Supplemental data

TABLE OF CONTENTS

1.	Supplemental Figure Legends	2
2.	Supplemental Table Legends	6
3.	Supplemental Figures	7
4.	Supplemental Tables	17

1. Supplemental Figure legends

Supplemental Figure 1. Expression of macrophage markers in SVF from HFD mice.

(A) Expression of macrophage marker genes in isolated stromal-vascular fraction (SVF) of adipose tissue (eWAT and iWAT) from chow and HFD fed mice by qPCR. (B) SVF isolated from eWAT and iWAT of chow and HFD fed mice were gated for live CD45⁺ cells. Representative scatter-plot showing macrophages stained with F4/80 and CD11b antibody. (C and D) Expression of *Irf3* and macrophage marker genes in sorted F4/80⁺ CD11b⁺ macrophages by FACS. n=5-6/group. Data is presented as mean ± SEM. For all data, **p*<0.05.

Supplemental Figure 2. Effect of LPS, palmitate and poly I:C treatment in the absence or presence of IRF3.

(A) Expression of mouse IRF3 at mRNA and protein level in mature 3T3-L1 adipocytes transduced with lentivirus expressing shRNA against mouse Irf3, determined by qPCR and Western blotting. n=4. (B) Western blot showing effect of LPS treatment on protein levels of p65 and phospho-p65 in isolated nuclei and/or cytosolic fraction of 3T3-L1 adipocytes. (C) Effect of LPS (700 ng/ml) treatment for 6 days on NF-KB activity in the isolated nuclei fraction from 3T3-L1 adipocytes using TransAm NF-KB activity kit. Lysate from Raw 264.7 cells treated with LPS (700 ng/ml) for 1 h was used as a positive control. (D) Basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes after treatment with varying doses of palmitate for 48 h. (E) Basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes transduced with lentivirus expressing shRNA against Irf3 or shLuc control hairpin in the absence or presence of palmitate treatment (1 mM). (F) Western blot showing effect of poly I:C treatment on protein levels of p65 and phospho-p65 in isolated nuclei and/or cytosolic fraction of 3T3-L1 adipocytes. Data is presented as mean \pm SEM. ***p<0.001, **p<0.01, *p<0.05.

Supplemental Figure 3. Effect of IRF3 overexpression on insulin signaling in 3T3-L1 adipocytes.

(A) Schematic representation of the wild-type IRF3 and mutant IRF3 (IRF3-2D) protein. (B) Overexpression of mouse IRF3 and IRF3-2D mutant at mRNA and protein level in mature 3T3-L1 adipocytes transduced with lentivirus, determined by qPCR and Western blotting. n=4. (C) Effect of IRF3 overexpression on inflammatory gene expression by lentivirus transduction in mature 3T3-L1 adipocytes using qPCR. n=4. (D) Effect of IRF3 overexpression on insulin signaling in mature 3T3-L1 adipocytes by Western blotting. Data is presented as mean ± SEM. *p<0.05, ***p<0.001.

Supplemental Figure 4. Differentially regulated genes by IRF3 overexpression or knockdown in the absence or presence of LPS.

(A) Heat map showing gene expression fold change between three groups (IRF3-2D vs EGFP, shIrf3 vs shLuc, and shIrf3 vs shLuc in the presence of LPS). Scale is log2 fold change. (B) Effect of IRF3 overexpression in mature 3T3-L1 adipocytes on insulin signaling genes from Cluster 2 of RNA-seq, validated by qPCR. Data is presented as mean \pm SEM. **p*<0.05 (C-F) Number of upregulated or downregulated genes by IRF3 expression between five groups (IRF3-2D vs EGFP, shIrf3 vs shLuc, shLuc vs shLuc in the presence of LPS, shIrf3 vs shIrf3 in the presence of LPS, and shIrf3 vs shLuc in the presence of LPS).

Supplemental Figure 5. Characteristics of *Irf3^{-/-}* mice on chow diet.

(A) Expression of IRF3 target inflammatory genes in eWAT by qPCR. (B) Plasma cytokine levels measured in *Irf3^{-/-}* mice. (C) Body weight of WT and *Irf3^{-/-}* mice. (D) Body composition determined in *Irf3^{-/-}* mice. All data from male chow-fed 16 week old control and *Irf3^{-/-}* mice, n=6-7/genotype. Data is presented as mean \pm SEM. For all data, **p*<0.05.

Supplemental Figure 6. Effect of Irf3 deficiency on insulin sensitivity in chow and HFD fed mice.

(**A**) Glucose tolerance test (GTT) in *Irf3*^{-/-} mice after 8 weeks on chow diet. (**B**) Insulin tolerance test (ITT) in *Irf3*^{-/-} mice after 10 weeks on chow diet. (**C**) Fasting plasma glucose levels in *Irf3*^{-/-} mice after 8 and 10 weeks on HFD. (**D**) Western blot showing insulin signaling in eWAT of *Irf3*^{-/-} mice on HFD. (**E**) Quantification of Western blot in Supplemental Figure 6D. (**F**) Western blot showing insulin signaling in liver of *Irf3*^{-/-} mice on HFD. (**G**) Quantification of Western blot in Supplemental Figure 6F. N=6-7/genotype for chow studies. N= 7-8/genotype for HFD studies. Data is presented as mean ± SEM. For all data **p*<0.05.

Supplemental Figure 7. Hyperinsulinemic-euglycemic clamp in *Irf3^{-/-}* mice on HFD.

(A) Fasting and clamped glucose levels in control and $Irf3^{-/-}$ mice after 8 weeks of HFD feeding. (B) Fasting and clamped insulin levels in control and $Irf3^{-/-}$ mice. (C) Fasting and clamped nonesterified fatty acids (NEFAs) levels in control and $Irf3^{-/-}$ mice. For all data N=8-10 per genotype. Data is presented as mean ± SEM.

Supplemental Figure 8. Effect of Irf3 deficiency on Glut4 and adiponectin levels in HFD fed mice.

(A) Adiponectin (*Adipoq*) mRNA levels in 3T3-L1 adipocytes following overexpression or knockdown of IRF3 by qPCR. (B) Expression of *Adipoq* in eWAT and iWAT of WT and *Irf3^{-/-}* mice on HFD by qPCR. (C) Plasma adiponectin levels in WT and *Irf3^{-/-}* mice on HFD. (D) Glut4 protein levels in eWAT and iWAT of chow vs HFD mice determined by Western blotting. (E) Gene expression of *Slc2a4* in 3T3-L1 adipocytes with overexpression and knockdown of murine IRF3. N=4 for in vitro studies. N= 7-8/genotype for HFD studies. Data is presented as mean ± SEM. For all data **p*<0.05.

Supplemental Figure 9. Energy expenditure and expression of thermogenic genes in BAT of *Irf3^{-/-}* mice on HFD.

CLAMS study was performed on $Irf3^{-/-}$ mice upon 16 weeks of HFD feeding to determine effect on (**A**) food intake, (**B**) activity, (**C**) respiratory exchange ratio (RER), and (**D**) heat production. (**E**) Histology showing H&E staining in BAT of $Irf3^{-/-}$ mice on HFD (10X magnification). (**F**) Expression of thermogenic and β -oxidation genes in BAT of $Irf3^{-/-}$ mice on HFD. For all data n=7-8/genotype. Data is presented as mean ± SEM. For all data, **p*<0.05.

Supplemental Figure 10. Energy expenditure and expression of thermogenic genes in BAT of *Irf3^{-/-}* mice on HFD before body weight divergence.

Male wild-type and *Irf3*^{-/-} mice were fed HFD and used for CLAMS study. N=6/genotype. (**A**) Body weight of WT and *Irf3*^{-/-} mice during 10 weeks HFD feeding. (**B**) Body composition of WT and *Irf3*^{-/-} mice at 8 weeks of HFD feeding. (**C**) Tissue weight of WT and *Irf3*^{-/-} mice after 10 weeks on HFD. (**D**) Food intake, (**E**) activity, (**F**) respiratory exchange ratio (RER), and (**G**) heat production in *Irf3*^{-/-} mice upon 8 weeks of HFD. (**H**) Histology showing H&E staining in BAT of *Irf3*^{-/-} mice upon 10 weeks of HFD (10X magnification). (**I**) Expression of thermogenic and βoxidation genes in BAT of *Irf3*^{-/-} mice upon 10 weeks of HFD. Data is presented as mean ± SEM. For all data **p*<0.05.

2. Supplemental Table Legends

Supplemental Table 1. Human subjects characteristic and plasma parameters.

Supplemental Table 2. List of genes coordinately regulated by overexpression and knock-down of murine IRF3. Numbers represent log2 fold change with ≤25% FDR.

Supplemental Table 3. Top pathways enriched in the three major clusters identified in Figure 3B by GSEA using DAVID.

Supplemental Table 4. List of pathways regulated in clusters identified in Figure 3B with ≤25% FDR.

Supplemental Table 5. Plasma parameters of *Irf3^{-/-}* mice on chow and high-fat diet. Plasma samples were collected from 16 week old male $Irf3^{-/-}$ mice on chow and high-fat diet (HFD) in the fed state. Data is represented as mean ± SEM. N=6-7/group (chow), N=7-8/group (HFD), *p<0.01.

Supplemental Table 6. List of qPCR primers used in this study.

Supplemental Figure 1

В

Supplemental Figure 1. Expression of macrophage markers in SVF from HFD mice.

(A) Expression of macrophage marker genes in isolated stromal-vascular fraction (SVF) of adipose tissue (eWAT and iWAT) from chow and HFD fed mice by qPCR. (B) SVF isolated from eWAT and iWAT of chow and HFD fed mice were gated for live CD45⁺ cells. Representative scatter-plot showing macrophages stained with F4/80 and CD11b antibody. (C and D) Expression of *Irf3* and macrophage marker genes in sorted F4/80⁺ CD11b⁺ macrophages by FACS. n=5-6/group. Data is presented as mean ± SEM. For all data, **p*<0.05.

Supplemental Figure 2

Supplemental Figure 2. Effect of LPS, palmitate and poly I:C treatment in the absence or presence of IRF3. (**A**) Expression of mouse IRF3 at mRNA and protein level in mature 3T3-L1 adipocytes transduced with lentivirus expressing shRNA against mouse Irf3, determined by qPCR and Western blotting. n=4. (**B**) Western blot showing effect of LPS treatment on protein levels of p65 and phospho-p65 in isolated nuclei and/or cytosolic fraction of 3T3-L1 adipocytes. (**C**) Effect of LPS (700 ng/ml) treatment for 6 days on NF-κB activity in the isolated nuclei fraction from 3T3-L1 adipocytes using TransAm NF-κB activity kit. Lysate from Raw 264.7 cells treated with LPS (700 ng/ml) for 1 h was used as a positive control. (**D**) Basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes transduced with lentivirus expressing shRNA against Irf3 or shLuc control hairpin in the absence or presence of palmitate treatment (1 mM). (**F**) Western blot showing effect of poly I:C treatment on protein levels of p65 and phospho-p65 in isolated nuclei and/or cytosolic as mean ± SEM. ***p<0.001, *p<0.05.

Supplemental Figure 3. Effect of IRF3 overexpression on insulin signaling in 3T3-L1 adipocytes.

(A) Schematic representation of the wild-type IRF3 and mutant IRF3 (IRF3-2D) protein. (B) Overexpression of mouse IRF3 and IRF3-2D mutant at mRNA and protein level in mature 3T3-L1 adipocytes transduced with lentivirus, determined by qPCR and Western blotting. n=4. (C) Effect of IRF3 overexpression on inflammatory gene expression by lentivirus transduction in mature 3T3-L1 adipocytes using qPCR. n=4. (D) Effect of IRF3 overexpression on insulin signaling in mature 3T3-L1 adipocytes by Western blotting. Data is presented as mean \pm SEM. **p*<0.05, ****p*<0.001.

D

Ε

-						
С	UP/UP	IRF3-2D vs EGFP	shIrf3 vs shLuc	shLuc vs shLuc+LPS	shIrf3 vs shIrf3+LPS	shIrf3+LPS vs shLuc+LPS
	IRF3-2D vs EGFP	557	50	61	103	86
	shIrf3 vs shLuc		271	30	22	174
	shLuc vs shLuc+LPS			429	281	25
	shlrf3 vs shlrf3+LPS				610	51
	shlrf3+LPS vs shLuc+LPS					457

DOWN/DOWN	IRF3-2D vs EGFP	shIrf3 vs shLuc	shLuc vs shLuc+LPS	shIrf3 vs shIrf3+LPS	shlrf3+LPS vs shLuc+LPS
IRF3-2D vs EGFP	505	136	44	34	104
shIrf3 vs shLuc		376	36	9	142
shLuc vs shLuc+LPS			419	207	8
shIrf3 vs shIrf3+LPS				284	8
hLuc+LPS vs shIrf3+LPS					221

UP/DOWN	shIrf3 vs shLuc	shLuc vs shLuc+LPS	shIrf3 vs shIrf3+LPS	shIrf3+LPS vs shLuc+LPS
IRF3-2D vs EGFP	36	40	19	11
shIrf3 vs shLuc		66	68	0
shLuc vs shLuc+LPS			0	154
shlrf3 vs shlrf3+LPS				74

F	DOWN/UP	shIrf3 vs shLuc	shLuc vs shLuc+LPS	shIrf3 vs shIrf3+LPS	shIrf3+LPS vs shLuc+LPS
	IRF3-2D vs EGFP	12	76	90	17
	shIrf3 vs shLuc		50	116	0
	shLuc vs shLuc+LPS			1	72
	shlrf3 vs shlrf3+LPS				67

Supplemental Figure 4. Differentially regulated genes by IRF3 overexpression or knockdown in the absence or presence of LPS.

(A) Heat map showing gene expression fold change between three groups (IRF3-2D vs EGFP, shlrf3 vs shLuc, and shlrf3 vs shLuc in the presence of LPS). Scale is log2 fold change. (B) Effect of IRF3 overexpression in mature 3T3-L1 adipocytes on insulin signaling genes from Cluster 2 of RNA-seq, validated by qPCR. Data is presented as mean \pm SEM. **p*<0.05. (C-F) Number of upregulated or downregulated genes by IRF3 expression between five groups (IRF3-2D vs EGFP, shlrf3 vs shLuc, shLuc vs shLuc in the presence of LPS, shlrf3 vs shlrf3 in the presence of LPS, and shlrf3 vs shLuc in the presence of LPS).

Supplemental Figure 5. Characteristics of *Irf3^{-/-}* mice on chow diet.

(A) Expression of IRF3 target inflammatory genes in eWAT by qPCR. (B) Plasma cytokine levels measured in $Irf3^{-/-}$ mice. (C) Body weight of WT and $Irf3^{-/-}$ mice. (D) Body composition determined in $Irf3^{-/-}$ mice. All data from male chow-fed 16 week old control and $Irf3^{-/-}$ mice, n=6-7/genotype. Data is presented as mean ± SEM. For all data, *p<0.05.

Supplemental Figure 6. Effect of Irf3 deficiency on insulin sensitivity in chow and HFD fed mice.

(A) Glucose tolerance test (GTT) in $Irf3^{-/-}$ mice after 8 weeks on chow diet. (B) Insulin tolerance test (ITT) in $Irf3^{-/-}$ mice after 10 weeks on chow diet. (C) Fasting plasma glucose levels in $Irf3^{-/-}$ mice after 8 and 10 weeks on HFD. (D) Western blot showing insulin signaling in eWAT of $Irf3^{-/-}$ mice on HFD. (E) Quantification of Western blot in Supplemental Figure 6D. (F) Western blot showing insulin signaling in supplemental Figure 6F. N=6-7/genotype for chow studies. N= 7-8/genotype for HFD studies. Data is presented as mean ± SEM. For all data *p<0.05.

Supplemental Figure 7. Hyperinsulinemic-euglycemic clamp in *Irf3^{-/-}* mice on HFD.

(A) Fasting and clamped glucose levels in control and $Irf3^{-/-}$ mice after 8 weeks of HFD feeding. (B) Fasting and clamped insulin levels in control and $Irf3^{-/-}$ mice. (C) Fasting and clamped non-esterified fatty acids (NEFAs) levels in control and $Irf3^{-/-}$ mice. For all data N=8-10 per genotype. Data is presented as mean ± SEM.

Supplemental Figure 8. Effect of Irf3 deficiency on Glut4 and adiponectin levels in HFD fed mice.

(A) Adiponectin (*Adipoq*) mRNA levels in 3T3-L1 adipocytes following overexpression or knockdown of IRF3 by qPCR. (B) Expression of *Adipoq* in eWAT and iWAT of WT and *Irf3*^{-/-} mice on HFD by qPCR. (C) Plasma adiponectin levels in WT and *Irf3*^{-/-} mice on HFD. (D) Glut4 protein levels in eWAT and iWAT of chow vs HFD mice determined by Western blotting. (E) Gene expression of *Slc2a4* in 3T3-L1 adipocytes with overexpression and knockdown of murine IRF3. N=4 for in vitro studies. N= 7-8/genotype for HFD studies. Data is presented as mean \pm SEM. For all data **p*<0.05.

Supplemental Figure 9. Energy expenditure and expression of thermogenic genes in BAT of *Irf3^{-/-}* mice on HFD.

