Supplementary Material

Disruption of spatiotemporal hypoxic signaling causes congenital heart disease

Xuejun Yuan, Hui Qi, Xiang Li, Fan Wu, Jian Fang, Eva Bober, Gergana Dobreva, Yonggang Zhou, Thomas Braun

Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim Germany

Supplementary Figure 1: Induction of hypoxia responses represses Isl1 expression in vivo. (A) Whole-mount immunostaining of C57/B16 E9.0 embryos (14 somites) for Isl1 after chemical induction of hypoxia responses (15 or 30mg CoCl₂/kg body weight). Arrows indicate the Isl1⁺ cardiogenic region. Representative images from 2 independent experiments are shown. Scale bar: 100 µm. (B) Representative images of E9.0 (14 somites) C57/Bl6 embryos immunostained for ISL1 and NKX2.5 after CoCl₂ treatment are shown. PBSinjected mice were used as control. Arrows indicate cardiac mesoderm and arrowheads indicate the heart tube. Analyzed embryos were randomly selected from two different litters for each condition. Scale bar: 100 µm. (C) Scheme of the strategy to induce hypoxia responses during early embryogenesis. Wild-type C57/Bl6 pregnant mice (E7.5) were housed in a hypoxia chamber containing 10% O₂ and 90% N₂ for 48 hrs to induce hypoxia responses in vivo. (D) RT-qPCR analysis of Isl1 expression in C57/Bl6 E8.0 embryos (5 somites) after hypoxia exposure. The m34b4 gene was used as a reference for normalization (t-test: *p<0.05, n=3). (E) Analysis of *Isl1* expression in C57/Bl6 E9.0 embryos by WISH after hypoxia exposure. Arrows indicate foregut endoderm and arrowheads indicate cardiac mesoderm. Representative images from 2 independent experiments are shown. Scale bar: 100 µm. (F) Scheme of the strategy to induce hypoxia responses in Nkx2.5⁺/Isl1⁺-GFP cells isolated from embryoid bodies at day 6. (G) RT-qPCR analysis of Isl1, Nkx2.5 and Flk1 expression in embryoid bodies (EBs) at day 6 after hypoxia exposure for 16 hrs (1% O₂). Please note the down-regulation of Isl1 (n=7) but up-regulation of Nkx2.5 (n=3) and Flk1 (n=4). The m34b4 gene was used as a reference for normalization. (t-test: p<0.05; p<0.01; $n\geq3$). (H) Analysis of Nkx2.5⁺ cells proliferation in mock or CoCl₂ treated E9.5 Nkx2.5-emGFP embryos by immunostaining for phospho-Histone H3 (Ser10) (pH3). The percentages of pH3/GFP double positive cells are shown. At least 3 sections were counted for each embryo (t-test: ns P>0.05; n=3). (I) TUNEL assay of Nkx2.5⁺ cells after CoCl₂ treatment. The percentage of TUNEL-positive Nkx2.5⁺ cells is shown. At least 4 sections were counted for each embryo (t-test: ns P>0.05; n=3).

Supplementary Figure 2: Isolation and *in vitro* differentiation of Isl1⁺ CPCs. (A) Scheme of the generation of Isl1^{nGFP/+} reporter mice by dual recombinase-mediated cassette exchange. (B) Fluorescence image of GFP positive EBs at day 7 after *in vitro* differentiation of Isl1^{nGFP/+} ES cells. Scale bar: 100 μ m. (C) Bright field and fluorescence images of control and Isl1^{nGFP/+} embryos at E8.5 (10 somites). Isl1-GFP-positive cells are indicated by an arrow. Scale bar: 200 μ m. (D) Scheme of Isl1⁺ CPC *in vitro* differentiation after FACS-based isolation. (E) Immunofluorescence staining of CPCs for ISL1 and NKX2.5 after 2 days culture in differentiation media. Cultivation in differentiation medium increases the number of Nkx2.5⁺ CPCs. Arrows indicate Isl1⁻/Nkx2.5⁺ CPCs and arrowheads indicate Isl1⁺/Nkx2.5⁻ CPCs. Representative images from 3 independent experiments are shown. Scale bar: 100 μ m. (F) Quantification of proliferating Ki67⁺ (immunostained) CPCs isolated from Isl1^{nGFP} embryos (E8.0 embryos, 5-8 somites) after exposure to normoxia (n=3) or hypoxia (n=4) *in vitro*. (t-test: *p<0.01). (G) Quantification of the percentage of Nkx2.5⁺ (immunostained) cells within the population of Isl1⁺ cells after exposure to hypoxia *in vitro*. (t-test: *p<0.05, n=4).

Supplementary Figure 3: Generation of transgenic mice expressing Nkx2.5 in Isl1⁺ cells. (A) Outline of the strategy to express Nkx2.5 in Isl1⁺ cells. (B) Bright field and fluorescence images of Nkx2.5-IRES-GFP expression in E10.5 embryos (Isl1-cre^{pos}Rosa26^{Nkx}). Scale bar: 500 µm. (C) Western blot analysis to monitor expression of NKX2.5 in Isl1-cre^{pos}Rosa26^{Nkx} embryos at E9.5. Wildtype littermates were used as controls. Histone H3 was used as protein loading control.

Supplementary Figure 4: Hypoxia enhances binding of Sirt1 to the Isl1 promoter. (A) ChIP analysis of HIF1 α binding to the *Isl1* proximal promoter in differentiating ES cells (EB at day 6) with and without exposure to hypoxia. (B) ChIP analysis of HIF1 α binding to the Nkx2.5 distal promoter in differentiating ES cells (EB at day 6). (C) Co-IP assay of HIF1 α with SIRT1 or HES1 after CoCl₂ treatment of V6.5 ES cells. 2.5% input was used. (D) ChIP analysis of SIRT1 binding to the Isl1 proximal promoter in differentiating ES cells at different time points. (E) ChIP analyses of SIRT1 binding to the Isl1 enhancer and proximal promoter in embryonic hearts at E11.5. (F) ChIP analysis of HIF1 α and SIRT1 binding to *Isl1* and Nkx2.5 promoters in differentiating ES cells (EB at day 6). Hypoxia enhances binding of HIF1a to the Isl1 and Nkx2.5 promoters and increases binding of SIRT1 to the Isl1 but not the Nkx2.5 promoter. (G) ChIP analysis of SIRT1 and HES1 binding to the Isl1 proximal promoter in differentiating ES cells without and with exposure to 1% O₂ for 16 hrs. Note increased binding of SIRT1 and HES1 after exposure to hypoxia. The relative enrichment of SIRT1 is normalized against the input DNA. (t-test: *p<0.05; **p<0.01; n=3). (H) Western blot analysis of HIF1 α levels in differentiating ES cells exposed to CoCl₂ after infection with a lentivirus expressing an shRNA against Hifl α . α -Tubulin was used as protein loading control. Lanes were run on the same gel but not next to each other.

Supplementary Figure 5: A SIRT1-HES1-containing complex mediates down-regulation of *Isl1* expression in CPCs. (A) Western blot analysis of HES1 levels in C2C12 cells after infection with a lentivirus expressing a shRNA against *Hes1*. Actin was used as protein loading control. (B) Luciferase reporter assays of *Isl1* WT and N-box mutated promoters in C2C12 cells under normoxia or hypoxia. Mutation of the N-box increases *Isl1* promoter activity and prevents hypoxia-mediated suppression (ANOVA with Tukey's post hoc test: *p<0.05; ns p>0.05; n=3). (C) Western blot analysis of SIRT1 protein in V6.5 ES cells after infection with a lentivirus expressing *Sirt1* shRNA. Actin was used as loading control. (D) RT-qPCR analysis of *Isl1*, *Nkx2.5*, *Flk1* (EB at E6) and *Sma*, *Myh7* (EB at E8) expression in differentiating V6.5 ES cells after *Sirt1* knockdown. The *m34b4* gene was used as a reference for normalization (t-test: *p<0.05; **p<0.001; ***p<0.001; ns p>0.05, n=3). (E) Luciferase reporter assay of the *Isl1* promoter in C2C12 cells after knockdown of *Sirt1*, with and without exposure to hypoxia. Hypoxia fails to reduce *Isl1* promoter activity in C2C12 cells after *Sirt1* knockdown (t-test: *p<0.05; n=3).

Supplementary Figure 6: Hypoxia responses enhance the activity of SIRT1. (A) RTqPCR analysis of *Sirt1* expression after chemical induction of hypoxia responses (CoCl₂ treatment) in E8.5 embryonic hearts. The *m34b4* gene was used as a reference for normalization. ANOVA with Dunnett's post hoc test was used to calculate significance (ns p>0.05; n=4). (B) RT-qPCR analysis of *Sirt1* expression in sorted Isl1⁺ cells after cultivation under normoxia (21% O₂) and hypoxia (1% O₂) for 16 hours. The *β-actin* gene was used as a reference for normalization (t-test: ns p>0.05; n=6). (C) NAD+/NADH ratios in sorted Isl1⁺ cells after cultivation under normoxia (21% O₂) and hypoxia (1% O₂) for 16 hours. (t-test: ns p>0.05; n=3). (D) Cellular ROS levels of sorted Isl1⁺ cells under hypoxia (1% O₂) and normoxia (21% O₂). Two independent experiments were performed generating similar results. (E) Western blot analysis of embryonic hearts isolated from mock (PBS) or CoCl₂ treated (15 mg/kg bodyweight) pregnant mice (E8.5, 8-12 somites) and of sorted Isl1⁺ CPCs exposed to either normoxia (21% O₂) or hypoxia (1% O₂).

Supplementary Figure 7: Germ line inactivation of *Sirt1* leads to multiple cardiac defects. (A) Outline of the strategy to inactivate the *Sirt1* gene. (B) Distribution of genotypes at weaning after breeding of heterozygous *Sirt1* mutant mice. Asterisk indicates that these mice died 2 weeks after birth. (C) H&E staining of embryonic hearts from Sirt1^{+/+} (n=6) and Sirt1^{-/-} (n=6) germ line mutants. 6 littermates from 3 different litters were analyzed. Arrows indicate ventricular septum defects (2 out of 6 embryos); arrowhead indicates atrial septum defect (2 out of 6 embryos). LA: left atrium; RA: right atrium; LV: left ventricle; RV: right ventricle. Scale bars: 100 µm. (D) RT-qPCR analysis of *Isl1* expression in E8.0 (5 somites) Sirt1^{+/+} WT and Sirt1^{-/-} germ line mutants. The *m34b4* gene was used as a reference for normalization (t-test: *p<0.05; n=4 from 2 different litters).

Supplementary Figure 8: Isl1-Cre mediated inactivation of *Sirt1* reduces the number of Isl1⁺/Nkx2.5⁺ cells in the cardiac mesoderm. (A) Cell tracing of Isl1⁺ CPCs progeny (green) in E15.5 Isl1-Cre^{pos}/Sirt1^{fl/+}/RosaYFP⁺ and Isl1-Cre^{pos}/Sirt1^{fl/-}/RosaYFP⁺ hearts. Scale bars: 100 μ m. (B) RT-PCR analysis of WT and mutant *Sirt1* mRNA in Isl1-Cre^{pos}/Sirt1^{fl/+}/RosaYFP⁺ and Isl1-Cre^{pos}/Sirt1^{fl/-}/RosaYFP⁺ E15.5 hearts after sorting of Isl1⁺ (YFP⁺) and Isl1⁻ (YFP⁻) cells. (C) Representative immunofluorescence images of cryosections of E9.5 Isl1-Cre^{pos}/Sirt1^{fl/-} and Isl1-Cre^{pos}/Sirt1^{fl/-} hearts stained for ISL1 and NKX2.5 are shown. 3 pairs of *Sirt1* heterozygous and mutant littermates from 2 litters were analyzed. Note the decreased number of Isl1⁺/Nkx2.5⁺ cells in the cardiac mesoderm after Isl1-Cre mediated knockout of *Sirt1*.

Table S1

Phenotype Treatment	No obvious defect (%)	Thinner myocardium (%)	Muscular VSD (%)	OA/VSD (%)	DORV (%)	РТА (%)	Abnormal RV dilation or hypoplasia (%)
Low CoCl ₂ (N=22)	5 (23%)	6 (27%)	7 (32%)	1 (4,5%)	0	0	9 (41%)
High CoCl ₂ (N=22)	1 (4.5%)	7 (32%)	0	16 (72%)	3 (14%)	1 (4.5%)	6 (27%)

Suppl. Table 1: Incidence of cardiac structural defects in $CoCl_2$ treated C57/Bl6 embryos. Summary of cardiac structural defects in $CoCl_2$ treated embryos detected by H&E staining of paraffin sections from E15.5 mouse hearts. The penetrance of cardiac defects in the $CoCl_2$ treated hearts with variable incidence of different CHDs is indicated. DORV, double outlet right ventricle; VSD: ventricular septal defect; PTA: persistent truncus arteriosus (PTA); OA: overriding aorta.

Table S2

Phenotypes Genotypes		No obvious defect	Thinner myocardium	Muscular VSD	OA/VSD	Abnormal RV dilation or hypoplasia
	<i>Sirt1+/</i> + (n=5)	5	0	0	0	0
-CoCl ₂	<i>Sirt1-/-</i> (n=6)	0	4 (1 out of 4 with ASD)	1 (with ASD)	1	0
	Sirt1 WT (n=6) (Sirt1 ^{fl/+} ISI1-Cre ^{neg})	6	0	0	0	0
	<i>Sirt1</i> conditional null mutants (n=7) (Sirt1 ^{fl/fl} ISI1-Cre ^{pos})	5	2	0	0	0
+CoCl ₂	Sirt1 WT (n=8) (Sirt1 ^{fl/+} ISI1-Cre ^{neg})	2	2 (with OA/VSD)	2	4	2 (with OA/VSD)
	Sirt1 heterozygotes mutants (n=11)	11	0	0	0	0
	<i>Sirt1</i> conditional null mutants (n=8)	8	0	0	0	0

Suppl. Table 2: Incidence of cardiac structural defects in embryos lacking Sirt1 in the SHF with and without CoCl₂ treatment. Summary of cardiac structural defects in wildtype $(Sirt1^{+/+}; Sirt1^{fl/+}/Isl1-Cre^{neg})$, heterozygous $(Sirt1^{fl/-}/Isl1-Cre^{neg}; Sirt1^{fl/+}/Isl1-Cre^{pos})$ and homozygous $(Sirt1^{-/-}; Sirt1^{fl/-}/Isl1-Cre^{pos})$ Sirt1 mutant embryos detected by H&E staining of paraffin sections from E15.5 mouse hearts without (11 embryos from 3 litters mated for germline null embryos and 13 embryos from 4 litters mated for conditional null embryos) or with (27 embryos from 4 litters) CoCl₂ treatment. The incidence of different cardiac defects in CoCl₂ or untreated hearts with CHDs is indicated. RV: right ventricle; VSD: ventricular septal defect; ASD: atrial septal defect; OA: overriding aorta.

