Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome

Lisa C. Burnett,1,2,3 Charles A. LeDuc,2,3,4 Carlos R. Sulsona,5 Daniel Paull,6 Richard Rausch,2,3 Sanaa Eddiry,7 Jayne F. Martin Carli,2,3,8 Michael V. Morabito,2,3 Alícia A. Skowronski,1,2,3 Gabriela Hubner,9 Matthew Zimmer,2,3 Liheng Wang,2,3 Robert Day,10 Brynn Levy,11 Ilene Fennoy,12 Beatrice Dubern,13 Christine Poitou,13 Karine Clement,13 Merlin G. Butler,14 Michael Rosenbaum,2,15 Jean Pierre Salles,13,15 Maïthe Tauber,17,16 Daniel J. Driscoll,15,17 Dieter Egli,2,3,6 and Rudolph L. Leibel2,3,4

1Institute of Human Nutrition, 2Department of Pediatrics, Division of Molecular Genetics, and 3Naomi Berrie Diabetes Center, Columbia University, New York, New York, USA. 4New York Obesity Research Center, New York, New York, USA. 5Department of Pediatrics, Division of Genetics and Metabolism, University of Florida College of Medicine Gainesville, Florida, USA. 6The New York Stem Cell Foundation Research Institute, New York, New York, USA. 7Centre de Physiopathologie de Toulouse-Purpan, Université de Toulouse, CNRS UMR 5282, INSERM UMR 1043, Université Paul Sabatier, Toulouse, France. 8Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA. 9Packer Collegiate Institute, New York, New York, USA. 10Institut de pharmacologie de Sherbrooke, Department of Surgery, Division of Urology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada. 11Department of Pathology and Cell Biology, Columbia University, New York, New York, USA. 12Department of Pediatrics, Division of Pediatric Diabetes, Endocrinology and Metabolism, Columbia University, New York, New York, USA. 13Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Sorbonne University, University Pierre et Marie Curie, INSERM UMR 1166, Paris, France. 14Department of Psychiatry and Behavioral Sciences, Division of Research and Genetics, Kansas University Medical Center, Kansas City, Kansas, USA. 15Unité d’Endocrinologie, Hôpital des Enfants, and 16Centre de Référence du Syndrome de Prader-Willi, CHU Toulouse, Toulouse, France. 17Center for Epigenetics, University of Florida College of Medicine, Gainesville, Florida, USA.

Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene Snord116. Here, we found that protein and transcript levels of nescent helix loop helix 2 (NHLH2) and the prohormone convertase PC1 (encoded by PCSK1) were reduced in PWS patient induced pluripotent stem cell–derived (iPSC-derived) neurons. Moreover, Nh1h2 and Pcsk1 expression were reduced in hypothalami of fasted Snord116 paternal knockout (Snord116f–/m) mice. Hypothalamic Agrp and Npy remained elevated following refeeding in association with relative hyperphagia in Snord116f–/m mice. Nh1h2-deficient mice display growth deficiencies as adolescents and hypogonadism, hyperphagia, and obesity as adults. Nh1h2 has also been shown to promote Pcsk1 expression. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased GH, and hypoinsulinemic diabetes due to impaired prohormone processing. Here, we found that Snord116f–/m mice displayed in vivo functional defects in prohormone processing of proinsulin, pro-GH—releasing hormone, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency.

Introduction

Prader-Willi syndrome (PWS) is the most common syndromic obesity, affecting 1 in 25,000 live births (1, 2). PWS results from a loss of paternally expressed genes at 15q11.2–q13 (Figure 1A) (3). Seventy percent of instances of PWS are due to a 5- to 6-Mb deletion in 15q11.2–q13 (Figure 1A). The major phenotypes of PWS include: hyperphagic obesity, hypogonadism, growth hormone (GH) deficiency, hyperghrelinemia, and relative hypoinsulinemia (2, 4). Five paternal microdeletion (118–237 kbp) PWS patients have been identified (5–9). The overlap among these patients’ paternal deletion regions identifies a 91-kb critical deletion region sufficient to cause the major physical and neuroendocrine phenotypes of PWS (Figure 1A). This region contains 3 noncoding RNA genes, including Snord109a, Snord116, and Ipw. None of the extant PWS mouse models (more than a dozen have been generated) develop obesity (10). However, mice in which the paternal copy of Snord116 is deleted (Snord116f–/m) display many of the neuroendocrine phenotypes of PWS, including hyperphagia, low GH, decreased body length, impaired motor learning, hypoinsulinemia, and hyperghrelinemia (11, 12).

C/D box small nucleolar RNAs (snoRNAs) are noncoding small nucleolar RNAs that methylate ribosomal RNAs. However, there are no known ribosomal RNA targets for Snord116-encoded snoRNAs (13). Thus, Snord116 is thought to be a noncanonical snoRNA; and the mechanisms by which Snord116 influences biological processes are unknown. Although the endocrine features and natural history of PWS have been well described, a molecular mechanism linking these features to the genes deleted in the PWS minimum critical deletion region has not been identified. Using mice in which the paternal copy of only Snord116 has

© The American Society for Clinical Investigation. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jci.org/attribution-info for details).

May 19, 2016; Accepted: October 20, 2016.

Related Commentary: p. 98

Conflict of Interest: The authors have declared that no conflict of interest exists.
Figure 1. NHLH2 and PCSK1 are reduced in PWS iPSC-derived neurons and Snord116p/m− (DEL) hypothalami. (A) Diagram of the PWS locus. Maternally expressed genes are shown in pink, paternally expressed genes in blue, non-imprinted genes in green. Protein-coding genes are shown as ovals, snoRNAs as rectangles, long noncoding RNAs as triangles, imprinting center as a diamond. Not drawn to scale. cen, centromere; tel, telomere. (B-F) Gene expression in the PWS locus following neuron differentiation (n = 7 control [CON], n = 1 PWS MD [2 clones used], n = 3 PWS LD). (G) RNA sequencing identified a downregulation in PCSK1 in PWS neurons (n = 7 CON, n = 1 PWS MD [2 clones used], n = 2 PWS LD). This heatmap is also shown in Supplemental Figure 4A and includes the full list of all genes differentially expressed. (H and I) PCSK1 and NHLH2 gene expression levels from an independent differentiation experiment, as measured by qRT-PCR (n = 7 CON, n = 1 PWS MD [2 clones used], n = 3 PWS LD). (J and K) Quantification of PCSI and NHLH2 protein levels in iPSC-derived neurons (n = 5 CON [3 lines], n = 2 PWS LD, n = 1 PWS MD). (L and M) Food intake after 5 hours of refeeding (n = 6 WT, n = 5 DEL). (N-R) Transcript levels in hypothalami at fasting and refeeding (n = 11 WT, n = 13 DEL, overnight fasted; n = 15 WT, n = 14 DEL, 5-hour refed). All data are expressed as mean ± SEM. (B-F) were analyzed with Kruskal-Wallis with post hoc Dunn’s multiple comparison test; comparisons are against unaffected controls. L and M were analyzed with a 2-tailed, type 3 (assumes unequal variance) Student’s t test. N, P, and Q were analyzed with 1-way ANOVA with Tukey’s post hoc test. (O) WT fast and DEL fast were compared with a 2-tailed, type 3 Student’s t test. (R) WT refed and DEL refed were compared with a 2-tailed, type 3 Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Unidirectional RNA sequencing of iPSC/hESC-derived neurons FACS-sorted for NCAM (Supplemental Figure 4) identified PCSK1 among the top downregulated genes (Figure 1G). Pathway analysis using DAVID (https://david.ncifcrf.gov/) found that most dysregulated pathways included PCSK1: for example, “signal peptide,” “response to steroid hormone stimulus,” “pituitary gland development,” “pancreas development,” and “diencephalon development” (Supplemental Table 5). Quantitative RT-PCR (qRT-PCR) from an independent differentiation experiment confirmed the downregulation of PC1 in PWS iPSC-derived neurons (Figure 1H). By Western blotting, PC1 protein is reduced >80% in both microdeletion and LD PWS iPSC-derived neurons (Figure 1I and Supplemental Figure 5). While both PCSK1 and nescent helix loop helix 2 (NHLH2) were among the top downregulated genes in PWS iPSC-derived neurons in a pilot RNA sequencing study, downregulation of NHLH2 was not statistically significant (P = 0.52) in the follow-up RNA sequencing study. However, qRT-PCR and Western blotting showed downregulation of NHLH2 at both the transcript and protein levels in PWS microdeletion and LD iPSC-derived neurons compared with unaffected controls (Figure 1, J and K, and Supplemental Figure 6). Because of the known relationship between NHL2 and PCSK1, we thought it important to report the NHL2 data.

NHL2-null mice are obese, hypogonadal, and display reduced linear growth (16). Hypothalamic levels of Pcsk1 transcript and PC1 protein are reduced by more than 50% in these animals (17). NHLH2 transcript levels were reduced 1.5-fold in lymphoblast RNA from individuals with PWS compared with controls (18). NHLH2 is a basic helix-loop-helix transcription factor that positively regulates PCSK1 transcription as a heterodimer with STAT3 (19). NHL2 binds to E-box motifs within the PCSK1 promoter that are adjacent to STAT3 binding sites (19).

PC1 is the protein product of the PCSK1 gene. PC1 is an enzyme involved in the posttranslational modification of propeptides. PC1 is most active in the acidic environment of secretory vesicles, cleaving proproteins at dibasic residues (20). In conjunction with other prohormone convertases, including PC2, carboxypeptidase E (CPE), and furin, PC1 participates in the excision of the prohormone’s pro-domain, generally increasing the hormone’s bioactivity (21). Known substrates of PC1 include pro-opiomelanocortin (POMC), pro-gonadotropin-releasing hormone (proGnRH), pro-GH-releasing hormone (proGHRH), proinsulin, and proglu[hypothalamus].

Individuals hypomorphic for PCSK1 are hyperphagic, obese, hypogonadal, have low circulating GH levels, and have hyperproinsulinemia associated with hypoinsulinemia (22). Nhlh2-null and Pcsk1−/− mice develop obesity that is associated with impaired hypothalamic processing of POMC to α-MSH as well as impaired proprotein processing of other hormones (17, 23). In humans and mice, hypomorphic mutations of POMC or the α-MSH receptor cause obesity (24, 25). Nhlh2- and Pcsk1-null mice show reduced hypothalamic processing of pro-thyrotropin-releasing hormone (proTRH) to TRH (17, 26).

SNORD116 may act upstream of NHLH2 and/or PCSK1. We sought to determine whether we could detect downregulation of Nhlh2 and Pcsk1 in vivo in mice in which only the paternal allele of Snord116 (Snord116p−−) is deleted (11). Snord116 is not expressed in hypothalami of Snord116p−/− mice (Figure 1N). In WT animals,
Snord116 transcript levels increase 171% following 5-hour refeeding, suggesting that Snord116 may have anorexigenic properties (Figure 1N). In agreement with a putative anorexigenic function for Snord116, the food intake during 5-hour refeeding of Snord116^{+/−} mice is 67% greater than that of WT littermates (Figure 1, L and M). Levels of Pcsk1 transcripts are reduced 41% after fasting but are unchanged after refeeding (Figure 1O). Compared with WT, in Snord116^{+/−} mice hypothalamic Nhlh2 transcript levels are decreased at fasting (−23%) and refeeding (−19%) (Figure 1P).

Snord116^{+/−} mice ingest more calories than WT littermates relative to lean mass during 5-hour refeeding (Figure 1L). Furthermore, despite their reduced total body weights, accounted for by reductions in both lean and fat mass, Snord116^{+/−} mice consumed the same number of calories as WT littermates over the course of 6 days in calorimetry (Supplemental Figure 7, A, G, and H, and see below). When daily food intake was normalized to body weight, the results indicated that Snord116^{+/−} mice are actually hyperphagic relative to body weight (Supplemental Figure 7B). With energy expenditure plotted against BW^{2/3}, we were able to use a single linear regression equation to describe both Snord116^{+/−} and WT data sets; this suggests that the increased energy expenditure of Snord116^{+/−} mice may be accounted for by increased heat loss due to higher surface area to body mass ratio of Snord116^{+/−} animals (Supplemental Figure 7C). No effects on 24-hour respiratory exchange ratio or mean daily movement were detected (Supplemental Figure 7, D and E).

