Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy
Paul A. Beavis, … , Michael H. Kershaw, Phillip K. Darcy
Paul A. Beavis, … , Michael H. Kershaw, Phillip K. Darcy
Published February 6, 2017
Citation Information: J Clin Invest. 2017;127(3):929-941. https://doi.org/10.1172/JCI89455.
View: Text | PDF
Research Article Immunology Oncology

Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy

  • Text
  • PDF
Abstract

Chimeric antigen receptor (CAR) T cells have been highly successful in treating hematological malignancies, including acute and chronic lymphoblastic leukemia. However, treatment of solid tumors using CAR T cells has been largely unsuccessful to date, partly because of tumor-induced immunosuppressive mechanisms, including adenosine production. Previous studies have shown that adenosine generated by tumor cells potently inhibits endogenous antitumor T cell responses through activation of adenosine 2A receptors (A2ARs). Herein, we have observed that CAR activation resulted in increased A2AR expression and suppression of both murine and human CAR T cells. This was reversible using either A2AR antagonists or genetic targeting of A2AR using shRNA. In 2 syngeneic HER2+ self-antigen tumor models, we found that either genetic or pharmacological targeting of the A2AR profoundly increased CAR T cell efficacy, particularly when combined with PD-1 blockade. Mechanistically, this was associated with increased cytokine production of CD8+ CAR T cells and increased activation of both CD8+ and CD4+ CAR T cells. Given the known clinical relevance of the CD73/adenosine pathway in several solid tumor types, and the initiation of phase I trials for A2AR antagonists in oncology, this approach has high translational potential to enhance CAR T cell efficacy in several cancer types.

Authors

Paul A. Beavis, Melissa A. Henderson, Lauren Giuffrida, Jane K. Mills, Kevin Sek, Ryan S. Cross, Alexander J. Davenport, Liza B. John, Sherly Mardiana, Clare Y. Slaney, Ricky W. Johnstone, Joseph A. Trapani, John Stagg, Sherene Loi, Lev Kats, David Gyorki, Michael H. Kershaw, Phillip K. Darcy

×

Figure 7

A2AR blockade enhances the activity of patient-derived CAR T cells against HER2-expressing autologous melanocytes.

Options: View larger image (or click on image) Download as PowerPoint
A2AR blockade enhances the activity of patient-derived CAR T cells again...
(A) Expression of anti-HER2 CAR on patient-derived CAR T cells. (B) Expression of HER2 and CD73 on primary melanoma samples used as targets in coculture assays. Dashed histograms indicate isotype control staining. (C and D) 2 × 105 human anti-HER2 CAR T cells were cocultured with 1 × 105 autologous primary-derived melanocytes in the presence of NECA (1 μM), SCH58261 (1 μM), CGS21680 (10 μM), or TGF-β (10 ng/ml) where indicated. After 16 hours, supernatants were analyzed for IFN-γ content by cytometric bead array. (A–C) Data are shown from a representative patient of n = 4. (C) Data are the mean ± SD of triplicates. (D) Data are pooled from 4 individual patients and are shown as percentage IFN-γ production normalized to control cultures in each experiment. *P < 0.05 by 1-way ANOVA.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts