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mechanism mediated by the LDLR/LRP1 axis.

Introduction
Cardiovascular diseases (CVDs) are the leading cause of death
in Western societies and are predicted to become a prominent
problem worldwide (1). Most current therapeutic interventions
are aimed at lowering low-density lipoprotein (LDL) cholesterol.
Yet patients with a substantial reduction in LDL cholesterol still
have a residual cardiovascular risk that persists and increases
incrementally with each additional feature of the metabolic syn-
drome (1-3). This residual risk has shifted attention to elevated
plasma triglyceride (TG) levels, which constitute an independent
risk factor for coronary artery disease. Hypertriglyceridemia
results from the accumulation of TG-rich lipoproteins (TRLs) in
the circulation. The concentration of plasma TRLs reflects a bal-
ance between de novo synthesis in the liver (very low-density
lipoproteins [VLDLs]), intestinal absorption of dietary fats (chylo-
microns), lipoprotein lipase-mediated (LPL-mediated) lipolysis in
the peripheral circulation, and hepatic TRL clearance.

The liver and, to a lesser extent, the intestine produce apolipo-
protein C-III (ApoC-III), an 8.8-kDa glycoprotein associated with
TRLs, LDL, and high-density lipoproteins (HDLs) (4). It was shown
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Hypertriglyceridemia is an independent risk factor for cardiovascular disease, and plasma triglycerides (TGs) correlate strongly
with plasma apolipoprotein C-11l (ApoC-Iil) levels. Antisense oligonucleotides (ASOs) for ApoC-Iil reduce plasma TGs in
primates and mice, but the underlying mechanism of action remains controversial. We determined that a murine-specific
ApoC-lli-targeting ASO reduces fasting TG levels through a mechanism that is dependent on low-density lipoprotein receptors
(LDLRs) and LDLR-related protein 1 (LRP1). ApoC-11l ASO treatment lowered plasma TGs in mice lacking lipoprotein lipase
(LPL), hepatic heparan sulfate proteoglycan (HSPG) receptors, LDLR, or LRP1 and in animals with combined deletion of the
genes encoding HSPG receptors and LDLRs or LRP1. However, the ApoC-11l ASO did not lower TG levels in mice lacking both
LDLR and LRP1. LDLR and LRP1were also required for ApoC-111 ASO-induced reduction of plasma TGs in mice fed a high-fat
diet, in postprandial clearance studies, and when ApoC-lli-rich or ApoC-llI-depleted lipoproteins were injected into mice.

ASO reduction of ApoC-11l had no effect on VLDL secretion, heparin-induced TG reduction, or uptake of lipids into heart and
skeletal muscle. Our data indicate that ApoC-lll inhibits turnover of TG-rich lipoproteins primarily through a hepatic clearance

more than 35 years ago that plasma TGs and ApoC-III levels are
highly correlated over a wide range of plasma TG levels (5). But the
importance of ApoC-III in TRL metabolism did not became fully
apparent until it was shown that transgenic expression of APOC3 in
mice resulted in hypertriglyceridemia (6), whereas a null mutation
in the murine gene decreased plasma TG levels (7). Similarly, inacti-
vating mutations affecting the expression of APOC3 in humans led
to reduced plasma TG levels (8) and protection against CVD (9-11).

Evidence supports the existence of multiple potential mecha-
nisms by which ApoC-III could affect plasma TG levels, including
inhibition of LPL-mediated lipolysis (12, 13), promotion of hepatic
VLDL secretion (and/or chylomicron formation) (4, 14), and sup-
pression of TRL remnant clearance in the liver (Figure 1A). Graham
et al. showed that lowering ApoC-III using antisense oligonucle-
otides reduces plasma TGs in rodents, nonhuman primates, and
humans (15). The prevailing thought has been that ApoC-I1I inhibits
LPL activity. However, a recent clinical study showed that lowering
plasma ApoC-III levels with volanesorsen, a generation 2.0+ ApoC-
I1I-specific antisense oligonucleotide (ASO), dramatically lowered
elevated plasma TG levels in patients who have genetic defects in
LPL (familial chylomicronemia syndrome [FCS]) (16). Despite the
lack of a placebo control group in this study, this finding suggests
that ApoC-III impairs TG clearance predominantly in an LPL-inde-
pendent fashion. In the current study, we evaluated the relative con-
tribution of the various pathways in mice. We show that an ApoC-III
ASO-mediated reduction of plasma TGs is mediated predominantly
through inhibition of hepatic TRL clearance via the LDL/LRP1 axis.
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Figure 1. ApoC-11l ASO-mediated plasma TG reduction in mice on a chow diet depends on hepatic LDLR and LRP1. (A) Schematic overview of the possible
effects of ApoC-Ill on TRL metabolism. (B) Mutant mice and their representative expression of hepatic TRL-clearance receptors HSPG, LDLR, and LRP1. (C)
Liver expression of Apoc3 in mutant mice treated for 4 weeks with control or ApoC-11l ASO (n = 3-7/group). (D) Fasting plasma TG levels in mutant mice
treated for 4 weeks with control or ApoC-Ill ASO (n = 5-10/group). (E) Relative changes in plasma TG levels induced by ApoC-Ill ASO in mutant mice. (F)
Fasting plasma cholesterol in mutant mice treated for 4 weeks with control or ApoC-11l ASO (n = 5-10/group). Values represent the mean + SEM. *P < 0.05
**P < 0.01 compared with control ASO-treated mice. ANOVA with Bonferroni’s post-hoc test. Ctrl, control; HL, Hepatic Lipase.

Results

ApoC-III ASO requires hepatic LDLR and LRPI expression to lower
plasma TG levels. In the liver, low-density lipoprotein receptors
(LDLRs), LDLR-related protein 1 (LRP1), and heparan sulfate pro-
teoglycan receptors (HSPGs), predominantly syndecan-1 (SDC1),
mediate the endocytic clearance of TRL remnants (17,18). To exam-
ine whether hepatic clearance via these receptors contributed to an
ApoC-III ASO-mediated reduction of plasma TGs, we adminis-
tered the ApoC-III ASO for 4 weeks to mice lacking LDLR (Ldlr”"),
HSPGs (Ndst1"# Alb-Cre*), or hepatic LRP1 (Lrpl"# Alb-Cre*), and
to mice lacking various pairs of these receptors (depicted in Figure
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1B). Administration of the ApoC-III ASO reduced hepatic Apoc3
mRNA expression by 70% to 94% in the various mutants (Figure
1C). In chow-fed animals, ApoC-III ASO reduced fasting plasma
TG levels by 30% to 45% in animals defective in hepatic NdstI and
Ldlr and in animals with combined deletions of NdstI and LrpI or
Ldir (Figure 1, D and E). However, the ASO had no effect on plasma
TG levels in mice lacking both LrpI and Ldlr (Ldlr”-Lrpl*# Alb-Cre")
(Figure 1, D and E). ApoC-III ASO treatment reduced TG levels in
chylomicrons, VLDL, and remnant particles in all of the mutants
as measured by size-exclusion fast protein liquid chromatography
(FPLC) (Figure 2, A-E), but had no effect in Ldlr~ LrpI"f Alb-Cre*
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Figure 2. ApoC-11l ASO decreases TRL TGs in mice expressing hepatic LDLR or LRP1. (A-F) Mutant mice of the indicated genotype were treated for 4
weeks with control or ApoC-1Il ASO, and pooled plasma lipoproteins from fasted animals were analyzed by size-exclusion FPLC (n = 3/pool). The amount
of TG in each fraction was measured. (G-L) Lipoprotein cholesterol profiles in plasma from pooled, fasted mutant mice treated for 4 weeks with control or
ApoC-l1l ASO were analyzed by FPLC (n = 3/pool). The elution positions of CR/VLDL, intermediate-density lipoprotein (IDL), LDL, and HDL are indicated.

mice (Figure 2F). In a parallel approach, LDLR and LRP1 expres-
sion was reduced in adult mice using LDLR and LRP1 ASOs target-
ed to the liver (Supplemental Figure 1, A and B; supplemental mate-
rial available online with this article; doi:10.1172/JCI86610DS1).
Simultaneous treatment with Apoc3 ASO significantly reduced
hepatic Apoc3 mRNA in all models (Supplemental Figure 1C) and
reduced plasma TGs by 20% to 35% in mice treated with saline,
LDLR ASO, or LRP1 ASO (Supplemental Figure 1, D and E). Again,
plasma TGs did not change when LDLR, LRP1, and ApoC-III were
suppressed simultaneously (Supplemental Figure 1, D and E).
These findings suggest that an ASO-mediated reduction of plasma
TG levels depends on LDLR and LRP1.

ApoC-IIT ASO treatment did not alter fasting plasma choles-
terol levels (Figure 1F and Supplemental Figure 1F) or lipoprotein
cholesterol levels in chow-fed animals (Figure 2, G-L). A reduction
in TG levels also did not cause hepatic steatosis (Figure 3, A and
B) or increase the production of ketone bodies (Figure 3C), and
at most had only a modest effect on circulating nonesterified free
fatty acid (NEFA) levels (Figure 3D). Furthermore, administration
of the ApoC-III ASO did not induce weight gain or loss in the mice
(Supplemental Figure 2).

Hepatic ApoC-III reduction enhances postprandial TG clearance
via LDLR and LRPI. To measure the impact of ApoC-III suppres-
sion on the clearance of dietary TGs in the circulation, we admin-
istered a bolus of corn oil by oral gavage to mice treated with
ApoC-III ASO and sampled their blood at various time points.

Treatment with ApoC-IIT ASO reduced postprandial plasma TGs
in all of the mutants except in Ldlr”- Lrp1"# Alb-Cre* mice (Figure
4, A and B). Similar results were obtained when overnight-fasted
mice were orally gavaged with a bolus of corn oil containing [*H]
retinol (the disappearance of [*H]retinol from plasma is a direct
measure of hepatic clearance of intestinally derived lipoproteins)
(Figure 4, C-I). Clear improvement in retinol ester clearance from
the circulation occurred in mice treated with ApoC-III ASO, with
the exception of Ldlr’-Lrpl"# Alb-Cre* mice (Figure 4, C and I).
ApoC-III reduction enhances TG clearance via LDLR and LRPI in
animals fed a high-fat diet. To determine whether ApoC-III reduction
had similar effects in mice fed a high-fat diet, the various mutant
mice were fed a diet containing 21% fat for 6 weeks and adminis-
tered a control or ApoC-III ASO for the last 5 weeks. The high-fat diet
raised plasma TG levels in Ldlr/", Ldlr’~ Ndst1"# Alb-Cre*, and Ldlr’~
LrpI"# Alb-Cre* mice, reaching values of 515 to 1,045 mg/dl (Figure
5A). Under these conditions, administration of the ApoC-III ASO
reduced hepatic Apoc3 mRNA expression in the various mutants by
74% to 99% (Figure 5B) and reduced plasma TGs by 35% to 57%
(Figure 5, A and C). Again, ApoC-III ASO treatment had no effect
on plasma TG levels in mice lacking both LrpI and Ldlr (Figure 5, A
and C), as observed with animals fed a standard chow diet (Figure 1)
and under postprandial conditions (Figure 3). FPLC analysis showed
that ASO treatment reduced TGs in VLDL and chylomicron remnant
(CR) particles in all of the mutants (Figure 6, A-E), but had no effect
in Ldlr’LrpI"# Alb-Cre* mice (Figure 6F).
Volume 126 Number 8
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As expected, animals fed a high-fat diet had elevated plasma
cholesterol levels (Figure 5D). Interestingly, a reduction of ApoC-
III had variable effects on plasma cholesterol levels, reducing lev-
els in Ndst1"7 Alb-Cre*, Ldlr/-, and Ldlr’/- NdstI"f Alb-Cre* mice
by 30% to 40% (Supplemental Figure 3). The cause of the varia-
tion in cholesterol reduction across the strains remains unknown.
Nevertheless, the reduction in plasma TG and cholesterol levels
induced by ApoC-III ASO did not enhance hepatic steatosis (Fig-
ure 5, E and F) or induce weight gain or loss in the mice (Supple-
mental Figure 4).

Administration of the ApoC-III ASO improves plasma TG indepen-
dently of changes in LPL activity or VLDL secretion. Previous studies
have suggested that ApoC-III can inhibit the action of LPL on TRL
substrates (12, 19, 20). To explore this possibility in vivo, fasted and
fed mice were injected with heparin to mobilize LPL into the cir-
culation (21). Administration of heparin resulted in a rapid reduc-
tion of plasma TGs in WT, Ldlr”~Ndst1" Alb-Cre*, and Ldlr”-LrpI"#
Alb-Cre* mice under fasting conditions (Figure 7A). A comparable
reduction in plasma TG levels occurred after heparin injection of
mice treated with ApoC-III ASO (Figure 7A). Similar results were
obtained under postprandial conditions (Figure 7B). These findings
show that suppression of ApoC-III did not alter heparin-induced
lipolysis, suggesting that the reduction of ApoC-III did not affect
LPL hydrolysis of TRL substrates. Administration of the ApoC-III
ASO did not affect VLDL-TG secretion (Figure 7C) or chylomicron
formation in vivo in mice as reported previously (15).

We used a previously described tamoxifen-inducible, Lpl-defi-
cient mouse model (Lpl/"" Actb-MerCreMer*, referred to herein as
iLpl¥ mice) to further assess the in vivo contribution of LPL to the

jci.org  Volume126  Number8  August 2016

reduction of plasma TGs by ApoC-III ASO (22). Administration of
tamoxifen to LPL-deficient mice resulted in a significant reduction
in Lpl mRNA expression in liver, muscle, heart, and adipose tissue
(Supplemental Figure 5A) and in LPL activity in plasma (after i.v.
heparin administration), muscle, heart, and adipose tissue (Supple-
mental Figure 5B). The iLpl* mice presented with elevated plasma
TG and cholesterol levels (Supplemental Figure 5, C and D, respec-
tively), along with a dramatic increase in VLDL TGs and a reduc-
tion in HDL cholesterol levels (Supplemental Figure 5, E and F), as
observed in patients with LPL deficiency (16). Treatment of iLpl*
mice with ApoC-III ASO decreased Apoc3 mRNA levels (Figure
8A) and protein expression (Supplemental Figure 6A) and reduced
plasma TGs (Figure 8B) and TGs in CR/VLDL particles (Figure
8C). Moreover, HDL cholesterol levels did not increase, as might
be expected if LPL-mediated lipolysis were modulated by ApoC-
I (Figure 8D and ref. 22). Repetitive treatment with the ApoC-1I1
ASO progressively decreased plasma TGs (Supplemental Figure
6B) and increased TG clearance after oral corn oil gavage (Supple-
mental Figure 6C) or after injection of [*H]triolein-labeled Liposyn
particles (Figure 8E). Lowering of plasma TG levels after injection
of [*H]triolein-labeled Liposyn particles was associated with a
greater uptake of [3H]triolein in the liver, but not in organs such
as the heart or skeletal muscle (Figure 8F), as would be expected if
LPL activity were enhanced. Together, these findings suggest that
the major mechanism by which ApoC-III affects plasma TG levels
functions independently of LPL.