Consistent with the relative hyperphagia of Snord116^{+/−} mice, hypothalamic transcript levels of the orexigenic neuropeptides neuropeptide Y (Npy) and agouti-related peptide (Agrp) were elevated in Snord116^{+/−} animals (Figure 1, L, Q, and R, and Supplemental Figure 7). Agrp is also processed by PC1, and Pcsk1^{−/−} mice have 3.3-fold more full-length Agrp in the hypothalamus (Figure 1P). There is no difference in blood glucose levels by genotype (n = 9 WT, n = 7 DEL). (B) An increase in the ratio of proinsulin to insulin is detected 30 minutes after glucose stimulation (n = 9 WT, n = 7 DEL). (C) The ratio of proinsulin to C-peptide in culture media is also increased in Snord116^{+/−}–/− isolated islets (n = 9 WT, n = 10 DEL). (D) Snord116 is not expressed in Snord116^{+/−}–/− islets (n = 6 WT, n = 5 DEL). (E and G) Pcsk1 and Pcsk2 are downregulated in Snord116^{+/−}–/− islets (n = 6 WT, n = 5 DEL). (F and H) Both PC1 and PC2 protein levels are decreased in Snord116^{+/−}–/− islets (n = 15 WT, n = 15 DEL). (I) Fasting plasma glucose levels of PWS patients, a patient with an inactivating mutation in PCSK1, and age- and BMI-matched controls were measured (n = 25 unaffected controls, n = 16 PWS patients, n = 1 PCSK1 mutation patient). (J and K) Fasting proinsulin and insulin levels were measured (n = 25 unaffected controls, n = 16 PWS patients, n = 1 PCSK1 mutation patient). This effect is intermediate to that observed in the patients segregating for hypomorphic alleles of PCSK1 and manifesting a 170% increase in plasma proinsulin to insulin ratio. All data are expressed as mean ± SEM. A and B were analyzed with 1-way ANOVA with post hoc Tukey test; comparisons between all groups. C–H were analyzed with a 2-tailed, type 3 Student’s t test. Comparison between CON and PWS in I–L was done with a 2-tailed, type 3 Student’s t test; there is no statistical analysis included the PC1 mutation patient, as there was only data from 1 patient. *P < 0.05, **P < 0.01 vs. WT.
amus; however, unlike POMC, processing is not necessary for antagonist activity of AgRP at the melanocortin receptor MC4R (27, 28). Pcsk1 and Snord116–/– mice are runted, confounding effects of genotype on obesity-related phenotypes. Nonetheless, Snord116–/– mice also display long- and short-term increased energy intake relative to their diminished lean mass, associated with decreased hypothalamic Nhlh2 and Pcsk1 at fasting and persistence of increased hypothalamic Npy and Agrp following feeding (Figure 1, L–R, and Supplemental Figure 7).

Based on the data in Figure 1, we hypothesized that specific endocrine phenotypes of PWS might be a consequence of defective prohormone processing owing to a functional deficiency of PC1 activity. We tested this hypothesis by measuring the processing of proinsulin to insulin, proGHRH to GHRH, and proghrelin to ghrelin in vivo in Snord116–/– mice and WT littermates, as well as in human PWS patients and controls matched for age and BMI (Figures 2, 3, and 4).

Proinsulin is processed to insulin and C-peptide in β cells by the combined actions of PC1 and PC2 (29). Patients with PCSK1-inactivating mutations display hyperproinsulinemia and low circulating concentrations of insulin (30, 31). Snord116–/– and WT mice were fasted overnight and injected intraperitoneally with 3 mg glucose per kg body weight. Fasting and post-injection blood glucose levels did not differ by genotype (Figure 2A). At 30 minutes, Snord116–/– mice displayed elevated plasma proinsulin/insulin ratios (Figure 2B and Supplemental Figure 8). Isolated islets from Snord116–/– mice secreted higher ratios of proinsulin:c-peptide and WT (n = 5 WT, n = 4 DEL). (I) Circulating IGF1 is reduced by 45% in P30 Snord116–/– mice compared with WT littermates (n = 6 WT, n = 7 DEL). (J) Transcript levels of liver Igf1 are reduced by 64% in Snord116–/– mice compared with WT littermates (n = 6 WT, n = 7 DEL). (K) There is no change in pituitary GH content between Snord116–/– mice and WT (n = 5 WT, n = 4 DEL). (L) An increased ratio of hypothalamic proGHRH to GHRH content suggests that proGHRH to GHRH processing is impaired in Snord116–/– animals compared with WT littermates (n = 14 WT, n = 11 DEL). All data are expressed as mean ± SEM. A–E and G–L were analyzed with a 2-tailed, type 3 Student’s t test. F was analyzed with 1-way ANOVA with post hoc Tukey test; comparisons between all groups. *P < 0.05, **P < 0.01, ****P < 0.0001 vs. WT.
Obesity is a clinical feature of PWS that is not seen in common obesogens. Hyperghrelinemia preceding the onset of the stomach that is an endogenous ligand for the GH secretagogue Snord116p–/m+ decreased PC1 protein was identified in stomach lysates from Snord116p–/m+ mice. Transcript levels were 20% lower than that in Pc1-null mice, and PC1-deficient patients, Snord116p–/m+ mice displayed increased levels of circulating total ghrelin in mouse and human also detect proghrelin (Supplemental Figure 15). The antibodies used in conventional ghrelin assays to detect circulating total ghrelin in individuals with PWS using the Phoenix Peptide RK-031-30 RIA kit (Supplemental Figure 15 shows that this antibody detects 14-kDa and 17-kDa proghrelin species in addition to 3.4-kDa mature ghrelin.

Figure 4. Deficiencies in PC1 drive the major neuroendocrine phenotypes of PWS. This schematic illustrates our hypothesis that paternal loss of SNORD116 is sufficient to cause deficiencies in the expression of NHLH2 and PCSK1 (PC1), resulting in impaired prohormone processing. We propose that deficiencies in prohormone processing (owing to deficits in PC1 production) explain the major neuroendocrine phenotypes of PWS.

Age- and BMI-matched controls (P = 0.08) (Figure 2L and Supplemental Table 2). There was no difference in blood glucose or proinsulin concentrations between the subjects. The increase in the proinsulin/insulin ratio was driven by reductions in mature insulin (Figure 2, I-L). Plasma from a fasted patient compound heterozygous for inactivating mutations (heterozygous deletion c.71del/p. Ser24Met*73/stop codon position 72) in PCSK1 was included as a control. The ratio of proinsulin to insulin was increased 267% compared with that in unaffected controls (Figure 2K). As we hypothesize that individuals with PWS have a downregulation of PC1, not a complete loss of function, an intermediate impairment in proinsulin processing as compared with PCSK1 mutation patients is expected.

Ghrelin (encoded by Ghrl) is an orexigenic peptide produced in the stomach that is an endogenous ligand for the GH secretagogue receptor (GHSR) (32). Hyperghrelinemia preceding the onset of obesity is a clinical feature of PWS that is not seen in common obesity or other syndromic or monogenic obesities (33–39). Fasted Snord116+/− mice displayed increased levels of circulating total ghrelin (Figure 3, A and B). Pcsk1 transcript levels were 20% lower in the stomachs of Snord116+/− mice (Figure 3C). A trend toward decreased PC1 protein was identified in stomach lysates from Snord116+/− mice compared with WT littermates (P = 0.052) (Figure 3D and Supplemental Figure 12). Transcript levels of Ghrl, which encodes the full-length preproghrelin protein, are reported to be elevated by 40% in the stomachs of PC1-null mice (40). This is the only other rodent obesity model in which hyperghrelinemia has been identified. Ghrl transcript was also increased in the stomachs of the Snord116+/− mice (Figure 3E). Snord116 transcripts are increased >10-fold in stomachs of Pcsk1−/− mice, suggesting a possible negative feedback loop (Supplemental Figure 13). Ratios of proghrelin to mature ghrelin protein are elevated in Snord116+/− stomach lysates (Figure 3F and Supplemental Figure 14). Stomach lysates from PC1-null mice were included as a positive control for impaired proghrelin processing. The processing defect in Snord116+/− mice appears to be less severe than that of Pc1-null mice, consistent with the ~50% decrease in PC1 protein in their stomachs.

The antibodies used in conventional ghrelin assays to detect circulating total ghrelin in mouse and human also detect proghrelin (Supplemental Figure 15). Specifically, multiple groups have identified elevated circulating total ghrelin in individuals with PWS using the Phoenix Peptide RK-031-30 RIA kit (Supplemental Figure 15 shows that this antibody detects 14-kDa and 17-kDa proghrelin species in addition to 3.4-kDa mature ghrelin.

Figure 4. Deficiencies in PC1 drive the major neuroendocrine phenotypes of PWS. This schematic illustrates our hypothesis that paternal loss of SNORD116 is sufficient to cause deficiencies in the expression of NHLH2 and PCSK1 (PC1), resulting in impaired prohormone processing. We propose that deficiencies in prohormone processing (owing to deficits in PC1 production) explain the major neuroendocrine phenotypes of PWS.

Although circulating levels of IGF1 and liver transcript levels of Igf1 were decreased in Snord116+/− mice (Figure 3, I and J).
This finding is consistent with the inference that the short stature and decreased GH levels of individuals with PWS result from a hypothalamic deficiency of PC1.

Discussion

Our finding of reductions in NHLH2 and PC1 at both the transcript and protein levels in PWS iPSC-derived neurons is consistent with the possibility that the major neuroendocrine phenotypes of PWS are due to defects in prohormone processing. The deleted region of the PWS microdeletion patient studied here includes only 3 noncoding RNA genes: SNORD109A, SNORD116, and IPW. Mice lacking just the paternal copy of Snord116 have reduced levels of hypothalamic Nkhl2 and Pcsk1 during fasting. Snord116p–/m+ mice display functional defects in prohormone processing in vivo: the processing of proinsulin, proGHRH, and proghrelin was impaired in these animals associated with tissue-specific reductions in PC1. The impaired processing of proGHRH was associated with the physiological readout of decreased circulating IGF1 and the anatomical phenotype of runted mice. Furthermore, impaired processing of proghrelin to ghrelin was associated with increased circulating body weight and body length. Furthermore, impaired processing of proinsulin, proGHRH, and proghrelin was impaired in living mice. These data suggest that circulating prohormones for AgRP, NPY, CART, oxytocin, and brain-derived neurotrophic factor (BDNF) are reduced in hypothalamic tissue of PC1-deficient mice reported reductions in hypothalamic and pituitary prohormone candidates, hypogonadotropic hypogonadism (impaired proGnRH processing), growth deficiency associated with severe, early-onset hyperphagic obesity (56). Mice that are hyperphagic and obese and have hypothalamic POMC-null mice have increased transcript levels of Npy and Agrp and decreased transcript levels of Pks1. Processing of AgRP is not necessary for its biological activity, and ProAgRP has considerable antagonistic activity toward α-MSH at melanocortin 4 receptor (MC4R) (27, 28). Thus, increased hypothalamic levels of ProAgRP could drive hyperphagia.

Oxytocin is an anorexigenic hormone important for the regulation of body weight; the pro-form of oxytocin is cleaved by PC1 (50). It is unclear whether pro-oxytocin is bioactive. Pituitary processed oxytocin levels are severely reduced in pituitary glands of PC1-null mice (hypothalami were not assessed) (50). Oxytocin-producing neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) express MC4R, the receptor for α-MSH (endogenous ligand) and AgRP (endogenous antagonist) (51). Central and peripheral administration of oxytocin reduces food intake in humans, rhesus macaques, rats, and mice (51–53). Oxytocin receptor–knockout mice weigh more (~16%) than WT littermates; however, the mechanism of increased body weight remains unclear (54). Oxytocin is produced in Sim1-expressing neurons in the PVN (55). Patients with inactivating mutations in SIM1 have severe, early-onset hyperphagic obesity (56). Mice that are haploinsufficient for Sim1 are hyperphagic and obese and have reductions in PVN oxytocin levels; administration of exogenous oxytocin reverses hyperphagia in Sim1–/– mice (55). These data indicate that hypothalamic oxytocin likely contributes to the regulation of body weight directly downstream of melanocortin signaling. Thus, improper pro-oxytocin processing resulting in reduced levels of oxytocin in the setting of PC1 deficiency is a plausible candidate mechanism for the associated hyperphagia.

