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Introduction
Fanconi anemia (FA) is the most frequent cause of inherited bone 
marrow failure (IBMF) syndromes (1, 2). Twenty FA genes have 
been identified, including FANCA, FANCB, FANCC, FANCD1 
(also known as BRCA2), FANCD2, FANCE, FANCF, FANCG, FAN-
CI, FANCJ (also known as BRIP1 or BACH1), FANCL, FANCM, 
FANCN (also known as PALB2), FANCO (also known as RAD51C), 
FANCP (also known as SLX4), FANCQ (also known as XPF or 
ERCC4), FANCR (also known as RAD51), FANCS (also known as 
BRCA1), FANCT (also known as UBE2T), and FANCU (also known 
as XRCC2) (3–5). The products of these genes cooperate in a unique 
FA/BRCA pathway, regulating the response to physiological stress 
or exposure to genotoxic agents and maintaining genome integrity 
(3–5). Most FA patients develop a progressive bone marrow failure 
(BMF) during childhood due to the depletion or impairment of the 
hematopoietic stem cell (HSC) pool (1, 2, 6–8).

Here, we identified biallelic mutations in REV7 (also known as 
MAD2L2) in a child with a classic presentation of FA. Interesting-
ly, REV7 has several cellular functions including translesion DNA 
synthesis (TLS) (9, 10), mitotic checkpoint regulation (11, 12), and 
DNA repair pathway choice (13, 14). Which if any of these func-
tions of REV7 is required for suppressing the FA cellular and devel-
opmental phenotypes is unknown.

Results and Discussion
A child with a clinical and cellular FA phenotype and a constitutive REV7 
mutation. Patient EGF123, an 8-year-old girl, presented with severe 
BMF involving all 3 lineages (hemoglobin, 8.0 g/dl; neutrophil count, 
0.43 × 109/l; and platelets, 10 × 109/l). She exhibited FA physical signs 
(short size at less than tenth percentile, microcephaly, and abnormal 
facial features), a renal tubulopathy, elevated serum α-fetoprotein, 
and a positive mitomycine C (MMC) chromosome breakage test of 
blood lymphocytes (15), establishing a definitive diagnosis of FA (Fig-
ure 1A). Monoubiquitination of the FANCD2 protein in the patient 
cells suggested an abnormality downstream or independent of the 
FA core complex (Figure 1B) (16). Functional analysis of the patient’s 
skin fibroblasts and EBV-transformed lymphoid cells confirmed the 
FA phenotype (i.e., a hypersensitivity to the interstrand-crosslinking 
[ICL] agent MMC), with increased chromosome radials (Figure 1C), 
arrest at the G2 phase of the cell cycle, and growth inhibition (Figure 1, 
D and E). Consistent with previous studies with FA cells (7, 17), MMC 
exposure strongly activated Ser15 phosphorylation of p53 and CDK-
N1A (also known as p21) transcriptional induction (Figure 1, F and G).

Sequencing of known FANC genes failed to identify a dele-
terious nucleotide variant or deletion. Whole exome sequencing 
(WES) on genomic DNA from the EGF123 proband identified a 
homozygous REV7 variant, c.354T>A. Sanger resequencing con-
firmed the homozygous variant in EFG123 skin fibroblast and 
EBV-transformed cells (Figure 1H). Rare regions of germline 
homozygosity (which included the REV7 gene) were observed in 
this patient, consistent with distant consanguinity (Supplemental 
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mental Figure 3). Ser15 phosphorylation of p53 and phosphorylated 
γH2ax levels was also decreased in the REV7 complemented cells, 
and transcript analysis revealed a decrease of CDKN1A (Figure 2, A 
and E). Moreover, EGF123 cells exhibited an excess of γH2AX and 
53BP1 foci, suggesting unresolved DNA damage at steady state and 
upon MMC exposure, and these defects were resolved by REV7 reex-
pression (Figure 2, A, F, and G, and Supplemental Figure 4).

CRISPR/Cas9-mediated knockout of REV7 recapitulates an 
FA phenotype. To confirm that loss of REV7 directly causes the 
FA phenotype, we used CRISPR/Cas9-mediated gene editing to 
generate a homozygous knockout in U2OS cells (denoted REV7–/–)  
(Figure 3). Western blotting confirmed the absence of detect-
able REV7 protein in the REV7–/– line, whereas REV7 was readily 
detectable in the parental cell line (Figure 3A). Consistent with 
the patient-derived EGF123 cells, FANCD2 monoubiquitination 
was largely unaffected in REV7–/– cells. As expected, REV7–/– cells 
exhibited the hallmark FA phenotypes, including an increase in 
chromosome breaks and radials upon MMC treatment, cellular 
hypersensitivity to MMC, and a pronounced G2/M arrest (Fig-

Figure 1; supplemental material available online with this article; 
doi:10.1172/JCI88010DS1). The c.354 C>T REV7 is a variant based 
on a survey of publicly accessible variant databases. The mutation 
affects an amino acid at a highly conserved position, resulting in 
an amino acid substitution, p.V85E, predicted to be pathogen-
ic by different tools. The substitution was located in the highly 
conserved HORMA domain of the protein (Supplemental Figure 
2), known to mediate the REV7 interaction with REV1 and REV3 
(10). Moreover, the absence of detectable levels of REV7 protein 
in several tissues, despite normal transcript levels, suggested that 
protein destabilization may result from the mutation (Figure 1F).

