Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Loss of DDRGK1 modulates SOX9 ubiquitination in spondyloepimetaphyseal dysplasia
Adetutu T. Egunsola, … , Mordechai Shohat, Brendan H. Lee
Adetutu T. Egunsola, … , Mordechai Shohat, Brendan H. Lee
Published March 6, 2017
Citation Information: J Clin Invest. 2017;127(4):1475-1484. https://doi.org/10.1172/JCI90193.
View: Text | PDF
Research Article Bone Biology Genetics

Loss of DDRGK1 modulates SOX9 ubiquitination in spondyloepimetaphyseal dysplasia

  • Text
  • PDF
Abstract

Shohat-type spondyloepimetaphyseal dysplasia (SEMD) is a skeletal dysplasia that affects cartilage development. Similar skeletal disorders, such as spondyloepiphyseal dysplasias, are linked to mutations in type II collagen (COL2A1), but the causative gene in SEMD is not known. Here, we have performed whole-exome sequencing to identify a recurrent homozygous c.408+1G>A donor splice site loss-of-function mutation in DDRGK domain containing 1 (DDRGK1) in 4 families affected by SEMD. In zebrafish, ddrgk1 deficiency disrupted craniofacial cartilage development and led to decreased levels of the chondrogenic master transcription factor sox9 and its downstream target, col2a1. Overexpression of sox9 rescued the zebrafish chondrogenic and craniofacial phenotype generated by ddrgk1 knockdown, thus identifying DDRGK1 as a regulator of SOX9. Consistent with these results, Ddrgk1–/– mice displayed delayed limb bud chondrogenic condensation, decreased SOX9 protein expression and Col2a1 transcript levels, and increased apoptosis. Furthermore, we determined that DDRGK1 can directly bind to SOX9 to inhibit its ubiquitination and proteasomal degradation. Taken together, these data indicate that loss of DDRGK1 decreases SOX9 expression and causes a human skeletal dysplasia, identifying a mechanism that regulates chondrogenesis via modulation of SOX9 ubiquitination.

Authors

Adetutu T. Egunsola, Yangjin Bae, Ming-Ming Jiang, David S. Liu, Yuqing Chen-Evenson, Terry Bertin, Shan Chen, James T. Lu, Lisette Nevarez, Nurit Magal, Annick Raas-Rothschild, Eric C. Swindell, Daniel H. Cohn, Richard A. Gibbs, Philippe M. Campeau, Mordechai Shohat, Brendan H. Lee

×

Figure 5

Expression of sox9a mRNA rescues the ddrgk1 knockdown cartilage phenotype in zebrafish.

Options: View larger image (or click on image) Download as PowerPoint
Expression of sox9a mRNA rescues the ddrgk1 knockdown cartilage phenotyp...
(A) Ventral view at 120 h.p.f. of Alcian blue–stained embryos injected with either control MO or ddrgk1 MO with or without sox9a mRNA. Scale bars: 100 μM. (B) Quantification of the craniofacial phenotype in the embryos. The categories of craniofacial features are described in Figure 2. Control MO, n = 36; 5 pg ddrgk1 MO, n = 42; 5 pg ddrgk1 MO + 50 pg ddrgk1 mRNA, n = 31; 5 pg ddrgk1 MO + 150 pg ddrgk1 mRNA, n = 41. *P < 0.05; ***P < 0.001, Kruskal-Wallis rank-sum test followed by Wilcoxon’s rank-sum test with continuity correction.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts