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Introduction
MHC class I (MHCI) molecules present thousands of peptides 
at the surface of nucleated somatic cells (1). These MHCI- 
associated peptides (MAPs), collectively referred to as the 
immunopeptidome, regulate each step in the development and 
function of CD8+ T cells (2, 3). Indeed, real-time monitoring of 
the immunopeptidome is a vital process that allows CD8+ T cells 
to discriminate between self and nonself and to swiftly reject 
infected or transformed cells (4–6). Genesis of the immunopep-
tidome can be broadly divided into 2 events: (a) the processing of 
MAPs and (b) their binding to MHCI molecules (7, 8). The rules 
that regulate the second event, binding of MAPs to MHCI, are 
well defined: MHCI alleles are highly polymorphic, and each 
allotype has a specific peptide-binding motif that can be accu-
rately predicted by several algorithms (9, 10). However, the first 
event, processing of MAPs, is a complex multistep process whose 
overall outcome cannot be predicted (1). Some proteins appear to 
generate more MAPs than others, but the mechanistic underpin-
ning for these discrepancies remains elusive (11).

Classic biochemical studies have shown that MAP processing 
is initiated in the cytoplasm by proteasomal protein degradation 
followed by further trimming by cytosolic peptidases, transport in 
the ER, and final trimming by ER peptidases (8, 12–15). Accord-
ing to the dominant paradigm, MAPs preferentially originate from 

defective ribosomal products (DRiPs) which can be created by 
several mechanisms such as nonsense-mediated decay (NMD), 
mRNA destabilization, or noncanonical translation in the cytosol 
or the nucleus (16–20). Large-scale mass spectrometry (MS) offers 
the sole direct approach to analyzing the global molecular compo-
sition of the immunopeptidome. Previous large-scale MS studies 
of MAPs presented by one or a few MHCI allotypes have shown 
that thousands of proteins located in all cell compartments can be 
the source of MAPs (21–24). However, the rules of MAP processing 
cannot be figured out by studying the immunopeptidome present-
ed by individual HLA allotypes because each allotype can only 
bind peptides containing a specific motif (25, 26).

The goals of our study were to assess the extent of MAP 
generation from the entire set of protein-coding genes and 
to determine whether specific features influence the ability 
of discrete genes to generate MAPs. We used a well-validated 
high-throughput proteogenomic approach to identify MAPs pre-
sented by 27 HLA-A and HLA-B allotypes on B lymphoblastoid 
cell lines (B-LCLs) derived from 18 subjects. Overall, we identi-
fied 25,270 nonredundant MAPs, which derived from 6,195 out 
of the 10,575 genes expressed in B-LCLs. Hence, while 59% of 
genes were the source of 1–64 MAPs per gene, 41% of expressed 
genes were not represented in the immunopeptidome. Overall, 
we estimate that the immunopeptidome presented by 27 alleles 
covered only 10% of exomic sequences expressed in B-LCLs. 
We then used a series of bioinformatic tools to understand how 
identifiable features of genes, transcripts, and proteins could 
influence MAP generation. With these data we built a logistic 
regression model that was able to predict whether or not a given 
gene will produce MAPs with a receiver operating characteristic 
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and exome-sequencing data were used to 
build personalized protein databases for 
B-LCLs of 18 subjects using the Python 
package pyGeno (29). These personal-
ized databases were used for peptide 
identification by MS. MAPs were eluted 
from the cell surface by mild acid elution, 
and stringent quality filters were applied 
to the list of MAPs assigned by MS: (a) a 
peptide length of 8–14 amino acids, (b) a 
1% false discovery rate based on searches 
against concatenated target/decoy data-
bases (30), (c) assignment to single genet-
ic origin among the 10,575 protein-cod-
ing genes expressed and annotated in 
B-LCLs, and (d) a predicted MHCI IC50 
of less than or equal to 1,250 nM accord-
ing to the NetMHC or NetMHC cons 
algorithms (31, 32) (Supplemental Figure 
1C, see details in Methods; supplemental 
material available online with this article; 
doi:10.1172/JCI88590DS1). About 99.8% 
of individuals of European descent bear 
at least one of the 27 HLA-A,B allotypes 
studied (33).

We identified 25,270 nonredundant MAPs derived from 6,195 
source genes in, to the best of our knowledge, the largest set of 
MHCI-associated peptides reported to date (Figure 1A and Sup-
plemental Tables 1 and 2). Strikingly, only 59% expressed and 
annotated genes in B-LCLs were capable of generating detectable 
MAPs. MAP source genes produced up to 64 individual MAPs, 
and 68% of these genes produced more than 1 MAP (Figure 1B). 
To estimate the diversity of a multiallelic immunopeptidome, we 
computed the size of the MAP repertoire and MAP source gene 
repertoire as a function of the number of HLA allotypes consid-
ered (Figure 1C). We counted the number of unique identifications 
when a given number of randomly selected allotypes was consid-

(ROC) AUC of 0.81 ± 0.02 (95% CI). Our results show that the 
immunopeptidome is forged from a limited repertoire of gene 
products with distinct features influencing transcription, trans-
lation, and proteasomal degradation.

Results
Proteogenomic-based definition of the MAP repertoire presented by 
27 HLA allotypes. To obtain a comprehensive representation of 
the immunopeptidome presented by HLA-A and HLA-B mole-
cules, we applied a well-validated high-throughput proteogenom-
ic approach that hinges on a combination of next-generation 
sequencing and high-throughput MS (20, 27, 28). Transcriptome 

Figure 1. The immunopeptidome presented 
by 27 HLA allotypes. (A) Total number of 
nonredundant MAPs and their source genes in 
the immunopeptidome of 18 B-LCLs compared 
with an expected binomial distribution. The 
curve depicts the expected number of source 
genes if all genes had a similar ability to gener-
ate MAPs. The black diamond shows the actu-
al number of source genes (n = 6,195) observed 
for 25,270 MAPs (P < 1 × 10-250, binomial test). 
(B) Histogram showing the number of MAPs 
generated per MAP source gene (range = 1–64). 
(C) The number of unique identifications of 
MAPs (left panel) and MAP source genes (right 
panel) was counted for various numbers of 
randomly selected HLA allotypes. Results 
show the average of 1,000 simulations. (D) The 
promiscuity of antigen presentation for MAPs 
(left panel) and their source genes (right pan-
el). Histograms show the number of allotypes 
associated with each peptide or gene.
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soned that if our MS analyses randomly missed some MAPs, the 
proportion of MAP source versus nonsource genes should never-
theless follow a binomial distribution where the number of source 
genes increases as a function of the number of detected MAPs (Fig-
ure 1A). Notably, we found that the 25,270 MAPs that we identi-
fied by MS derived from significantly fewer genes (n = 6,195) than 
predicted by a binomial distribution (Figure 1A, exact binomial 
test P < 10–250). Hence, random failure to detect some MAPs can-
not explain that only 59% of genes were found to generate MAPs. 
In addition, we used internal standard triggered–parallel reaction 
monitoring (IS-PRM) in order to compare the detection threshold 
for 2 sets of stable isotopically labeled synthetic peptides (35). Pep-
tides AEIEQKIKEY, EEINLQRNI, EEIPVSSHY and EESAVPERSW 
(underlined residues indicate 13C, 15N-labeled amino acids) had the 
amino acid sequence of MAPs presented by B*44:03. The other 
synthetic peptides AESQELLTF, EESHLNRHF, HESAEGKEY, and 
TESSDITEY corresponded to amino acid sequences from non-
source genes (i.e., not detected in our initial shotgun MS analyses) 

ered. For MAPs, the nearly linear nature of this relationship 
demonstrated little redundancy in the peptides presented by dif-
ferent allotypes (Figure 1C). Conversely, the redundancy of the 
genes generating MAPs across all 27 HLA allotypes was much 
greater (Figure 1C). As more allotypes were considered, a dimin-
ishing number of additional genes were represented in the immu-
nopeptidome. A simulation examining the size of the peptide and 
gene repertoires as various numbers of subjects were considered 
showed similar results (Supplemental Figure 1, A and B). Most 
MAPs (89%) were presented by a single HLA allotype (Figure 1D). 
The few promiscuous binders were presented by HLA allotypes 
with similar peptide-binding motifs (i.e., same “superfamily”), 
such as A*03:01 and A*11:01 (34). However, the majority of MAP 
source genes (67%) produced MAPs for multiple allotypes, some 
for up to 24 of the 27 allotypes studied (Figure 1D).

Since MS analyses can be subject to some stochastic varia-
tions, would it be possible that no MAPs were assigned to 41% of 
expressed genes because these MAPs were missed by MS? We rea-

Figure 2. Spatial distribution of MAPs along source proteins. (A) Distribution of overlap types for 3,682 pairs of overlapping MAPs formed by 5,046 indi-
vidual peptides: pairs with any overlapping residues and no common ends; pairs with a common C terminus (C term); pairs with a common N terminus; and 
pairs with 1 peptide contained within the other. (B) Proportion of overlapping MAP pairs presented by the same allotype or different allotypes. For MAP 
pairs presented by different allotypes, whether the 2 allotypes belong to the same superfamily is indicated (34). (C) Distances between MAP start sites 
along proteins generating more than 1 MAP compared with a matched, random distribution. Distances are shown up to 30 residues. Distances are signifi-
cantly shorter in the actual distribution (Wilcoxon rank sum test, P = 7 × 10-52). (D) Exome coverage by the immunopeptidome. A window of 50 or 25 amino 
acids (left and right panel, respectively) was moved residue by residue along proteins of the transcribed exome of B-LCLs. Histograms show the number of 
MAPs found in each window; the proportion of windows containing 0 versus at least 1 MAP is indicated.
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2B). Hence, from the perspective of an MHCI allotype, generation 
of overlapping MAP pairs is generally not redundant: members of 
a pair are seldom presented by the same MHCI allotype. At the 
population level, the net result is that some protein regions are 
included in the immunopeptidome of many people who do not 
share the same HLA alleles.

To further evaluate whether selected protein regions were 
preferential sources of MAPs, we analyzed the spatial distribution 
of MAPs along proteins. For each protein, distances between adja-
cent MAP start sites were calculated. A control distribution was 
generated by randomly placing the same number of MAPs along 
the same protein length. We found that MAPs colocalized along 
proteins more than expected (P = 7 × 10-52, Figure 2C). The fact that 
no MAPs were assigned to 41% of expressed protein-coding genes, 
together with the clustering of MAP-coding sequences in source 
genes, suggests that the immunopeptidome covers a limited por-
tion of the whole exome. To estimate global exome coverage, (a) 
we moved a walking window of 150 base pairs (50 amino acids) 
along the exome coding for the 10,575 genes expressed in B-LCLs, 
and (b) we calculated the number of MAPs seen in each window. 
We found that 83% of windows generated no MAPs, whereas 17% 
of windows covered 1–30 MAPs per window (Figure 2D). When we 
reduced the window size to 75 base pairs, only 10% of windows 
were a source of MAPs (Figure 2D). From this, we conclude that 
the immunopeptidome presented by 27 HLA-A,B allotypes covers 
an unexpectedly small portion of the whole transcribed exome.