Swaab et al. identified a reduction in the number of oxytocin-positive neurons in the PVH of post-mortem brains of PWS patients (57). Adult PWS patients have been reported to have
decreased plasma oxytocin levels, while pediatric PWS patients (aged 5–11 years) have increased plasma oxytocin levels (58, 59). Phenotypes of PWS — including impaired suckling in infants and behavioral symptoms consistent with autism spectrum disorder — could be due to impaired oxytocin function (60, 61).

BDNF is highly expressed in the hypothalamic paraventricular and ventromedial nuclei; while **NTRK2** (nominal mature BDNF receptor) is highly expressed in the paraventricular and ventromedial hypothalamic nuclei, as well as the lateral hypothalamic area. BDNF has been implicated in regulation of human body weight as a molecule able to increase energy expenditure and decrease food intake. In common obesity, as well as in PWS, serum BDNF levels are reduced (62). BDNF is also synthesized as a prohormone. ProBDNF can be cleaved by PC7 and furin to mature BDNF, which is released by both somatodendritic and ventromedial nuclei, as well as the lateral hypothalamic area. BDNF has been implicated in regulation of food intake and energy expenditure (66). Hypothalamic or circulating levels of BDNF have not been assessed in models of PC1 deficiency. Further studies are needed to determine whether hypothalamic processing of pro-BDNF is impaired in Pck1-null mice or iPSC-derived neurons hypomorphic for PC1. ProBDNF processing should also be assessed in mouse and iPSC-derived neuron models of PWS.

Thus, the impaired processing of 3 candidate hormones besides POMC —oxytocin, proBDNF, or proAgRP — may contribute to hyperphagia in the setting of PC1 deficiency, and thus potentially PWS. These possibilities are not mutually exclusive. Further studies are necessary to determine whether these hormones are misprocessed in the hypothalamic neurons of mice and humans (iPSC-derived neurons) hypomorphic for **PCSK1** or **SNORD116**.

Nlh2 colocalizes with 33% of **Pomc**-expressing neurons in the rostral arcuate nucleus and 41% of **Trh**-expressing neurons in the PVN (17). In **Nlh2**−/− mice, the prohormone processing of POMC to α-MSH and adrenocorticotropic hormone (ACTH) is impaired, as well as prohormone processing of proTRH to TRH (17). Nlh2, PC1, and PC2 are physiologically regulated by nutritional status and leptin (20). Leptin can increase **NHLH2**, **PCSK1**, and **PCSK2** promoter activity through STAT3-dependent mechanisms in mouse hypothalamus and 293T cells, respectively (20). For TRH, leptin can couple the upregulation of **TRH** transcription to increased proTRH processing (20). Individuals with PWS, and **Snord116**−/− mice, produce appropriate quantities of leptin relative to fat mass; however, it is unclear whether the regulation of **NHLH2**, **PCSK1**, and **PCSK2** by leptin is affected in PWS individuals or mouse models (Supplemental Figure 17).

Most prohormones, including proinsulin and POMC, are much less biologically active than their processed forms. Sertoli cells exposed to propro-GHRH-(75–93)-NH₃ increase cellular cAMP levels, while Sertoli cell exposed to propro-GHRH-(75–93) do not change cellular cAMP levels (67). However, mice null for **PC1** produce increased levels of proGHRH and decreased levels of GHRH compared with WT littermates and are very clearly runted (46). Thus, it seems unlikely that proGHRH retains physiologically significant agonist activity at GHRH receptor (GHRHR). Short-term exogenous administration of recombinant rat proghrelin to mice increases food intake and energy expenditure, resulting in a net body weight loss (68). Treatment of HEK-293 cells transfected with Ghsr-1a increases intracellular calcium signaling in response to synthetic ghrelin but not in response to synthetic proghrelin (68). The biological effects and mechanism of action of synthetic proghrelin appear to be distinct from those of mature ghrelin (68).

Snord116−/− mice are runted and do not develop obesity. **Pwscrp−/−** mice, which carry a paternal deletion in a critical region of the PWS locus, segregate for a slightly different deletion of the **Snord116** gene cluster. These mice are also runted and do not develop obesity. Knockin of a 5′HPRT-LoxP-Neo6 cassette 27 kb upstream of **Snord116** on the maternal allele induces maternal expression of **Snord116**. Pwscrp−/− mice, which have a 5′HPRT-LoxP-NeoR cassette (5′LoxP) inserted upstream of the maternal **Pwscr** allele, are not runted and have body weights indistinguishable from those of WT mice. Pck1-null mice are also runted and do not become obese. The growth curves for the **Pski**-null and **Snord116**−/− mice are very similar. However, the **Pski**Δ222D mouse (hypomorphic for PC1), is obese and not runted. Furthermore, **Pski**Δ−/− mice have increased body weights compared with WT littermates and are very clearly runted. These data suggest that there may be a critical threshold for PC1 levels important to growth and adiposity.

The human PWS microdeletion patient cells utilized in this study harbor a paternal deletion of **SNORD116**, **IPW**, and **SNORD109A**. Without isogenic models of **SNORD116**, **IPW**, and **SNORD109A** deficiency, we cannot definitively conclude whether **SNORD116**, **SNORD109**, and IPW are, individually or in combination, the main drivers of downregulation of **NHLH2** and **PCSK1**. Although the downregulation of **Nlh2** and **Pck1** in **Snord116**−/− mice suggests that paternal deletion of **just Snord116** is at least sufficient for downregulation of **Nlh2** and **Pck1** in vivo.

Snord116 is an imprinted, paternally expressed, noncoding RNA cluster that contains thirty snoRNAs that are 85% homologous to one another, 5 sno-lnc RNAs, and one long noncoding RNA, **116HG**. We have implicated **NHLH2** and **PCSK1** as major molecular targets of **SNORD116**, although it is unclear whether there are direct interactions between **SNORD116** and **PCSK1** and/or **SNORD116** and **NHLH2**. It is also unclear whether such interaction(s) were to occur, exactly which noncoding RNA sequences encoded from the **SNORD116** snoRNA cluster would interact with **PCSK1** and/or **NHLH2**. Furthermore, it is not known whether such interactions would occur at the RNA-DNA, RNA-RNA, or RNA-protein levels. It is also likely that there are targets of **SNORD116** other than **PCSK1** and **NHLH2** that may be clinically relevant in PWS. It is possible that other targets of **SNORD116** may account for aspects of the PWS phenotype that are not present in PC1-deficient patients, such as delayed gastric emptying, characteristic PWS facial features, and behavioral phenotypes such as skin picking.
Methods

Human subjects. All studies and consenting procedures were approved by the Institutional Review Boards of the participating institutions including Columbia University Medical Center, University of Florida, and University of Kansas.

iPSC and PSC culture methods. Human iPSC cultures were generated and maintained as previously described (14).

Neuronal differentiation. Neuronal differentiation was performed as previously described (14).

FACS for CD56. Cells were enzymatically dissociated with Accutase and filtered through a 35-mm cell strainer (BD Biosciences) to obtain a single-cell suspension prior to resuspension in 100 μl of a sterile iPSC staining buffer (DPBS containing 0.5% BSA fraction V [Invitrogen], 100 U/ml penicillin/streptomycin [Invitrogen], 2 mM EDTA [Invitrogen], and 20 mM glucose [Sigma-Aldrich]), CD56-V450 (1 μl; BD Biosciences, 560360) or Stem Cell Technologies Anti-Human CD56 (NCAM) antibody (60021AZ) was added to the cells and incubated at room temperature for 15 minutes shielded from light. The stained cells were washed once with iPSC staining buffer and sorted immediately on a 5 laser BD Biosciences ARIA-IIu SOU Cell Sorter configured with a 100-μm ceramic nozzle and operating at 20-psi sheath fluid pressure. Cells were sorted into a 15-ml tube containing growth media as described above.

RNA sequencing. CD56+ iPSC-derived neurons were immediately pelleted following FACS. Total RNA was isolated from CD56+ iPSC-derived neurons using the Norgen Biotek Total RNA Purification Micro Kit with DNase treatment. RNA sequencing was performed at the Columbia Genome Center, 1 x 100-μp read length, 30-M read count. RNA sequencing was performed on CD56+ iPSC-derived neurons from 7 unaffected control iPSC/ESC lines, 2 PWS LD iPSC lines, and 1 (2 clones were used) PWS microdeletion iPSC line. Reads were mapped to a reference genome (human: NCBI/build37.2; mouse: University of California Santa Cruz [UCSC]/mm9) using Tophat software with 4 mismatches (--read-mismatches = 4) and 10 maximum multiple hits (--max-multihits = 10). The relative abundance (FPKM value) of transcripts was estimated using default settings in Cufflinks software (version 2.0.2; http://cole-trapnell-lab.github.io/cufflinks/). Transcripts were then sorted in Microsoft Excel by FPKM status; genes with “low data” or “fail” FPKM status (189 genes) were not considered for analysis. Only FPKM values of “OK” were kept. FPKM OK status was determined by Cufflinks software to have adequate coverage. The average FPKM values were then calculated for each genotype: unaffected control (CON), PWS microdeletion (MD), and PWS LD (LD). The ratios of differential gene expression (DE) between PWS LD and unaffected control and PWS microdeletion and unaffected control were then calculated. DE ratios >2 and <0.5 were considered as upregulated or downregulated, respectively. A 2-tailed, type 3 t test was performed for all genes; P values less than 0.05 were considered significant.

qRT-PCR on iPSC-derived neurons. RNA was isolated from iPSCs using the QIAGEN RNeasy kit with DNase treatment. RNA was isolated from iPSC-derived neurons using the Norgen Biotek Total RNA Purification Micro Kit with DNase treatment. Total RNA was converted to cDNA using the Roche Transcriptor First Strand cDNA Synthesis Kit. qRT-PCR was performed using Roche LightCycler 480 SYBR Green 1 Master mix. Primers are listed in Supplemental Table 4. All primers used for a qRT-PCR assay were validated using a 5-point standard curve. TBP was used as a housekeeping gene, and fold change was calculated using the 2^(-ΔΔCt) method (Figure 1, B–F, H, and K; n = 7 unaffected control PSCs, n = 1 PWS microdeletion [2 clones used], n = 3 PWS LD lines used).

Intraperitoneal glucose tolerance test in Snord116 deletion mice; ELISA for proinsulin, insulin, and C-peptide; islet isolation procedures; expression levels of PC1 and PC2. Mice were fasted overnight (16 hours). In the morning, mice were intraperitoneally injected with 50% dextrose at a dose of 3 mg glucose per kg body weight (Hospira Inc., NDC 0409-6648702). Blood glucose was assayed at time 0 (fasting, prior to injection) and 30 minutes following injection using a FreeStyle Lite blood glucose meter and strips (accurate range 30–372 mg/dl) (n = 9 WT, n = 7 Snord116^−/−mice, n = 7 Snord116^−/−mice/time point).

Western blot in iPSC-derived neurons for NHLH2 and PC1. Protein levels of NHLH2 (WH0004808M1, Sigma-Aldrich), PC1 (11914 Cell Signaling Technology), and α-tubulin (2144 or 3873 [clone DM1A, Cell Signaling Technology) were examined by Western blot analysis. Whole cell lysates from D34 PSC-derived neurons were obtained by reconstituting and lysing frozen cell pellets (-80°C) in RIPA buffer (Thermo Fisher, 89900) with protease inhibitors (Halt protease and phosphatase inhibitor cocktail, Thermo Scientific, 78442). Samples were sonicated for 15 seconds. Total protein content was quantified using the Pierce BCA Protein assay kit (Thermo Fisher, 23227). Total protein (15 μg) was mixed with sample reducing agent (NuPAGE, NP00009) and LDS sample buffer (NuPAGE, NP00008); samples were incubated at 90°C for 5 minutes. Total protein (15 μg) was run on 4%–12% Bis-Tris mini gels (NuPAGE, NP0323) with MOPS SDS running buffer (Novex Life Technologies, B0001); 1x antioxidant (NuPAGE, NP0005) was added to the inner chamber. Electrophoresis was run at 70 V for 15 minutes and then 200 V until desired molecular weight separation was achieved. Protein was transferred to nitrocellulose blots using the Invitrogen iBlot system run at PI. Primary antibody was incubated overnight at 4°C with gentle rocking. Blots were washed 3 times for 5 minutes in TBST. LI-COR secondary antibodies (IRDye 800 CW goat anti-rabbit, 926-32211; IRDye 680 LT donkey anti-mouse, 926-68022; IRDye 800 CW goat anti-mouse, 926-32210; IRDye 680LT donkey anti-rabbit, 926-68023) were used at 1:5,000 dilution and incubated at room temperature with gentle rocking for 1 hour. Blots were washed twice in TBST for 5 minutes, then twice in TBS for 5 minutes. Blots were then imaged using the Odyssey Classic imaging system (LI-COR Biotechnology). Data were analyzed using Image Studio Lite version 5.0 and GraphPad Prism 6.

Mouse breeding, genotyping, and anthropometric measurements. All animal work was carried out with approval of the IACUC of Columbia University Medical Center under protocol AC-AAAAH1203. Snord116^−/−mice on a C57BL/6J background were ordered from the Jackson Laboratory (stock number 008149). A male Snord116^−/−mice was mated to WT C57BL/6J females. Ovulation cycles of WT C57BL/6J females were synced by exposure to male mouse urine. Offspring were genotyped using methods published by Ding et al. (11). Only male mice were kept for study. Mice were weighed weekly (Figure 3G, n = 4–20 mice/time point) and body composition was measured by NMR monthly using a Bruker Minispec TD NMR. Mice were fed 21.56% fat breeder chow for the entirety of the study (Purina Irradiated 5058 Picomouse Diet 20). Mouse nasal to anal length was measured at 1 and 6 months of age immediately following sacrifice (Figure 3H, n = 6 WT, n = 7 Snord116^−/−mice/time point).

Intraperitoneal glucose tolerance test in Snord116 deletion mice; ELISA for proinsulin, insulin, and C-peptide; islet isolation procedures; expression levels of PC1 and PC2. Mice were fasted overnight (16 hours). In the morning, mice were intraperitoneally injected with 50% dextrose at a dose of 3 mg glucose per kg body weight (Hospira Inc., NDC 0409-6648702). Blood glucose was assayed at time 0 (fasting, prior to injection) and 30 minutes following injection using a FreeStyle Lite blood glucose meter and strips (accurate range 30–372 mg/dl) (n = 9 WT, n = 7 Snord116^−/−mice, n = 7 Snord116^−/−mice/time point).
Chem Ultra Sensitive Mouse Insulin ELISA Kit, 90080; Mercodia Rat/ Mouse Proinsulin ELISA, 10-1232-01; ALPCO Mouse C-peptide ELISA, 80-CPTMS-E01). Prior to islet isolation, mice were fasted overnight (16 hours). Mice were sacrificed by cervical dislocation. A 30-gauge needle was inserted into the common bile duct, and the pancreas was perfused with collagenase P. Islet isolation was carried out as described previously (69). After picking, islets (Roche, 11249002001; Gibco, 31500022) was inserted into the common bile duct, and the pancreas was perfused with collagenase P. Islet isolation was carried out as described previously (69).

Mice were sacrificed by cervical dislocation. The hypothalamus was dissected out of the brain using a brain block and clean razor blades. Hypothalami were immediately frozen in liquid nitrogen. Frozen stomachs were then cryohomogenized (Cryo-Cup was rinsed twice in room-temperature PBS before flash freezing in liquid nitrogen). Stomachs were cut open sagitally, and residual food content was removed from stomachs. Stomach tissue was collected in the morning into heparinized tubes on ice, which was spun at 2,000 RCF at 4°C for 15 minutes. Total ghrelin content of plasma was measured using the Millipore Rat/Mouse Total Ghrelin ELISA kit EZRGRT-91K (n = 21 WT, n = 17 DEL adult males, fasted).

PETUARY GH Western blotting. Pituitaries were removed from overnight-fasted (16 hours) 4-week-old male mice. De-brained skulls were placed in Petri dishes with PBS. While viewing pituitary in de-brained skull via dissecting microscope, fine-tip tweezers were used to excise pituitary out of skull. Use of the PBS-filled Petri dish prevented pituitaries from folding in on itself. Excised pituitaries were then flash frozen in LN2. Pituitaries were homogenized in RIPA buffer (Thermo Fisher, 89900) supplemented with protease inhibitors (Halt protease & phosphatase inhibitor cocktail, Thermo Scientific, 78442). Five micrograms of total protein was loaded onto 4%-12% bis-tris gels, transferred to nitrocellulose membranes using iBlot program 0. Primary GH antibody (National Hormone and Peptide Program) in LI-COR blocking buffer and 1% Tween 20 was incubated for 2 hours at room temperature; blots were then washed 3 times for 5 minutes each in PBST. Blots were incubated with secondary antibodies at room temperature for 1 hour with gentle shaking. Blots were again washed 3 times for 5 minutes each in PBST. Two final washes were performed in PBS. Blots were imaged using the Odyssey Classic imaging system (LI-COR Biotechnology).

Total ghrelin ELISA. Total circulating ghrelin was measured from adult male mice that were fasted overnight (16 hours). Whole blood was collected in the morning into heparinized tubes on ice, which was spun at 2,000 RCF at 4°C for 15 minutes. Total ghrelin content of plasma was measured using the Millipore Rat/Mouse Total Ghrelin ELISA kit EZRGRT-91K (n = 21 WT, n = 17 DEL adult males, fasted).
78442) using a handheld homogenizer. Lysates were centrifuged at for 20 minutes at 20,000 RCF at 4°C; clear supernatant was collect-
ed for analysis. Western blot for PC1 was performed as described for
iPSC-derived neurons (n = 6 WT, n = 6 DEL P30 male mice).