Suppl. Tab	ole 3: List o	f primers use	d for genotyp	oing, chromatinI	P and mutagenesis in
the study					

Name	Primer sequence (5'>3')	Application
mSirt1loxP P3 F	GGCAGTATGTGGCAGATT	Floxed and deleted Sirt1 genotyping
mSirt1loxP P4 R	CCTGAAACAGACAAGACCT	Floxed Sirt1 genotyping
mSirt1loxP P6 R	GAACATAACAGCCAGGCAT	Deleted Sirt1 genotyping
Isl1F	ACTATTTGCCACCTAGCCACAGCA	Isl1-Cre genotyping
Isl1R	AATTCACACCAAACATGCAAGCTG	Isl1-Cre genotyping
CreR	CTAGAGCCTGTTTTGCACGTTC	Isl1-Cre genotyping
Nkx2.5F	TAAACTGGTCGAGCGATGGATTTCC	Nkx2.5-Cre genotyping
Nkx2.5R	CATATCTCGCGCGGCTCCGACACGG	Nkx2.5-Cre genotyping
nGFPF	CTCTTGATTCCCACTTTGTGGTTC	Isl1-nGFP genotyping
nGFPR	TCAGTAAGCTATGGGTTAGAG	Isl1-nGFP genotyping
Isl1ISHF	GGTCCCGAGCCGTGCAGGTCC	DNA probe for ISH
Isl1ISHR	GCGCGCTGGATGCAAGGGACTG	DNA probe for ISH
Hes1mF	GGACCTACCGTCGACCTACTCGCCACGGGCGGCAG	Mutagenesis
Hes1mR	GGCGAGTAGGTCGACGGTAGGTCCTTCCTGTG	Mutagenesis
Isl1P-KpnI	GGTACCTTGGAGAGCTCAGATTGG	Luciferase reporter
Isl1P-HindIII	AAGCTTATCTGTAAGAGGGAGTAATG	Luciferase reporter
HA-Nkx2.5	CTAGCTAGCACGATGTACCCATACGATGTTCCAGAT	Nkx2.5 expression vector
	TACGCTTTCCCCAGCCCTGCGCTC	
Nkx2.5-V5	ACGCGTCGACCTACGTAGAGTCGAGACCGAGGAGA	Nkx2.5 expression vector
	GGGTTAGGGATAGGCTTACCCCAGGCTCGGATGCCG	
Isl1p-2940	GCGCCAGGAACTGTGCTCCAA	ChIP
	AGGGGCGACCTCTTGTGTTCAATG	
Isl1p-850	GAACAGGAGACCTCACGGGTCGGG	ChIP
	CTAGCAGCGCGCTACGCGTTAGGG	
Nkx2.5p-4604	TTTCTCAACCTTTTCGCCTATTCA	ChIP
	GTTTTCTCCACCCCTTCATCTG	
Nkx2.5p-9556	GTGCCCCAGTGACCCGCTCCAT	ChIP
	TATCTCCCTTCCCCGCTGTTGTCC	
Nkx2.5p-2581	AGGCAAAGAAATCACTCCACA	ChIP
_	TGTTACAATGGCTGGGAA	