Gene expression cannot solely account for differential ability of 
genes to generate MAPs. Understanding the genetic origins of the 
immunopeptidome is of paramount importance fundamental-
ly and in the search for MAPs that could be used as therapeutic 
targets. What distinguishes the 6,195 genes that were capable of 
generating MAPs compared with the other 41% of genes from 

that were randomly chosen among peptides predicted to be strong 
binders for B*44:03 (IC50 < 50 nM). These synthetic peptides were 
spiked (100 fmoles each) in mild acid elution extracts from 3 dif-
ferent B-LCLs to correlate the identification of the corresponding 
endogenous MAPs. IS-PRM analyses showed that the detection 
threshold was similar for the 2 groups of synthetic peptides (Sup-
plemental Figure 2). Furthermore, none of the selected B*44:03 
strong binders coded by nonsource genes were detected in the 3 
different B-LCLs using IS-PRM. In contrast, endogenous peptides 
from source genes presented by B*44:03 were all correlated with 
their corresponding synthetic peptides (Supplemental Figure 2). 
These results provide compelling evidence that failure to detect 
MAPs from nonsource genes cannot be ascribed to MS bias against 
the product of nonsource genes.

Two major points can be made from these data: (a) a distinct 
subset of genes produced most MAPs, and (b) our method cap-
tured the majority of MAP source genes (Figure 1C). As a corollary, 
these results suggest a model whereby a common pool of source 
proteins selectively enters the antigen-processing pathway and 
can generate MAPs with suitable motifs for most MHCI allotypes.

Discrete protein regions are preferential sources of MAPs. We 
next asked whether there might be “hot spots” in MAP source 
genes, i.e., regions or domains that provide disproportionately 
high amounts of MAPs. To this end, we analyzed the spatial dis-
tribution of MAPs along proteins that generated more than one 
MAP. We first identified 3,682 pairs of overlapping MAPs formed 
by 5,046 individual peptides (20% of the entire data set). In a giv-
en pair, MAPs differed from each other at their N and/or C ter-
minus (Figure 2A). These pairs may result from differential trim-
ming of a common precursor by various peptidases in the cytosol 
and ER. Notably, 71% of MAP pairs bound different allotypes; of 
these, 82% bound allotypes from different superfamilies (Figure 

Figure 3. Features of MAP source and nonsource genes, transcripts, and proteins. Error bars represent a 95% CI based on bootstrapping for Cliff’s d value, 
a nonparametric measurement of effect size. P values derived from 2-sided Wilcoxon tests; 6,195 source and 4,380 nonsource genes and gene products were 
studied for each comparison. * indicate features that were normalized for the respective transcript, UTR, or protein lengths. See Methods for details of how 
each feature was calculated. miR, microRNA; TS, TargetScan software; Ub, ubiquitination site.
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to nonsource genes (Figure 3). Also, consistent with the positive 
correlation between the number of exons and translation efficien-
cy (42), we found that MAPs derived from transcripts composed 
of more exons than nonsource transcripts (Figure 3), even when 
normalized for transcript length (P = 5 × 10-49).

We next examined features of the 5′ UTR for evidence of trans-
lational regulation of antigen processing. Upstream open reading 
frames (uORFs) tend to negatively influence translation by destabi-
lizing transcripts and by acting as physical obstacles that slow ribo-
somal scanning (43). The 5′ UTRs of MAP source transcripts were 
significantly shorter and contained fewer predicted uORFs. Simi-
larly, the secondary structure predicted with Vienna RNAfold (44) 
revealed greater free energy scores in spite of enriched GC content 
for MAP source 5′ UTRs. No definitive differences between the 
amount of base pairing in 5′ UTR structures were found (Figure 3). 
These findings suggest that MAP source 5′ UTRs are structurally 
fluid and contain fewer obstacles to translation.

The 3′ UTR is a critical site of translational control containing 
regulatory elements such as adenylate-uridylate–rich (AU-rich) 
elements and binding sites for microRNAs and RNA-binding pro-
teins (45). Despite this regulatory potential, we initially remarked 
no difference in the lengths of 3′ UTRs (Figure 3). The density of 
AU-rich elements was similar; however, our analyses could not 
take into account the distinction between AU elements involved in 
rapid decay and finer stability regulation (46). Greater GC content 
was found in nonsource 3′ UTRs and along the entire mRNA tran-
script in general; this may reflect a positive association with mRNA 
levels in a degradation-independent manner (47). Stabilizing and 
destabilizing regulatory elements were queried in the 3′ UTRs of 
all transcripts (48) and revealed similar prevalence in source and 
nonsource transcripts (Figure 3). Moreover, we were unable to 
confirm previous results that MAPs derive preferentially from tran-
scripts with microRNA-binding sites using 2 different tools: Gene 
Set Enrichment Analysis (GSEA) and TargetScan (19, 49, 50) (Fig-
ure 3). However, our negative findings regarding binding sites for 
microRNAs and RNA-binding proteins must be considered with 
some reservations. First, microRNA regulation is highly cell-type 
specific, while the methods used to predict microRNA involvement 
operate at an organism-wide level (50). Second, since the effects of 

which no MAPs were detected? To answer this question, we 
applied a variety of analyses and prediction algorithms to study 
the features of MAP source and nonsource genes, transcripts, and 
proteins. We first asked whether MAP source proteins simply con-
tained more potential HLA-binding peptides, i.e., peptides with 
the right binding motif for the 27 HLA allotypes considered here. 
This was not the case: the density of predicted nonamer MHCI 
binders was no greater in source genes than nonsource genes 
(Supplemental Figure 1D). Since the difference between MAP 
source and nonsource genes is unrelated to the number of poten-
tial MHC binders, it must therefore involve discrepancies in the 
processing of MAP source proteins.