Western blot for proghrelin/ghrelin in stomachs. Stomach lysates from
adult mice fasted overnight (16 hours) were probed for ghrelin content by
Western blot following the methods based on that of Zhu et al. and Yang
et al. (40, 71). Stomachs were dissected out from the mouse and rinsed
twice in deionized (DI) H2O. Stomachs were placed into 200 μl DI H2O
and boiled for 10 minutes using a water bath. Boiled stomachs were then
cooled on ice. Next, stomachs were minced, and 200 μl 2 M acetic acid,
0.04N HCl were added such that the final concentration was 1 M ace-
tic acid and 0.02N HCl. This mixture was then homogenized. Stomach
homogenate was centrifuged at 20,000 g for 1.5 hours at 4°C in order to
obtain a clear supernatant. Supernatant was collected and reduced to 300
μl in a vacuum centrifuge. Acetone precipitation was then performed.
Acetone was cooled to –20°C. 600 μl (2x volume of sample) acetone was
added to the protein sample. Samples were incubated overnight at –20°C.
Samples were then centrifuged for 10 minutes at 15,000 RCF at 4°C.
Supernatant was collected because ghrelin is dissolved in the hydropho-
bic fraction. The supernatant was then dried in vacuo overnight. Dried
protein was then resuspended in 30 μl DI H2O. Total protein content for
each sample was determined by BCA assay. Ten micrograms total protein
was mixed with loading buffer such that final concentrations were 0.1 M
Tris-chloride at pH 6.8, 5% wt/vol SDS, 0.1 M DTT, 5% glycerol. Sample
loading buffer mixture was then incubated at 100°C for 5 minutes. Ten
micrograms total protein was loaded onto a 16% tricine gel which was run
in Tricine-SDS running buffer. 500 μl antioxidant was added to the center
chamber. The gel was run at 70 V for 15 minutes, then 126 V until optimal
migration was achieved. Proteins were transferred from the electropho-
resis gel to a PVDF membrane using the iBlot system. Transfer conditions
were 20 V for 5 minutes (program 3 run for 5 minutes). PVDF blots
were immediately placed in PBST. To prevent diffusion of the 3.4-kDa mature
ghrelin, blots were fixed at room temperature for 15 minutes (on a shak-
er) in 50 mM HEPES-NaOH, pH 7.4, and containing 2.5% wt/vol glutar-
aldehyde. The membrane was then washed 3 times, 5 minutes each, in
PBST. The membrane was blocked for 30 minutes at room temperature
in LI-COR blocking buffer with 1% Tween 20. The blot was exposed to anti-
ghrelin (Santa Cruz Biotechnology Inc., sc-10368) and anti-preproghrelin
(Phenix Pharmaceuticals, H-031-34) primary antibodies during an
overnight incubation at 4°C and gentle shaking. Blots were then washed
3 times for 5 minutes each in PBST. Blots were incubated with secondary
antibodies at room temperature for 1 hour with gentle shaking. Blots
were again washed 3 times for 5 minutes each in PBST. Two final washes
were performed in PBS. Blots were imaged using the Odyssey Classic imaging
system (LI-COR Biotechnology). Data were analyzed using Image Studio
Lite Version 5.0 and GraphPad Prism 6 (< 0.01, **P < 0.05, ***P < 0.001, ****P < 0.0001).

Study approval. The studies using human plasma or human iPSC-de-
derived neurons in this work were approved by the Columbia University
Medical Center Institutional Review Board, Human Research Protec-
tion Office, New York, New York, USA. All subjects provided written
informed consent prior to their participation in the study. The studies
using mice in this work were approved by the IACUC of Columbia Uni-
versity Animal Care Facility.

Author contributions
LCB, CAL, DE, and RLL designed experiments. LCB, CAL, CRS,
DP, RR, MZ, JFMC, MVM, AAS, GH, BL, and DE performed
experiments. SE, JPS, and MT provided PWS microdeletion
fibroblast line 066, PWS LD fibroblast line 031, and one unaf-
fected control fibroblast line, 056. CRS and DJD provided PWS
LD fibroblast lines 129 and 139, as well as plasma from individ-
uals with PWS and unaffected controls. MGB, KC, BD, CP, MR,
and IF provided human plasma samples. RD provided tissues
from PCI-null mice. LW provided technical expertise. LCB, CAL,
DJD, BL, DE, and RLL analyzed and interpreted data. LCB and
RLL wrote the manuscript.

Acknowledgments
We thank Kylie Foo, Giselle Dominguez Gutierrez, and Lori Sus-
sel, Columbia University for valuable instruction and advice on
islet isolation techniques; Deborah J. Good, Virginia Tech, for
supplying Nhlh2 primer sequences; Tiffany Thomas and Hen-
ry Ginsburg for lyophilization of hypothalamic tissue; Roxane
Desjardins and Sandra Gagnon of Sherbrooke University for tis-
sues from PCI-null animals; Fred Kweh, University of Florida,
for sending oral glucose tolerance test (OGTT) plasma; Bryan
Wharram and Roy Smith for access to their ghrelin antibody;
Sharon Wardlaw, Lori Zeltser, Utpal Pajvani, Claudia A. Doege,
Yiying Zhang, Elizabeth Millings, Haiping Hua, Linshan Shang, Bjarki Johanessen, Stuart G. Fisher, Andrew Sproul, Samson Jacob, Shaohua Xu, Scott Noggle, and Steven Chang for valuable discussions. We thank the following foundations/funding agencies for their support for this project: Foundation for Prader-Willi Research (FPWR) grants, FPWR/PWSA (Best Idea Grant), Rudin Foundation, New York Stem Cell Foundation (NYSCF), Helmsley Foundation, Russell Berrie Foundation, NIH (R01DK52431; P30 DK26687: the New York Obesity Research Center).

Address correspondence to: Lisa C. Burnett or Rudolph L. Leibel, 1150 St. Nicholas Avenue Russ Berrie Pavilion Room 620 New York, NY 10033; Phone: 212 851 3515; E-mail: lmc2200@cumc.columbia.edu (L.C. Burnett); rl2332@cumc.columbia.edu (R.L. Leibel).

