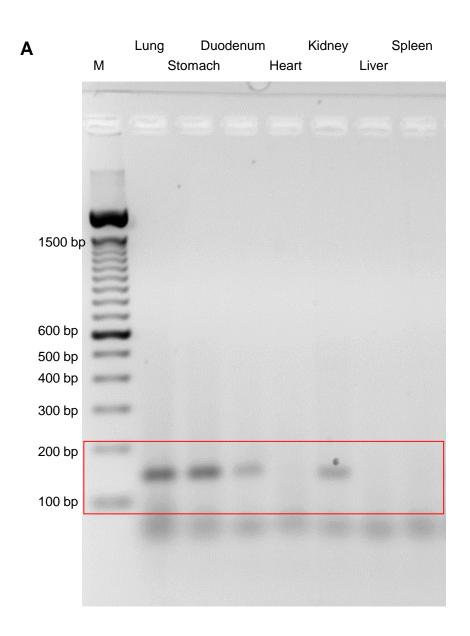

Mice	Tumor number	Tumor volume (V, mm³)	
		1.21	
Cldn18 ^{-/-} 1	3	0.61	
		0.35	
014,404.0		29.6	
Cldn18 ^{-/-} 2	2	9.34	
		6.48	
011.40/0	,	2.4	
Cldn18 ^{-/-} 3	4	2.4	
		2	
WT1	0	_	
WT2	0	_	
WT3	0	_	

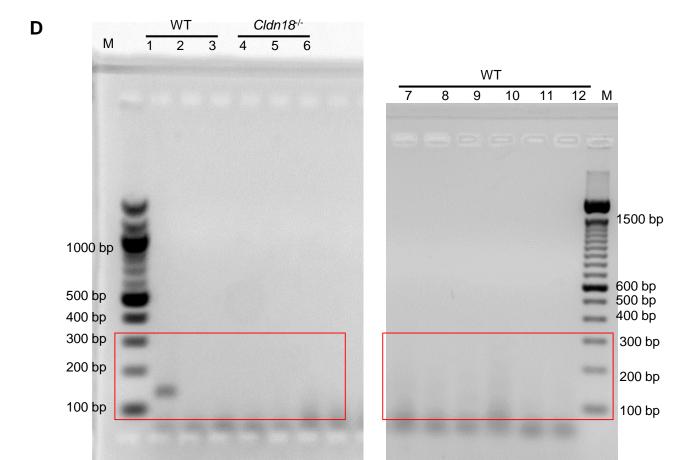
Full unedited gels for Figu	ires and Supp	lemental Figures	


Full unedited gels for Figure 3








Full unedited gels for Figure 5