Whether gene expression influences MAP generation is a contro-
versial issue, as shown by previous studies based on smaller data sets. 
According to some reports, MAPs derive preferentially from highly 
abundant mRNAs or proteins (19, 25, 36), but other reports cast some 
doubts on this contention (23, 37). By analyzing RNA-sequencing 
data of the 18 B-LCLs studied herein, we found that the average gene 
expression was significantly higher for MAP source genes (Figure 3). 
However, expression alone provided an incomplete portrait of anti-
gen presentation: some highly expressed genes generated no MAPs, 
and some lowly expressed genes were capable of generating MAPs. 
Since the proteome is an imperfect mirror of the transcriptome (38, 
39), we also analyzed the relationship between protein abundance in 
human B cells (40) and MAP generation. MAP source proteins are 
more abundant than nonsource proteins (Figure 3), yet the fact that 
some proteins with similar expression belonged to source or non-
source groups suggested that other factors were at play.

MAP source transcripts are enriched in features conferring greater 
translation efficiency. Ultimately, MAP generation must be regu-
lated at the level of translation and protein degradation (41). To 
gain further insights into the mechanisms regulating MAP gener-
ation, we analyzed the potential role of factors regulating protein 
metabolism. We first asked whether features enhancing trans-
lation efficiency and transcript stability may distinguish source 
from nonsource transcripts. Coherent with the concept that NMD 
is a source of MAPs (18), we observed that the proportion of genes 
with at least one transcript with an NMD biotype (determined 
with the ENSEMBL regulatory build) was higher in source relative 

Figure 4. GO analysis of source and nonsource genes. Enrichment in source (A) and nonsource (B) groups was calculated on a background of both groups 
using the topGO algorithm to eliminate redundancies (60). The top 15 most enriched functions are shown for each group including all 3 ontology cate-
gories. For all GO terms significantly enriched in source and nonsource gene categories, see Supplemental Tables 3 and 4. PR, positive regulation; RNP, 
ribonucleoprotein; CC, cellular component; MF, molecular function; BP, biological process.
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3′ UTR regulatory elements are heavily context dependent (45), the 
role of 3′ UTR regulation in MAP generation may be obscured by 
the specific activity of predicted elements in B-LCLs. Nonetheless, 
in contrast with the 5′ UTR, these findings indicate at least limited 
regulation of MAP generation by 3′ UTR elements.

Notably, features enriched in MAP source transcripts and 
UTRs had minimal correlations with protein abundance (absolute 
Spearman’s rank correlation coefficient r of 0.22 for number of 
exons and r < 0.14 for others, Supplemental Figure 3). This led us to 
postulate that gene expression and transcript features may provide 
nonredundant information for the modeling of MAP generation.

The primary and secondary structure of proteins regulates MAP 
generation. Next, we assessed the electrochemical and structural fea-
tures of MAP-generating proteins. We confirmed previous reports 
that longer proteins generate more MAPs (25, 36) (Figure 3). This 
may reflect that, relative to shorter proteins, longer proteins (a) con-
tain more MHCI-binding sequences, (b) have a greater chance of 

forming DRiPs, and (c) bind more ribosomes (25,42). MAP source 
proteins had lower hydropathy scores, indicating more polar ami-
no acid composition. Furthermore, the predicted isoelectric point 
revealed greater acidic composition of source proteins (Figure 3). 
At the next level of complexity, the predicted secondary structure 
of MAP source proteins showed distinct contributions of helix, turn, 
and sheet motifs. In particular, MAP source proteins showed a con-
spicuous enrichment in sheet motifs (Figure 3).

The ubiquitin proteasome system is a key entry point for pro-
teins into the MHCI-processing pathway (7, 51). We first exam-
ined MAP proteins for proteasomal degradation motifs. We 
found that, compared with nonsource proteins, MAP source pro-
teins contained higher frequencies of (a) KEN-box and D-box 
motifs targeted by the anaphase-promoting complex ubiquitin 
ligase (52), (b) PEST motifs, which serve as proteolytic signals 
for the proteasome and other proteases (53), and (c) canonical 
lysine ubiquitination sites (54) (Figure 3).

Figure 5. A logistic regression model to predict whether or not a gene will generate MAPs. (A) Prediction scores for each gene grouped by experimentally 
defined source classification. (B) Prediction scores for each gene and the number of MAPs generated. (C) Model performance measured by a ROC plot 
of sensitivity (the rate of true positives) as a function of specificity (the rate of true negatives); the AUC is 0.81 ± 0.02 (95% CI). (D) Frequency of input 
variable selection in a logistic regression model using recursive feature elimination; frequencies above 0.05 are shown. (E) The relative weight of all input 
variables in the 2-class logistic regression model. Variables normalized by the length of the corresponding UTR, transcript, or protein are denoted by * and 
GO terms denoted by #. EC, extracellular; IC, intracellular; Mem., membrane; MFE, minimum free energy; MM, macromolecular; NR, negative regulation of; 
PR, positive regulation of; TS, TargetScan software. All metrics are averaged over 1,000 models (see Methods for details).
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Unstructured protein regions serve as initiation sites for pro-
teasomal degradation (55), and intrinsically disordered segments 
favor proteasome degradation (56). Therefore, to analyze the 
potential influence of protein disorder on MAP generation, we 
computed the disorder status of proteins in our data set with the 

neural network predictor PONDR VLXT (57). Whether the propor-
tion of disordered residues, the average disorder of all residues, 
the length of N-terminal disorder, or the presence of internally 
disordered regions longer than 30 residues was considered, MAP 
source proteins consistently contained greater disorder compared 
with nonsource proteins (Figure 3). Similar results were obtained 
using 2 other disorder predictors: DISOPRED (58) and IUPRED 
(59) (Supplemental Figure 4B). We conclude that primary and sec-
ondary structure of proteins and particularly features linked to pro-
teasomal degradation have a strong influence on MAP generation.