Absence of ApoC-III on TRLs improves hepatic clearance via LDLR
and LRPI. Given these findings, we proposed that the dominant
mode of action of the ApoC-III ASO in mice is to remove the inhibi-
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tory effect of ApoC-III on the clearance of TRLs through LDLR and
LRP1, which act in a redundant manner with respect to TRL clear-
ance (17, 23). Additional supporting evidence was obtained by mea-
suring the clearance rate of ApoC-III-rich and ApoC-III-depleted
[*H]TRLs (24). Donor [*H]retinol-labeled TRLs were collected from
ApoC-III ASO-treated and control ASO-treated Ldilr”~ Ndst"!" Alb-
Cre* mice 3 hours after a fat load to generate ApoC-III-depleted
TRLs and ApoC-IlI-bearing TRLs, respectively (Figure 9A). Both
ApoC-IlI-depleted TRLs and ApoC-III-bearing TRLs had equal
amounts of TGs, free cholesterol, cholesteryl esters, and [*H]reti-
nol when normalized to protein (Supplemental Figure 7). This sug-
gested that the TRL preparations showed no significant differences
in particles size or retinol composition, except for the reduction
in ApoC-III content. Equal amounts of [*H]TRLs (30,000 cpm/
mouse) were injected into recipient mice treated with ApoC-III
ASO to minimize the association of endogenously produced ApoC-
I1I with the injected [PH]TRLs (Figure 9B). Although TRL clearance
measured in this way is a function of both LPL activity and hepatic
receptors, only the receptors in the liver differed across the differ-

ent mouse strains; hence, any difference in catabolic rates presum-
ably arose from differences in receptor-mediated clearance in the
liver. ApoC-III-depleted TRLs were cleared much faster than were
ApoC-III-rich TRLs in Ndst1"# Alb-Cre* mice (t, =28 min vs. 8.2
min, respectively) (Figure 9C). In contrast, no difference in the cata-
bolic rate between ApoC-III-depleted and ApoC-III-bearing TRLs
was observed when the particles were injected into Ldlr’~ LrpI"#
Alb-Cre* mice (¢, ,=16.2 min vs. 16.8 min, respectively) (Figure 9E).
Note that the clearance of both types of TRL particles was much
slower in Ldlr/~ LrpI"# Alb-Cre* mice than what was observed when
these 2 receptors were present; the presence or absence of ApoC-III
did not influence this rate. The accelerated catabolic rate of ApoC-
I1I-depleted TRLs in NdstI*# Alb-Cre* mice was associated with
increased [*H]TRL uptake in the liver (Figure 9D), whereas liver
accumulation did not differ when ApoC-III-bearing [*H] TRLs were
injected into Ldlr”~ LrpI"# Alb-Cre* mice (Figure 9F). In a second
approach, [*H]retinol-radiolabeled ApoC-III-depleted and ApoC-
[II-bearing TRLs (Figure 9A and Supplemental Figure 6) were
evaluated for their uptake by primary hepatocytes isolated from
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Figure 5. ApoC-1ll ASO-mediated plasma TG reductions in mice on a high-fat diet depends on hepatic LDLR and LRP1. (A) Fasting plasma TG levels in
mutant mice on a high-fat diet treated for 5 weeks with control or ApoC-11l ASO (n = 5-10/group). (B) Liver expression of Apoc3 mRNA levels in mutant
mice on a high-fat diet for 6 weeks and treated for the last 5 weeks with control or ApoC-11l ASO (n = 3-7/group). (C) Relative changes in plasma TG levels
induced by ApoC-I1l ASO in mutant mice on a high-fat diet. (D) Fasting plasma cholesterol levels in mutant mice on a high-fat diet treated for 5 weeks with
control or ApoC-11l ASO (n = 5-10/group). (E) Liver TG levels in mutant mice on a high-fat diet treated for 5 weeks with control or ApoC-1Il ASO (n = 3-5/
group). (F) Liver cholesterol levels in mutant mice on a high-fat diet treated for 5 weeks with control or ApoC-11l ASO (n = 3-5/group). Values represent the
mean + SEM. *P < 0.05 and **P < 0.01 compared with control ASO-treated mice. ANOVA with Bonferroni’s post-hoc test.

Ndst1" Alb-Cre* and Ldlr”’~ LrpI"# Alb-Cre* mice. Overall binding
of both [*H]TRL preparations was significantly reduced in hepa-
tocytes isolated from Ldlr’- Lrpl"* Alb-Cre" mice compared with
hepatocytes isolated from NdstI?# Alb-Cre* mice (Figure 10). Bind-
ing and uptake of radiolabeled ApoC-III-depleted TRLs was signifi-
cantly increased in hepatocytes isolated from Ndst1"# Alb-Cre* mice
(i.e., in mice expressing both LDLR and LRP1) when compared with
ApoC-Ill-bearing TRLs (Figure 10). In contrast, primary mouse
hepatocytes from Ldlr’ LrpI"# Alb-Cre* mice did not show a sig-
nificant difference in binding or uptake between ApoC-III-depleted
and ApoC-IlI-bearing TRLs (Figure 10). These results support the
notion that the increased clearance of ApoC-III-depleted [*H]TRLs
in Ndst1"# Alb-Cre* mice, and not in Ldlr’- Lrpl"# Alb-Cre* mice, is
a consequence of increased uptake by LDLR/LRP1 on hepatocytes.