Name	Primers	Applicatio	on Ta	Efficienc	cy Amplicon	Position
			(°C)	(%)	size (bp)	(start)
Isl1	CTGCGGGAGGATGGGCTTTTCT	qRT	61	97	179	631
Flk1	GGGATGGTCCTTGCATCAGAA	aRT	58	100	139	4036
	ACTGGTAGCCACTGGTCTGGTTG	4	•••			
Nkx2.5	ACCTTTCTCCGATCCATCCCACT	qRT	58	100	227	1504
	GCGTTAGCGCACTCACTTTAATG	•				
CD31	GCTCATTGCGGTGGTTGTCAT	qRT	58	95	106	2003
	CATCTCCACGGGTTTCTGTTTG					
Myh11	CGCCCAGAAAAACAATGCCCTAAA	qRT	61	100	167	3458
	GCGTATCCTCCAGCTCCGTCTTGA					
Myh6	GCCCAGTACCTCCGAAAGTC	qRT	61	100	110	239
	GCCTTAACATACTCCTCCTTGTC					
Hand1	AAGACTCTGCGCCTGGCTACCA	qRT	61	98	205	761
	CGCCCTTTAATCCTCTTCTCGC					
Hand2	ACTCAGAGCATCAACAGCGCCTTC	qRT	61	95	242	1258
	TGTGCTTTTCAAGATCTCATTCAGCTC					
Mef2c	GAGCAGTTCTGTGTTCTTTTGC	qRT	53	96	129	1
	ATCCCTCTGCACAAGTGTCTG					
Tbx5	ACTGGCCTTAATCCCAAAAC	qRT	53	100	210	927
	GGTGAGTTTGAGCTT CTGGA					
Sma	TCAGCGCCTCCAGTTCCT	qRT	56	100	69	1289
	AAAAAAACCACGAGTAACAAATCAA		10	100	1 = 0	- 001
Myh7	GCCAACACCAACCIGICCAAGIIC	qRT	63	100	179	5806
	TGCAAAGGCTCCAGGTCTGAGGGC		~ 4	. -	100	· - ·
β-actin		qRT	61	95	108	676
Cirrt1		aD T	55	00	62	1004
SIRI	GCAGGIIGCAGGAAICCAA	qKI	22	98	62	1094
26b4	TCCAGCOTTECCCCATCA	aDT	56	100	74	524
5004	CTTTATCAGCTGCACATCACTCAGA	qкт	50	100	/4	554
Isl1p-468	AAAGCGGCCCGTTCCAAGTGC	ChIP	61*	99	178	-468
	GCGCCGCGTCGTGTCCTG					
Nkx2.5p-9040	AAAGTCCCCGCGAGTGTTGTGT	ChIP	61*	100	183	- 9040
	TTGGTGAAAAGCGGGATGGAGACG					
Nkx2.5p-4604	TTTCTCAACCTTTTCGCCTATTCA	ChIP	61	93	234	- 4604
	GTTTTCTCCACCCCTTCATCTG					
Nkx2.5p-9556	GTGCCCCAGTGACCCGCTCCAT	ChIP	63	100	201	- 9556
	TATCTCCCTTCCCCGCTGTTGTCC					
Nkx2.5p-2581	AGGCAAAGAAATCACTCCACA	ChIP	55	93	155	- 2581
	TGTTACAATGGCTGGGAA					

Suppl. Table 4: List of primers used for qPCR in the study

qRT: Real-Time Quantitative Reverse Transcription PCR; *: PCR contains 4% DMSO.

Antibody	Use	Use Supplier	Cat. No.
Histone H3	WB, ChIP	Abcam	ab1791
H3K9ac	WB, ChIP	Abcam	ab4441
H4K16ac	ChIP	Abcam	ab10158
Isl1	IF, WB, ChIP	Hybridoma Bank	39.4D5
Nkx2.5	IF, WB	Abcam	ab35842
Nkx2.5	WB	Santa Cruz	Sc-376565
V5	WB	Abcam	Ab9116
HIF1a	WB, IP	Bethyl	A300-286A
HIF1a	ChIP	Novus Biologicals	NB100-134
CD31-APC	FACS	eBioscience	17-0311
cTNT	FACS	Abcam	ab8295
Myh11-PE	FACS	Santa Cruz Biotechnology	sc-6956
Flk1-PE	FACS	BD Biosciences	555308
Sirt1	IF, WB, IP	Cell signaling	2028
Sirt1	ChIP	Millipore	07-131
pHistone 3	IF	Cell signaling	9701
Hes1	WB, IP	Santa Cruz	sc-25392
JNK 1/2	WB	Cell signaling	9258
pJNK1/2	WB	Cell signaling	9251
α-Tubulin	WB	Sigma	T6074
α-sarcActinin	WB	Sigma	A7811
α-Actin	WB	Sigma	A5441
M2(Flag)	WB, IP	Sigma	A2220
Myc	WB, IP	Cell signaling	2278
HDAC1	WB, ChIP	Cell signaling	5356
HDAC5	WB, ChIP	Active Motif	40970

Suppl. Table 5: List of antibodies used in the study.

IF: Immunofluorescence, WB: Western blot, IP: immunoprecipitation, ChIP: Chromatin