GO terms analysis. We next compared the enrichment of gene 
ontology (GO) terms in MAP source and nonsource genes using 
the topGO algorithm (60) to eliminate redundancies (Figure 4). 
Our findings here confirm and extend reports based on small-
er data sets (19, 22, 25). The source gene population was highly 
enriched in genes coding for intracellular proteins interacting 
with DNA, RNA, and other proteins (Figure 4A and Supplemen-
tal Table 3). This may have resulted from a relatively greater 
expression of genes implicated in housekeeping functions, such 
as poly(A) RNA binding, mitotic cell cycle, and mRNA processing. 
Non–mutually exclusive hypotheses are that these genes have a 
preferential access to the MHC-processing machinery, for exam-
ple, via “immunoribosomes,” or that components of macromo-
lecular complexes have a greater propensity to form DRiPs (17). 
Nonsource proteins were enriched in membrane components and 
related signaling processes, demonstrating that proteins travers-
ing the secretory pathway are poorly represented in the MHCI 
immunopeptidome (Figure 4B and Supplemental Table 4).

Modeling MAP generation. Having identified features that dif-
ferentiate MAP source versus nonsource genes, we asked wheth-
er it might be possible to build a model for predicting whether a 
given gene generates MAPs. Taking into account features listed in 
Supplemental Table 5 (see also Supplemental Figure 3), we trained 
a logistic regression model on 80% of our data set using 10-fold 
cross-validation and tested its ability to discriminate MAP source 
versus nonsource genes on the remaining 20% of our data set. The 
process was repeated 1,000 times with randomly divided training 
and test data sets (see Methods for details). Prediction scores, 
falling between 0 and 1, demonstrated a considerable ability to 
correctly discriminate between MAP source and nonsource genes 
(Figure 5A). Although the model was blind to the number of MAPs 
produced by source genes, we found that the predictions corre-
sponded to the rate of MAP production (Figure 5B).

To assess the overall predictive power of the model, we con-
structed ROC plots with averaged prediction scores and found 
an AUC of 0.81 ± 0.02 (95% CI) (Figure 5C). By examining the 
parameters of the model, we assessed the relative contribu-
tion of each feature to learning (Figure 5E). We found that gene 
expression was the most informative variable, followed by pro-
tein length, the presence of sheet motifs, and various GO terms. 
Features of genes, transcripts, and proteins were included in the 
group of relatively less important but significant variables, sug-
gesting that a wide range of fine-tuning processes contribute 
to MAP generation. Since estimates of relative importance can 
be influenced by related variables, we used a second method to 
assess feature importance. We assessed the predictive capacity of 
a logistic regression model, selecting only the top 10 most infor-

Figure 6. Evaluation of model performance with independent data sets 
on human cancer cell lines. (A) Overlap in source gene identifications 
between the present study and 2 independent studies of JY B-LCLs using 
different MS techniques: JY (C.) and JY (B-S.). (B) Distribution of prediction 
scores for MAP source genes in B-LCLs and cancer cell lines (details in 
Table 1); median value is shown with whiskers extending to the extremes 
of the interquartile range x 1.5; outliers are hidden. (C) Proportion of MAP 
source genes captured as a function of prediction score threshold.
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ure 6A). Moreover, our model effectively predicted MAP origin 
in these 2 independent data sets (Table 1 and Figure 6, B and C) 
despite differences in methods of MAP isolation and MS analyses.

We further challenged the model trained on 18 donor B-LCLs 
to predict MAP generation in 5 human cancer cell lines: 2 leuke-
mias, 2 breast carcinomas, and 1 colorectal carcinoma (Table 1). To 
evaluate the performance of our model, we used previous analyses 
of the transcriptome (63) and the immunopeptidome (21, 36) of 
these cell lines. The models’ ability to predict MAP source genes 
was very good for the 5 cancer cell lines, with ROC AUC ranging 
from 0.79 to 0.85, similar to the accuracy observed with B-LCLs 
(Table 1). The distribution of the prediction scores for MAP source 
genes was similar in the various cell lines (Figure 6B), though the 
rate at which source genes were captured at different probabilities 
of MAP generation revealed slight divergence at the lower predic-
tion scores (Figure 6C). These data suggest that MAP processing 
follows consistent rules with limited variations between cell types. 
Overall, we conclude that our prediction model is robust for cells 
of various lineages and that its accuracy is not biased by the meth-
ods used for MAP isolation or identification.

Discussion
To the best of our knowledge, this study reports the largest data 
set of MAPs to date. Several points can be made from our com-
prehensive analyses of 25,270 MAPs presented by 27 HLA-A,B 
allotypes, which illustrate how there can be “strength in num-
bers” (64). Indeed, while analyses of smaller data sets suggested 
that individual genes were represented in the immunopeptidome 
by only a single MAP (25), we found that MAP source genes gen-
erated up to 64 nonredundant MAPs. Importantly, we found 
that MAPs presented by 27 MHCI allotypes together cover an 
unexpectedly small fraction of the protein-coding exome (10%) 
because (a) 41% of genes did not generate detectable MAPs, and 
(b) MAPs derived from the same gene tend to originate from 
adjacent sequences. At the population level, one implication is 
that even though HLA allotypes have different peptide-binding 
motifs, a large fraction of MAPs presented by different subjects 
(2 to 4 HLA-A,B allotypes/subject) will originate from common 
genomic regions. Further studies are certainly warranted in 
order to explore whether, relative to the whole exome, MAP “hot 
spots” have distinctive features that would make their monitor-
ing by T cells of special importance or whether these regions are 
simply opportunistically captured. For instance, are these hot 
spots preferential sites of somatic mutations in cancer cells or 
do they resemble viral genes? Notably, we observed that some 
features enriched in MAP source genes are also common in viral 
genes (e.g., internal disorder and 5′ UTR secondary structures). 
Indeed, disorder is prevalent in viral genomes (65), and several 
viral transcripts contain complex 5′ UTR secondary structures 
that stall ribosomal translation (66).