Discussion
Our results support a model in which ApoC-III on TRLs contrib-
utes to hypertriglyceridemia, primarily by preventing TRL hepatic
clearance via both LDLR and LRP1. We also present evidence that
TRLs with reduced ApoC-III content do not affect lipolysis and
that a reduction in LPL expression and activity does not suppress
the impact of ASO inhibition on lowering plasma TG levels. These
results are consistent with the recent observation that targeting of
ApoC-III effectively reduces plasma TGs in LPL-deficient patients
(16). In agreement with Graham et al. (15), we confirm that an anti-
sense reduction of hepatic ApoC-III does not affect hepatic VLDL
production (Figure 7C).
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LPL is a pivotal player in TG metabolism, as mutations in LPL
orinits cofactors (ApoC-II, glycosylphosphatidylinositol-anchored
high-density lipoprotein-binding protein 1, lipase maturation fac-
tor 1) account for the majority of monogenic hypertriglyceridemia
cases (25). Prior studies suggesting that ApoC-III may predomi-
nantly affect LPL-mediated TG hydrolysis were based on frac-
tional clearance rates of ApoB in patients lacking ApoC-III and
ApoA-I (13) and in vitro studies showing that excess ApoC-III (or
ApoC-I) blocks LPL activity in lipid droplets or emulsions possibly
due to competition for the lipid-water interface (12, 19). Trans-
genic overexpression of APOC3 in mice also led to hypertriglyceri-
demia that was likely due to defective lipolysis (20), but it should
be noted that an excess of any apolipoprotein has a similar effect
(26-29), probably by shielding the core TG and preventing LPL
access. Larsson and colleagues suggested that increasing the ratio
of ApoC-III to ApoC-II by 5 or more was required to displace LPL
from the TRL lipid surface, leading to subsequent inactivation by
angiopoietin-like protein 4 (19). These ratios of ApoC-II1 to ApoC-
II exceed the normal physiological range of these apolipoproteins
present on human VLDL particles, even in patients with hypertri-
glyceridemia (0.7 to 2) (30). Thus, under physiological conditions,
we believe that ApoC-III exerts its primary effect through inhibi-
tion of hepatic clearance rather than through lipolysis.

This conclusion is supported by our data. First, a reduction
in ApoC-III failed to reduce plasma TGs in Ldlr”/" Lrp1"? Alb-Cre*
mice, a murine model with normal LPL activity levels. Second,
heparin injection, which releases LPL into the circulation, reduced
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plasma TG levels independently of ApoC-III ASO treatment.
Third, a reduction of ApoC-III did not increase lipid uptake into
the muscles, as would be expected if LPL inhibition was reversed.
Finally, the ApoC-III effect was also manifest in LPL-deficient
animals. The clinical definition of LPL deficiency is a greater than
90% loss of LPL activity. The subjects studied by Gaudet et al. had
reduced LPL activity due to the production of a mutated protein
(16), unlike the mice that had a partial, but marked, reduction in
LPL production. Both situations might lead to a small amount of
residual LPL activity. At these levels, the residual activity could be

ApoC-III production might be required to observe effects on
LPL-mediated lipolysis, although we think this is unlikely, giv-
en the dramatic reduction of ApoC-III levels in several of the
models (20). And although the heparin-induced lipolysis experi-
ments suggest that ApoC-III depletion does not affect LPL activ-
ity, we cannot fully exclude the possibility that ApoC-III depletion
might differentially affect LPL activity in different tissues.
Although the impact of ApoC-III on LPL-mediated hydrolysis
will likely remain controversial, the impact of ApoC-III depletion on
clearance by LDLR/LRP1 is clearly demonstrated. The mechanism
by which ApoC-III blocks hepatic clearance via LDLR and LRP1
may involve displacement of ApoE from TRLs or by direct interfer-
ence with ApoE binding (32-34). However, an increase in plasma
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Figure 7. ApoC-1ll ASO treatment does not alter in vivo LPL activity or VLDL production. (A and B) Plasma TGs were measured before and after heparin
injection in WT, Ldlr/- Ndst1" Alb-Cre*, and Ldlr’- Lrp1"/# Alb-Cre* mice treated for 4 weeks with control or ApoC-111 ASO (A) after an overnight fast or (B)

3 hours after a fat challenge. Heparin was injected i.v. (50 U/mouse), and blood was sampled via tail-vein bleeding 10 minutes after injection (n = 3-5/
group). (€) Hepatic VLDL production was determined in overnight-fasted Ldlr/-Lrp1"f Alb-Cre* mice after injection with tyloxapol to inhibit lipolysis. Blood
samples were collected at the indicated time points and processed to measure plasma TG accumulation and VLDL production rates (n = 3/group). Values

represent the mean + SEM. ANOVA with Bonferroni's post-hoc test.
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TG levels also occurs in ApoC-III-transgenic mice that are deficient
in ApoE (20, 35). Furthermore, we did not observe any change in
ApoE content on TRLs after ApoC-III depletion in any of the mouse
models (Supplemental Figure 8A). An earlier study by Kowal et al.
suggested that a mixture of ApoCs of undefined composition modu-
lated ApoE-enriched B-VLDL binding to LRP1, but it was thought
that clearance through the LDLR was not affected (34). A follow-
up study showed that ApoC-III did not significantly inhibit ApoE-
mediated VLDL binding to LRP1 (36). An alternate mechanism
based on interference with ApoB-48 recognition (37) could explain
why ApoC-III reduces TRL clearance only in mice deficient in both
LRP1 and LDLR. Interestingly, ApoC-III does not seem to inter-
fere with clearance mediated by hepatic HSPG receptors, which
occurs via binding of ApoE and ApoA-V to heparan sulfate (24). The
accumulation of ApoC-III in TRLs from all mouse strains lacking
N-deacetylase/N-sulfotransferase-1 (NDST1) (Supplemental Fig-
ure 8B) suggests the possibility that ApoC-III-bearing particles may
be preferentially cleared through HSPG receptors.