Lentiviral complementation of REV7 restores cellular and functional  
phenotype in patient cells. To provide additional evidence for the dis-
ease causality of the REV7 mutation, we lentivirally reexpressed a 
WT REV7 cDNA in patient fibroblasts and EBV-transformed cells. 
Western blot analysis of whole cell lysates revealed that REV7 
expression was restored in REV7-transduced cells (Figure 2A). Reex-
pression of the WT REV7 fully rescued chromosome breakage, cell 
cycle arrest, and cell proliferation defects (Figure 2, B–D and Supple-

Figure 1. Genetic and cellular phenotype of the REV7-mutated patient 
EGF123. (A) Metaphase EGF123 lymphoid cells upon MMC exposure; 
arrows show chromosome breaks. Original magnification, ×630. (B) 
Immunoblot analysis of FANCD2 monoubiquitination of the REV7- 
mutated (EGF123), FANCA-mutated (EGF192), and healthy fibroblasts. 
(C) Quantification of the MMC-induced breaks per cell in REV7-mutated 
(EGF123) and FANCA-mutated (EGF192) EBV-transformed cells and cells 
of a healthy subject. (D) Cell-cycle analysis after MMC pulse; arrows 
show the late S/G2 arrest. (E) Proliferation curves after MMC pulse. (F) 
Protein immunoblot analysis before (–) and 24 hours after (+) MMC pulse; 
asterisks underline the absence of REV7 in EGF123 protein extracts. (G) 
Transcript expression levels of a set of DNA damage response genes 
analyzed by quantitative reverse-transcriptase PCR (qRT-PCR) relative 
to HPRT (primers are indicated in Supplemental Table 1). Experiments 
shown in panels E–H were performed using EBV-transformed cells. (H) 
Partial REV7 exon5 sequence in gDNA from primary fibroblasts.
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FA cells are hypersensitive to DNA ICL agents and exhibit 
DNA repair and replication fork defects. How a deficiency in REV7 
contributes to these cellular phenotypes remains unknown. Previ-
ous studies have demonstrated that the REV7 protein has several 
normal cellular functions. First, REV7 is a subunit of the DNA poly-
merase ζ complex (POL ζ), a TLS error-prone polymerase complex 
containing REV1, REV7, REV3, and 2 additional accessory sub-
units, POLD2 and POLD3 (9, 10, 19). POL ζ acts downstream of 
the FA core proteins in the repair of DNA ICL lesions (3–5, 20). 
In this role, REV7 acts as an adaptor protein between REV1 and 
REV3, the catalytic subunit of the POL ζ complex. A deficiency 
in REV7 could account for the well-known hypomutability of FA 
cells, resulting from a defect in TLS repair (20–23). Second, REV7 
plays a role in mitosis by preventing premature activation of the 

ure 3, C–F). All of these phenotypes were corrected by retroviral 
transduction with WT REV7 cDNA (Figure 3, B–F).

REV7 deficiency directly impairs hematopoietic cells. Previous stud-
ies have indicated that FA proteins are required for normal hemato-
poiesis and hematopoietic progenitor cell (HPC) survival (6–8, 18). 
To evaluate whether REV7 deficiency can affect hematopoiesis, we 
silenced this gene in mouse HPCs. Rev7 knockdown impaired the 
ability of HPCs to form in vitro CFU in short-term methylcellulose 
culture, similar to the defect observed in Fancg–/– HPCs (Figure 3G). 
In addition, colonies had a decreased proportion of c-Kit+/progeni-
tor cells and an increased proportion of CD11b+/differentiated cells 
(Figure 3H). Together, these data suggest that the Rev7 defect direct-
ly alters HPCs, leading to increased lineage engagement, consistent 
with a DNA damage–mediated mechanism of BMF.

Figure 2. Correction of the extended phenotype of the EGF123 cells by WT REV7 expression. (A) Protein immunoblot analysis 24 hours after MMC pulse 
of EBV-transformed cells from the patient transduced with REV7 or the empty vector. (B) Quantification of MMC-induced breaks per cell. (C) Proliferation 
curves after MMC pulse. (D) Cell-cycle analysis after MMC pulse; arrows show late S/G2 arrests. (E) Transcript expression levels of a set of DNA damage 
response genes analyzed by qRT-PCR relative to HPRT. (F) 53BP1 immunofluorescence analysis of EGF123 fibroblasts transduced with REV7 or empty vec-
tor, with or without MMC exposure. Scale bars: 10 μm. (G) Percentage of γH2AX-positive cells by flow cytometry analysis with or without MMC exposure. 
Experiments shown in panels B–F were performed using EBV-transformed cells.
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nuclei, indicating accumulation of DNA damage (31). The Rev7- 
deficient mice, therefore, have a very similar defect in development, 
embryonic lethality, infertility, and DNA damage accumulation, 
which is also observed in other Fanc–/– mouse models (32).

In conclusion, these human genetic and functional data estab-
lish REV7 as a new bona fide FA gene, FANCV.

Methods
Further details can be found in the Supplemental Methods.

Samples and cell lines. This study was based on a cohort of 268 con-
secutive FA patients referred for medical diagnosis at the French Refer-
ence Center for Constitutional Bone Marrow Failure, Saint-Louis and 
Robert Debré Hospitals. All patients had an FA diagnosis based on FA 
tests, including the chromosomal breakage test. Primary fibroblasts were 
established and cells were analyzed at early passage. Genetic analyses of 
the FANC gene mutations were performed in fibroblast genomic DNA. 
EBV-transformed cell lines were produced for functional analyses (7).

Exome sequencing. All sequencing data were deposited in ArrayEx-
press (E-MTAB-4817).

CRISPR-Cas9 knockout. Guide RNA sequences were cloned into 
the pSpCas9(BB)-2A-GFP (PX458) vector, a gift from Feng Zhang 
(Addgene plasmid no. 48138; Massachusetts Institute of Technology, 
Cambridge, Massachusetts, USA.) . The genomic sequence targeted for 

anaphase promoting complex/cyclosome (APC/C) by the acti-
vation of CDH1 (11, 12). Accordingly, a deficiency in REV7 could 
account for the mitotic defects and cytokinesis failure observed 
in FA cells (24–26). Third, REV7 participates in the cellular choice 
of DNA repair pathways during DNA double-strand break repair. 
In this role, REV7 functions downstream of 53BP1 and RIF1 and 
inhibits the 5′ DNA end resection, thereby promoting nonhomol-
ogous end joining (NHEJ) and suppressing homologous recombi-
nation (HR) (13, 14). A deficiency in REV7 could therefore account, 
at least in part, for the dysregulated levels of NHEJ repair and HR 
repair observed in FA cells (27, 28).

Previous work in chicken DT40 cells had demonstrated that 
inactivation of Rev7 confers a cell hypersensitivity to ICL agents, sug-
gesting that REV7 may be an FA gene (29). Interestingly, 2 Rev7 defi-
cient mouse models have been generated, Rev7–/– and Rev7C70R mice 
(30, 31). In one model, Rev7–/– mice exhibited growth retardation and 
a partial embryonic lethal phenotype, and those mice that survived 
to adulthood were infertile and showed germ cell aplasia in the tes-
tes and ovaries (30). In the second model, a missense mutation in 
Rev7C70R disrupted Pol ζ assembly, thereby impairing mouse devel-
opment and the repair of genotoxic agent–induced DNA lesions (31). 
Rev7C70R mutant cells also showed decreased proliferation, increased 
apoptosis, and arrest in the S phase with extensive γH2AX foci in 

Figure 3. CRISPR/Cas9 knockout of REV7 recapitulates the FA phenotype. (A) Western blot of whole cell lysates shows no detectable REV7 protein 
in the REV7–/– line. FANCD2 is still efficiently monoubiquitylated in response to 100 ng/ml MMC. (B) Western blot showing reconstitution of WT REV7 
expression in REV7–/– cells. (C–D) Increase in chromosome aberrations (left graph) and radials (right) after 48-hour treatment with 20 ng/ml MMC as 
compared with cells complemented with WT REV7 cDNA. Original magnification, ×1,000. (E) Increase in G2/M arrest with and without MMC treatment 
(20 ng/ml). (F) Impaired clonogenic capacity of REV7–/– cells over 10-day treatment with MMC. (G) REV7 is required for normal hematopoiesis; CFU scor-
ing of bone marrow Lin– cells after lentiviral silencing using REV7 or scramble (scr) shRNAs. Fancg-/- cells are used as FA cell control. CFUs were numbered 
after 7 days on methylcellulose; 2 passages (P1 and P2) were performed. (H) Cell population percentages in CFUs after 7 days of culture.
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