Our results suggest that at the systems level, MAP generation 
is regulated by specific features of transcripts and proteins that 
often affect translation and proteasomal degradation. For exam-
ple, features of the 5′ UTR, such as shorter length, looser second-
ary structure, and fewer uORFs, which are easier for ribosomes 
to navigate, may confer efficient translation and consequently 
greater MAP generation. The importance of proteasomal process-

mative features. Despite this constraint, the model demonstrated 
comparable predictive power. The frequency with which features 
were selected in this model (Figure 5D) coincided with the relative 
weight when all input variables were considered (Figure 5E).

A 2-class distinction of MAP source and nonsource genes 
does not take into consideration that some source genes gen-
erate up to 64 nonredundant MAPs, while other genes produce 
only one (Figure 1B). To integrate these findings, we produced 
a nuanced version of the classification model that made predic-
tions for 3 ordered groups: none (no MAPs), low (1–2 MAPs), and 
high (≥ 3 MAPs). Predictions were most accurate for the high cat-
egory, which obtained an AUC of 0.86 ± 0.02, while the low and 
none groups had AUCs of 0.64 ± 0.01 and 0.81 ± 0.02, respec-
tively (Supplemental Figure 5A). Clearly, the model had difficulty 
distinguishing the low group, for which its predictions reached a 
maximum probability of 0.43 compared with 0.99 for the high 
and none categories (Supplemental Figure 5C). Interestingly, 
when we compared the relative contribution of different input 
parameters between the 2-class and 3-class models, we found a 
very similar hierarchy (Figure 5E and Supplemental Figure 5B). 
We conclude that no particular feature within the model distin-
guishes genes that generate few versus numerous MAPs.

Model validation with independent data sets and human cancer 
cell lines. The various strategies used for high-throughput MS anal-
yses of the immunopeptidome present strengths and limitations 
(61). In the present study, MAPs were isolated from 18 B-LCLs by 
mild acid elution and analyzed by data-dependent MS. To gauge 
the robustness of the model, we tested it on MAPs identified by 2 
other groups in JY B-LCLs. MAPs in these 2 data sets were isolated 
by MHCI immunoprecipitation; one study used data-dependent 
MS (36), and the other used data-independent MS (21). While our 
data set contained MAPs presented by 27 HLA-A,B allotypes, JY 
B-LCLs express just 2 of these: HLA-A*02:01 and HLA-B*07:02. 
Transcriptomic data from JY B-LCLs (62) defined a set of candi-
date genes on which we performed predictions with the 2-class 
logistic regression model. Notably, 82% of source genes for the 2 
other data sets were included in our own set of source genes (Fig-

Table 1. Features of human B-LCLs and cancer cell lines used to 
evaluate model performance

Cell line Type Method AUC n
18 Donors B lymphoblast cell line MAE/DDA 0.81 6,195
JY (C.) B lymphoblast cell line IP/DIA 0.83 2,782
JY (B-S.) B lymphoblast cell line IP/DDA 0.83 2,185

Jurkat T cell lymphoblast leukemia IP/DIA 0.82 959
SUP-B15 Acute lymphoblastic leukemia IP/DDA 0.85 2,997
HCC1143 Breast carcinoma IP/DDA 0.79 3,136
HCC1937 Breast carcinoma IP/DDA 0.83 4,546
HCT116 Colorectal carcinoma IP/DDA 0.83 2,900

The MS method used to detect MAPs and the number of MAP source 
genes identified in each sample (n) are indicated. For each cell line, an 
AUC derived from predictions by the 2-class logistic regression model 
is reported. DDA, data-dependent acquisition; DIA, data-independent 
acquisition; MAE, mild acid elution.
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was performed at the Hôpital Maisonneuve-Rosemont using 500 ng of 
genomic DNA. B-LCLs were derived from PBMCs as described (27).

Proteogenomic identification of MAPs derived from B-LCLs. We 
applied our previously described proteogenomic approach to iso-
late and sequence MAPs. The methods of cell culture, transcriptome 
sequencing, mild acid elution, and MS have been described previous-
ly (27, 28). RNA-sequencing data were mapped using kallisto version 
0.42.5 to ENSEMBL assembly 37.75 (NCBI Bioproject database http://
www.ncbi.nlm.nih.gov/bioproject/; accession PRJNA286122)  (74, 
75). Transcriptome sequencing revealed no genetic polymorphisms 
in the regions coding for the mature (active) form of PSMB5 and 
PSMB8, the proteasome subunits that are mainly responsible for MAP 
processing (data not shown). We defined the B-LCL transcriptome as 
10,575 expressed (averaged transcripts per million > 2) and annotated 
protein-coding genes. To mitigate the risk of false positives, stringent 
quality filters were applied to the list of identified MAPs: a peptide 
length of 8–14 amino acids; a 1% false discovery rate; and a predicted 
IC50 of 1250 nM or less. The binding affinity threshold was chosen to 
optimize inclusivity and stringency; a less stringent threshold of 5,000 
nM included 8.6% more MAPs and 2.3% more source genes (Supple-
mental Figure 1C). When possible, binding affinities were predicted 
with NetMHC 3.4 (21 allotypes); otherwise, NetMHCcons 1.1 was 
applied (6 allotypes). For each individual, peptides were assigned to 
the allele with the strongest binding affinity. Peptides were mapped 
to proteins using pyGeno (29, 74). We applied further filtering steps 
to facilitate bioinformatic analysis; peptides assigned to more than 
one gene origin, transcripts with incomplete 5′ and 3′ annotation, and 
proteins with internal stop codons were all excluded. Where multiple 
isoforms were identified for a gene, MAPs were assigned to the most 
abundant transcript. Estimates of HLA allele frequency were derived 
from the European Caucasian population registered in the Nation-
al Marrow Donor Program (33). The MS proteomics data have been 
deposited to the ProteomeXchange Consortium via the PRIDE part-
ner repository (PXD004023). In addition, the list of MAP sequences 
was deposited in the Immune Epitope Database (http://www.iedb.
org/; 1000704). For IS-PRM analyses, nonsource peptides were cho-
sen randomly from the lowest predicted quintile of nonsource genes 
generating a peptide that bound HLA-B*44:03 with an affinity IC50 
of less than 50 nM. IS-PRM analyses for 2 sets of stable isotopically 
labeled synthetic peptides were performed as described (35).