In conclusion, our genetic studies establish the fact that ApoC-
III ASO reduces hypertriglyceridemia in mice by reducing plasma
ApoC-IlIlevels, which in turn enhances clearance of TRLs through
LDLR family members. It is not clear what selective advantage may
be gained by a mechanism that leads to delayed clearance of TRLs.
Perhaps blocking the rapid clearance of TRL remnants through
LDLR and LRP1 has an adaptive role in shunting fatty acids liber-
ated from plasma TGs to the heart and skeletal muscle when food
is less plentiful. ApoC-III accumulation in all mouse strains lacking
hepatic HSPGs also suggests that shunting a subfraction of parti-
cles to these receptors may have a functional role.
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Figure 8. TG levels are reduced in an inducible
LPL-deficient mouse model after ApoC-111 ASO
administration. (A) Liver Apoc3 mRNA expres-
sion in iLpl* mice treated with control or ApoC-IlI
. ASO (n = 8/group). (B) Fasting, fed, and post-
prandial plasma TG levels in iLpl“ mice treated
for 4 weeks with control or ApoC-Ill ASO (n = 5-6/
group). (C) Lipoprotein TG profiles in plasma from
pooled, fasted iLpl® mice treated with tamoxi-
(4 h) fen to induce inactivation of LPL expression
(iLp!) (n = 3 pooled mice/group). (D) Lipoprotein
cholesterol profiles in plasma from fasted iLpl“f
mice treated with control ASO or ApoC-111 ASO
(4 weeks, n = 3 mice/pool). The elution positions
of CR/VLDL, IDL/LDL, and HDL are indicated. (E)
Plasma TG levels of fasted mice before and after
injection of 100 pl 20% Liposyn Il particles at the
indicated time points. (F) Tissue distribution of
[*H]triolein 5 minutes after injection of 100 pl
[*H]triolein-labeled 20% Liposyn Il particles
(n = 8/group). BAT, brown adipose tissue; WAT,
white adipose tissue. Values represent the mean
+ SEM. *P < 0.05, **P < 0.01, and ***P < 0.001
compared with control ASO-treated mice. ANOVA
with Bonferroni’s post-hoc test.
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A reduction of ApoC-III levels by ASO therapy could lead to a
reduction of CVD. Elevated plasma TG levels represent a risk fac-
tor for CVD in humans, and an adjusted analysis of patients in the
Framingham Heart Study suggests that each decrease of 1 mg/dl
in plasma ApoC-III levels is associated with a 4% decrease in CVD
risk (11), further supporting the potential therapeutic benefit of
suppressing plasma ApoC-III levels in humans to reduce CVD. A
number of correlative studies showed a greater incidence of CVD
in persons with ApoC-III-rich LDL (38). These correlations using
ApoC-III associated with LDL are more complex, as it was also
reported that increased ApoE content in LDL fractions with ApoC-
111 is associated with a lower risk of CVD (39). Nevertheless, the
use of an antisense-mediated strategy to target hepatic ApoC-III
levels in order to effectively lower plasma TG levels (16, 40) could
prove to be a valid therapeutic approach for treating subjects with
FCS, for which there is now no effective therapy. Further research
is warranted to determine whether, in fact, the antisense strategy
to target hepatic ApoC-III will result in the lowering of CVD risk in
patients with mild-to-moderate hypertriglyceridemic, who com-
prise approximately 28% of the general population (41).

Methods

Mice. LrpI", Ldlr”~, and Alb-Cre* mice were purchased from The Jack-
son Laboratory. NdstI"/' Alb-Cre* mice were generated and genotyped
as described previously (22, 42). Inducible LPL-deleted mice were cre-
ated by crossing floxed Lpl (Lp/"") mice with B-actin-driven tamoxifen-
inducible Cre (Mer/Cre/Mer) transgenic mice to obtain the Lpl"! Actb3-
MerCreMer* offspring designated as iLpl* mice, as previously described
(22). Both Lpl"" and iLpl% mice were given i.p. injections of 4-hydroxy-
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tamoxifen (Sigma-Aldrich) in corn oil at a dose of 40 mg/kg BW/day for
5 consecutive days. Plasma TG levels were determined 2 weeks after
the last tamoxifen injection. All animals were fully backcrossed onto a
C57Bl/6 background. Mice were weaned at 3 weeks, maintained on a
12-hour light cycle, and had ad libitum access to water and a standard
rodent chow diet (PicoLab Rodent Diet 20, 5053; LabDiet) or a high-
fat diet (TD.88137; Harlan Teklad). Mice received i.p. injections of ION
440726 (murine ApoC-IIT ASO) or ION 141923 (murine control ASO)
at 50 mg/kg/week and ION 793588 (murine LRP1 ASO) and ION
713852 (murine LDLR ASO) at 5 mg/kg/week (Supplemental Table 1).
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Figure 9. ApoC-lll interferes with hepatic TRL clearance
via LRP1and LDLR. (A) Western blot analysis for ApoB
and ApoC-IIl in pooled TRLs (5 pg) isolated from fasted
LdIr’- Ndst1"1 Alb-Cre* mice treated for 4 weeks with
control or ApoC-I1l ASO (n = 3-4/pool). (B) Schematic
overview of [PH]TRL clearance experiments. (C) Isolated
[PH]TRLs from control ASO- and ApoC-Ill ASO-treated
Ldlr’- Ndst1"# Alb-Cre* mice were injected i.v. into ApoC-IlI
ASO-treated Ndst1" Alb-Cre* mice (n = 3). Clearance

of PH]TRLs was assessed by measuring the counts
remaining in the plasma relative to the counts recovered
1minute after injection. (D) Mice were euthanized and
the indicated tissues were dissected, homogenized,

