Fanconi anemia (FA) is a recessive genetic disease characterized by congenital abnormalities, chromosome instability, progressive bone marrow failure (BMF), and a strong predisposition to cancer. Twenty FA genes have been identified, and the FANC proteins they encode cooperate in a common pathway that regulates DNA crosslink repair and replication fork stability. We identified a child with severe BMF who harbored biallelic inactivating mutations of the translesion DNA synthesis (TLS) gene REV7 (also known as MAD2L2), which encodes the mutant REV7 protein REV7-V85E. Patient-derived cells demonstrated an extended FA phenotype, which included increased chromosome breaks and G2/M accumulation upon exposure to DNA crosslinking agents, γH2AX and 53BP1 foci accumulation, and enhanced p53/p21 activation relative to cells derived from healthy patients. Expression of WT REV7 restored normal cellular and functional phenotypes in the patient’s cells, and CRISPR/Cas9 inactivation of REV7 in a non-FA human cell line produced an FA phenotype. Finally, silencing Rev7 in primary hematopoietic cells impaired progenitor function, suggesting that the DNA repair defect underlies the development of BMF in FA. Taken together, our genetic and functional analyses identified REV7 as a previously undescribed FA gene, which we term FANCV.


Dominique Bluteau, Julien Masliah-Planchon, Connor Clairmont, Alix Rousseau, Raphael Ceccaldi, Catherine Dubois d’Enghien, Olivier Bluteau, Wendy Cuccuini, Stéphanie Gachet, Régis Peffault de Latour, Thierry Leblanc, Gérard Socié, André Baruchel, Dominique Stoppa-Lyonnet, Alan D. D’Andrea, Jean Soulier


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.