Simulations of the redundancy in MAP and MAP source gene repertoires. 
HLA allotypes were randomly ordered, and either peptides or genes were 
considered. The number of nonredundant identifications was counted, 
considering the repertoires of each subsequent allotype. The simulation 
was repeated 1,000 times; average repertoire sizes are shown. The same 
simulation considering subjects instead of allotypes was also performed 
(Supplemental Figure 1, A and B). We noted greater redundancy in this 
simulation due to some subjects sharing the same allotypes.

Spatial localization of MAPs along source proteins. Every pair of over-
lapping MAPs was extracted for each protein generating more than 1 
MAP. Overlapping MAP pairs were classified as sharing the same begin-
ning “C-terminal extensions,” sharing the same end “N-terminal exten-
sions,” being contained within another peptide, “Internal,” or sharing at 
least 1 amino acid, “Overlap.” Alleles presenting each peptide pair and 
their superfamilies were compared (34). Distances between adjacent 
MAP start sites on the same protein were computed for the actual distri-
bution. For the random distribution, an equivalent number of MAPs was 

ing is underscored by the prevalence of disorder and degradation 
motifs in MAP source proteins. Additionally, that MAPs originate 
preferentially from abundant transcripts is consistent with the 
fact that the immunopeptidome is different from one cell lineage 
to another and is affected by the metabolic status of cells (5, 51). 
The relation between transcript abundance and MAP presenta-
tion may also be relevant to the establishment of self-tolerance 
in the thymic medulla. Indeed, central self-tolerance depends on 
promiscuous gene expression by medullary thymic epithelial cells 
that collectively express almost all protein-coding genes (67, 68). 
Remarkably, this promiscuous gene expression follows a mosaic 
pattern: individual medullary thymic epithelial cells promiscuous-
ly express a limited number of genes, but at a high level (67, 69). 
A mosaic pattern of highly expressed genes may be instrumental 
in increasing the breadth of the MAP repertoire that can thereby 
induce central self-tolerance.

By taking into account the various features enriched in MAP 
source genes, we were able to build a logistic regression model that 
predicts whether or not a given gene will produce MAPs with a ROC 
AUC of 0.81 ± 0.02. The robustness of this model was validated by 
predicting MAP generation in 7 independent data sets. Notably, 
when the model was applied to predict MAP generation in 5 human 
cancer cell lines, it performed comparably well, suggesting strong 
potential for predicting MAP generation in a clinical context. Would 
it be possible to build an in silico antigen-processing machine that 
would predict with even greater accuracy sources and sites of MAP 
generation? We speculate that this may be possible if we trained 
the model with more quantitative data and more accurate assess-
ment of features. Indeed, there are certain limitations to a rather 
coarse 2-class output, not the least of which is a lack of precision for 
the number of MAPs produced and their location along a protein. 
Recent developments in MS now enable quantification of MAPs in 
terms of number of copies per cell (61). High-throughput quantita-
tive analyses of immunopeptidomes could thereby pave the way to 
the development of improved predictive models, and community- 
based efforts to achieve this goal should be encouraged (21).

Our demonstration that the immunopeptidome covers only a 
small fraction of the protein-coding exome has special relevance 
to cancer immunology. There is a general consensus that cancer- 
specific neo-MAPs derived from somatic mutations represent ide-
al targets for cancer immunotherapy (70). However, discovery of  
cancer-specific MAPs is currently fraught with major difficulties. Typ-
ically, neo-MAP discovery strategies adopt the following path: exome 
sequencing, identification of mutations, and selection of mutations 
located in peptide regions predicted to have a good MHC-binding 
affinity. However, when putative neo-MAPs are tested experimental-
ly, by MS or immune assays, the hit rate is below 10% (71–73). Our 
contention is that this low success rate is simply due to the fact that 
few mutations are strategically located in MAP-generating regions 
and that most mutations are in exomic sequences that are not cov-
ered by the immunopeptidome. We believe that progress in the field 
of neo-MAP discovery will be greatly facilitated by large-scale analy-
ses of cancer cell immunopeptidomes.

Methods
Cell lines. Peripheral blood mononuclear cells (PBMCs) were isolated 
from blood samples of 18 volunteers. High-resolution HLA genotyping 
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model based on local interaction energies (78). Where residues were 
assigned to be disordered or not, disorder cutoff values were deter-
mined to equate the total disorder of the B-LCL proteome for PON-
DR-VLXT, DISOPRED, and IUPRED at 0.7, 0.3, and 0.5 respectively 
(Supplemental Figure 4A). Where lengths of N or C terminus disor-
der or internally disordered regions were computed, stretches up to 3 
aa of ordered residues were allowed.

Data visualization. Graphics were made in R, version 3.2.2, 
using ggplot2, version 1.0.0 (https://cran.r-project.org/web/pack-
ages/ggplot2/index.html).

GO analysis. We compared either source or nonsource genes on a 
background of both groups using the R package topGO (60). The Fisher 
weight algorithm was used to reduce redundancies and compute P values.

Statistics. To generate Figure 1A, a binomial distribution of the 
probability of detecting between 0 and 50,000 peptides in a reper-
toire of 10,575 genes was computed. An exact binomial test was used 
to compare the expected distribution with the experimental values. 
A nonparametric effect size measure, Cliff ’s d, was used to compare 
enrichment of features in source and nonsource groups. The 95% CI 
was calculated based on 100 bootstraps using the orddom package, 
version 3.1, in R (https://cran.r-project.org/web/packages/orddom/
orddom.pdf). Unless otherwise noted, we employed 2-sample Wil-
coxon rank sum tests to compare continuous variables for robustness. 
P values of less than 0.05 were considered significant. All statistical 
analyses were performed in R, version 3.2.2.