and assayed for radioactivity 20 minutes after injec-

tion. Counts per gram wet weight are reported. (E) [H]
TRLs isolated from control ASO-treated (white circles)
and ApoC-IIl ASO-treated (black circles) Ldlr/- Ndst1#/
Alb-Cre* mice were injected i.v. into ApoC-1ll ASO-treated
Ldlr’- Lrp?"f Alb-Cre~ mice (n = 3). Clearance of [PH]TRLs
was assessed by measuring the counts remaining in the
plasma relative to the counts recovered 1 minute after
injection. (F) Mice were euthanized and the indicated
tissues were dissected, homogenized, and assayed for
radioactivity 20 minutes after injection. Counts per gram
wet weight are reported. (C-F) Values represent the mean
+SEM. *P < 0.05 and ***P < 0.001 compared with control
ASO-treated TRLs. ANOVA with Bonferroni’s post-hoc
test. eWAT, epididymal WAT; sWAT, subcutaneous WAT.

As reported by Noh et al. (43), tamoxifen transiently increases plasma
TG levels, which return to normal 2 weeks after the last administration.
Therefore, ASO administration to iLpl% mice was initiated 2 weeks after
the last tamoxifen injection.

RNA analysis. Total RNA was isolated in TRIzol from homoge-
nized tissue and cells and purified using RNeasy columns and RNase-
Free DNase digestion according to the manufacturer’s instructions
(QIAGEN). The quality and quantity of total RNA were monitored
and measured with a NanoDrop (NanoDrop Technologies) following
the manufacturer’s instructions. For quantitative PCR analysis, 1 pl
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Figure 10. ApoC-11l depletion improves TRL clearance in primary hepato-
cytes expressing LRP1 and LDLR. Binding and uptake of isolated [*H]TRLs
(50 pg/ml) from control ASO- and ApoC-Ill ASO-treated Ldlr”/- Ndst1"f
Alb-Cre* mice in primary hepatocytes isolated from Ndst1"" Alb-Cre* and
Ldlr’-Lrp1"f Alb-Cre” mice after a 4-hour incubation at 37°C (n = 3/condi-
tion). Values represent the mean + SEM. **P < 0.01 compared with control
ASO-treated TRLs. ANOVA with Bonferroni's post-hoc test.

c¢DNA was used for real-time PCR with gene-specific primers (primer
sequences are indicated in Supplemental Table 2). Quantitative PCR
(SYBR Green) analysis was performed on an Applied Biosystems 7300
Real-Time PCR System (Invitrogen).

Lipid analysis. Blood was drawn via the tail vein from mice that
had been fasted for 5 hours. Total cholesterol and TG levels in plasma
were determined using kits from Genzyme or Thermo Fisher Scien-
tific. NEFA and 3-hydroxybutyrate levels were determined using enzy-
matic kits (Wako Chemicals).

LPL activity assay. LPL activity was determined as described previ-
ously (44, 45). Post-heparin plasma was obtained from fasted mice 5
minutes after retro-orbital injection of 5 units per mouse of heparin. To
measure total lipase activity, plasma samples were incubated with 10%
Intralipid/[*H] TG emulsion (Hospira) as a substrate and human serum
as the source of ApoC-III (24). The contribution of hepatic lipase was
determined by including 1 M NaCl in the assay, and the values were
subtracted from the total lipase activity to estimate the activity attrib-
uted to LPL. Heparin-releasable LPL activity in heart, skeletal muscle,
and white adipose tissue was measured using 50-80 mg of snap-frozen
tissues. The tissue was minced in 0.6 ml PBS with 2 mg/ml BSA in the
presence of 5 U/ml heparin. Minced tissues were incubated for 1 hour
in a 37°C shaker and subsequently centrifuged at 1,000 g for 15 min-
utes. The supernatant was collected for LPL assay. A 100-ul aliquot of
the buffer was used for the lipase assay in combination with 100 pl of a
10% Intralipid/[*H]triolein emulsion for 1 hour at 25°C. The LPL activ-
ity measurements were normalized for the initial tissue weights.

Ultracentrifugation. Plasma was pooled from several mice (70 pl/
mouse, n = 3-5 mice/genotype). Lipoprotein fractions were separated
by buoyant density ultracentrifugation according to established meth-
ods (46). Briefly, 150 ul pooled plasma was loaded into micro-ultra-
centrifuge tubes (Beckman Coulter). The samples were centrifuged
for 12 hours in a 42.2 Ti rotor at 100,000 g at 4°C. The top 50-pl frac-
tion containing VLDL and chylomicron remnants (5 <1.006 g/ml) was
removed and used for analysis. TRLs were analyzed by SDS-PAGE
on 4% to 12% Bis-Tris gradient gels (NuPage, Invitrogen). Proteins
were visualized by silver staining (Pierce, Thermo Fisher Scientific) or
after transfer to an Immobilon-FL PVDF membrane (EMD Millipore).
Membranes were blocked with Odyssey Blocking Buffer (LI-COR Bio-
sciences) for 1 hour and incubated overnight at 4°C with the respective
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Abs. Rabbit and mouse Abs were incubated with secondary Odyssey
IR dye Abs (1:15,000) and visualized with an Odyssey IR Imaging sys-
tem (LI-COR Biosciences). Western blot primary Abs included rabbit
anti-mouse ApoB (Abcam; catalog ab20737; 1:1,000) and anti-mouse
ApoC-III (Ionis Pharmaceuticals; 1:2,000) (15).