Modeling. The variables listed in Supplemental Table 5 were used 
as input variables for logistic regression models run with the R packag-
es caret and MASS (79, 80). The top 50 most enriched GO terms from 
the source and nonsource groups were included (Supplemental Tables 
3 and 4). Near-zero variance parameters were excluded; this excluded 
the majority of GO terms. To limit the extent of correlation in input 
variables that can obscure their relative weight, further variables were 
excluded. Spearman’s rank correlation coefficient r was calculated for 
each pair of input parameters, and a maximum absolute r of 0.6 was 
permitted (Supplemental Figure 3). As noted, input variables were 
also normalized by length of the appropriate UTR, transcript, or pro-
tein. The data were divided into training and testing sets containing 
80% and 20% of genes, respectively. A logistic regression model with 
or without recursive feature elimination was built with centered and 
scaled training data using 10-fold cross-validation. The model then 
predicted the probability of generating MAPs for each gene in the test-
ing set. Relative variable weight was computed based on the t statistic 
for all model parameters. An ordered logistic regression model with 
3-class outcomes was built using the same protocol; categories were 
selected to optimize class balance (number of genes: 4,380, none; 
3,164, low; 3,031, high). All metrics reported are averages of 1,000 
iterations of data division and model building. An R script is includ-
ed in Supplemental Methods (source code) that trains and applies the 
2-class logistic regression model using the data frame in Supplemental 
Table 6 and that reproduces the panels of Figure 5.

Validation in independent data sets and human cancer cell lines. 
Transcriptomic data for JY (62) and 5 other human cancer cell lines 
(63) were combined with the respective immunopeptidomes described 
by other groups (21,36). Transcriptomic mapping was performed with 
kallisto, version 0.42.5, and the most expressed transcript for each 
gene was selected for analysis (75). Features of each gene and its gene 
products were annotated. Protein abundance was extracted from the 

randomly placed within the same protein length and adjacent distances 
between start sites computed. To estimate exome coverage, a window of 
50 amino acids or 25 amino acids was moved residue by residue along 
each of the 10,575 proteins expressed in our B-LCLs; the number of 
MAPs seen in each window was counted.

Evaluating features of transcripts and proteins. To ensure the quality 
and relevance of our source and nonsource gene sets, we considered 
all genes expressed on average more than 2 transcripts per million. 
For each gene, the most expressed protein-generating transcript with 
complete HAVANA annotation and the corresponding protein were 
selected. Feature assembly was executed in Python version 2.7.10; 
pyGeno was used to extract transcript and protein sequences (29). 
Annotation translation was determined with the ENSEMBL BioMart 
extension (74). To calculate MAP density, NetMHC was used to pre-
dict the binding affinity of overlapping nonamers from each protein 
for all 27 allotypes expressed by the B-LCLs. NetMHC 3.4 was applied 
preferentially to predict binding affinities for 21 allotypes; NetMHC-
cons 1.1 was applied for the remaining 6 allotypes. The fraction of 
9mers binding any of the 27 allotypes with an affinity of 1,250 nM or 
less was calculated for each protein.

B cell protein abundance in average spectral counts per gene 
evaluated by MS analysis of whole cell extracts was extracted from 
the Human Proteome Map (40). Genes with at least 1 transcript with 
an NMD biotype based on Vega annotation in ENSEMBL were con-
sidered to have NMD potential, that is, if a coding sequence finished 
more than 50 bp from a downstream splice site using any exon struc-
ture (http://vega.sanger.ac.uk/info/about/gene_and_transcript_types.
html). uORFs were defined as nonoverlapping sequences within the 5′ 
UTR beginning with the cognate start codon AUG and ending with an 
in-frame stop codon. 5′ UTR secondary structure was predicted using 
RNAfold within the ViennaRNA Package version 2.1.7 (44). The per-
centage of AU-rich elements was defined as the number of A and/or U 
sequence of at least 5 nucleotides in length within the 3′ UTR. Stabiliz-
ing and destabilizing elements identified by Zhao et al. were queried 
in the 3′ UTR (48). TargetScan 7.0 was employed to predict microRNA- 
binding sites within the 3′ UTR (50). 3′ UTRs were prepared by 
removing ORFs; the number of nonoverlapping microRNA-binding 
sites was computed for all families of microRNAs. MicroRNA-binding 
sites were retrieved from the Molecular Signatures Database of GSEA 
(http://software.broadinstitute.org/gsea/msigdb/) and queried in all 
3′ UTRs. To analyze the structural features of proteins, we used BioPy-
thon’s package SeqUtils (specifically the ProtParam tool) to predict the 
proportion of residues conforming to a helix, turn, or sheet motif as 
well as the isoelectric point, instability index, and hydropathy for each 
protein sequence (76).

Protein degradation prediction softwares. Anaphase-promoting 
complex target sequences were predicted using GPS-ARM version 
1.0 using default thresholds for D-box and KEN-box motif (52). PEST 
motifs were predicted using the function epestfind within EMBOSS 
version 6.5.7 (77). Ubiquitination sites were predicted with UbiProb-
er (54) with a stringency of 70%. Three disorder prediction software 
programs were selected for the complementarity of their approach-
es: PONDR VLXT is a neural network predictor trained on miss-
ing residues in x-ray structures as well as known terminal and long 
disordered segments; DISOPRED, version 3.16, is a support vector 
machine and neural network predictor also trained on missing res-
idues in x-ray structures; and IUPRED, version 1.0, is a biophysical 



The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

4 7 0 0 jci.org   Volume 126   Number 12   December 2016

the article. SM was responsible for analysis and interpretation of 
data and revising the article.
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