Fast-performance liquid chromatography. Pooled plasma samples
were separated by gel-filtration fast-performance liquid chromatog-
raphy (FPLC). Samples were loaded on a GE Superose 6 10/30 GL
column in 0.15 M sodium chloride containing 1 mM ethylenediami-
netetraacetic acid and 0.02% sodium azide, pH 7.4. Fractions (0.5-
ml) were collected (0.5 ml/min). Total cholesterol and TG levels were
determined enzymatically as described above.

Postprandial clearance studies. Mice were fasted for 4 (iLpl*) or 5
(other models) hours. At 1 pm, they were given a 200-ul bolus of corn
oil (Sigma-Aldrich) by oral gavage. At the indicated time points, mice
were bled via the tail vein. TG and cholesterol levels were measured as
described above.

FH]TG tissue uptake. Mice were fasted overnight and then inject-
ed i.v. with 100 pl Liposyn emulsion (Hospira) containing 2 uCi [*H]
triolein (New England Nuclear). Blood was obtained over a 5-minute
period, during which time the mice were exsanguinated and perfused
with 10 ml of 4°C PBS. After the tissues blanched, the organs were har-
vested. Each organ was weighed, either the whole or partial organ was
homogenized in 1 ml PBS, 100-pl aliquots (in triplicate) were counted,
and the total organ uptake was calculated.

Retinyl ester excursion. Clearance of chylomicrons derived from
dietary TGs was measured by vitamin A excursion essentially as
described previously (18). Briefly, 25 uCi [11,12-*H]-retinol (Perkin-
Elmer, 44 Ci/mmol) in ethanol was mixed with 1 ml corn oil (Sigma-
Aldrich) and 200 ul was administered by gavage to mice fasted from 4
am until 9 am. Blood was obtained every 2 hours via the tail vein and
8 hours after gavage by cardiac puncture. [*H]Counts remaining in the
serum were measured by liquid scintillation counting.

Clearance of FH]TRLs. Ldlr/- Ndst1"/ Alb-Cre* mice were treated
for 4 weeks with a control ASO or ApoC-III ASO. Mice were fasted for
5 hours and subjected to oral gavage (200 pl/mouse) with 5 pCi [11,12-
H]retinol in corn oil (Sigma-Aldrich). Blood was collected 3 hours
after gavage by cardiac puncture. [*H]TRLs were isolated by buoyant
density ultracentrifugation as described above. Next, Ndst1"/ Alb-Cre*
and Ldlr”/-Lrp1"" Alb-Cre* mice (n = 3) were treated with ApoC-III ASO
for 4 weeks, fasted for 5 hours, and then injected with purified [*H]
TRLs via the tail vein (30,000 cpm/mouse). Serial tail-vein blood
samples were taken at the indicated times (Figure 9C and Figure 3E).
Radioactivity in serial plasma samples was determined by liquid scin-
tillation counting and expressed relative to the number of counts in the
circulation 1 minute after injection.

Binding and uptake of FH]TRLs. Ldlr’ Ndst1"/" Alb-Cre* mice
were treated for 4 weeks with a control ASO or ApoC-III ASO. Mice
were fasted for 5 hours and subjected to oral gavage (200 pl/mouse)
with 5 pCi [11,12-*H]retinol in corn oil (Sigma-Aldrich). Blood was
collected 3 hours after gavage by cardiac puncture. [*H]TRLs were
isolated by buoyant density ultracentrifugation as described above.
Next, primary hepatocytes were isolated from Ndst1" Alb-Cre* and
Ldlr’-LrpI"" Alb-Cre* mice by perfusion of the liver with EDTA to dis-
sociate the cells, followed by Percoll density gradient centrifugation
as described previously (47). Hepatocytes were cultured in DMEM
containing 10% FBS, 100 units/ml penicillin, and 0.1 mg/ml strepto-
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mycin for 36 hours prior to in vitro experiments. Uptake experiments
were performed in hepatocytes seeded into collagen-coated, 6-well
plates (Nalge Nunc International) at 500,000 cells per well. Purified
[*H]TRLs were added at a concentration of 50 pg/ml in DMEM con-
taining 10% lipoprotein-deficient serum (LPDS). After a 4-hour incu-
bation at 37°C, the cells were washed 4 times with PBS. Hepatocytes
were solubilized in 0.1 M NaOH. Finally, total radioactivity and total
cellular protein of the lysate were determined. All uptake data were
obtained in triplicate.

Hepatic VLDL-TG secretion and intestinal lipid absorption. Mice
were fasted for 5 hours prior to tail-vein injection of tyloxapol (10%
solution in PBS, Sigma-Aldrich) at a dose of 0.5 mg/g BW. Plasma was
collected by tail bleeding at 1, 15, 30, 60, and 120 minutes after injec-
tion. Plasma TG levels were measured as described above.

Statistics. Data were analyzed by 2-tailed Student’s ¢ test or 2-way
ANOVA and are presented as the mean * SEM. Statistical analyses
were performed using Prism software (version 5, GraphPad Software).
A Pvalue of less than 0.05 was considered significant.

Study approval. All animals were housed and bred in vivaria
approved by the Association for Assessment and Accreditation of Lab-
oratory Animal Care located in the School of Medicine of UCSD and
at Columbia University and New York University, following standards
and procedures approved by the IACUC of UCSD.
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