CLAMS study was performed on *Irf3^{-/-}* mice upon 16 weeks of HFD feeding to determine effect on (**A**) food intake, (**B**) activity, (**C**) respiratory exchange ratio (RER), and (**D**) heat production. (**E**) Histology showing H&E staining in BAT of *Irf3^{-/-}* mice on HFD (10X magnification). (**F**) Expression of thermogenic and β -oxidation genes in BAT of *Irf3^{-/-}* mice on HFD. For all data n=7-8/genotype. Data is presented as mean ± SEM. For all data, **p*<0.05.

Supplemental Figure 10. Energy expenditure and expression of thermogenic genes in BAT of *Irf3^{-/-}* mice on HFD before body weight divergence.

Male wild-type and *Irf3^{-/-}* mice were fed HFD and used for CLAMS study. N=6/genotype. (**A**) Body weight of WT and *Irf3^{-/-}* mice during 10 weeks HFD feeding. (**B**) Body composition of WT and *Irf3^{-/-}* mice at 8 weeks of HFD feeding. (**C**) Tissue weight of WT and *Irf3^{-/-}* mice after 10 weeks on HFD. (**D**) Food intake, (**E**) activity, (**F**) respiratory exchange ratio (RER), and (**G**) heat production in *Irf3^{-/-}* mice upon 8 weeks of HFD. (**H**) Histology showing H&E staining in BAT of *Irf3^{-/-}* mice upon 10 weeks of HFD (10X magnification). (**I**) Expression of thermogenic and β -oxidation genes in BAT of *Irf3^{-/-}* mice upon 10 weeks of HFD. Data is presented as mean ± SEM. For all data **p*<0.05.

Supplemental Table 1. Human subjects characteristic and plasma parameters.

Parameters	Non-Diabetic (Mean±SD)	Diabetic (Mean±SD)
Number (N)	48	45
Gender(Female/Male)	25/23	21/24
Age (yrs)	44.79±11.82	53.98±7.83
BMI (kg/m²)	30.88±4.72	31.50±3.50
Fasting Blood Glucose (mmol/l)	5.40±1.11	8.57±2.66
HDL cholesterol (mmol/l)	1.30±0.35	1.16±0.32
LDL cholesterol (mmol/l)	3.31±0.83	2.82±1.16
Triglycerides (mmol/l)	1.09±0.67	1.67±1.02
Cholesterol (mmol/l)	5.11±0.96	4.85±1.36
HbA1C (%)	5.83±1.09	7.94±1.50

Supplemental Table 2. List of genes coordinately regulated by overexpression and knock-down of murine IRF3. Numbers represent log2 fold change with ≤25% FDR.

Gene	IRF3-2D vs	shirf3 vs
Adam6a	-1.5	1.9
Mmp9	-1.3	1.3
Gldc	-1.1	0.8
Lvl1	-0.9	0.7
Mmp8	-0.9	2.2
Mmp13	-0.9	1.5
Srpx2	-0.9	0.5
Otop1	-0.7	0.7
Nwd1	-0.7	1.7
Pygb	-0.6	0.5
Ces1a	-0.6	0.7
Pappa2	-0.6	0.5
Atp1b1	-0.5	0.6
Inds1	-0.5	0.4
DQ539915	-0.4	0.5
FDXI13	-0.4	0.6
Gpxi	-0.4	0.4
DCII Nor3	-0.3	0.4
Plat	-0.3	0.4
Pros1	-0.3	0.5
Tmeff1	-0.3	0.3
Usp35	-0.3	0.4
Irf3	0.2	-0.7
Atp10d	0.3	-0.3
Itih4	0.3	-1
Laptm4b	0.3	-0.5
Čes4a	0.4	-0.7
Emp1	0.4	-0.5
Tsta3	0.4	-0.3
C4b	0.5	-1.6
H2-Q8	0.5	-0.6
AW112010	0.5	-0.9
Tmsb4x	0.6	-0.6
Tdo2	0.6	-0.8
Bub1	0.6	-0.7
Pde4b	0.6	-0.6
EXO I	0.6	-0.7
IIIZ/IZa	0.6	-0.6
	0.7	-0.6
112-Q1 Cox622	0.7	-0.7
CONDAZ	0.7	-0.0
2410017I17Rik	0.7	-0.6
Aurkb	0.8	-0.6
Dapk1	0.8	-1.2
Gm8909	0.8	-0.5
H2-Q2	0.8	-0.7
HZ-KZ	0.8	-0.6
	0.8	-0.8
NIro5	0.9	-0.6
Hist1b3b	0.9	-0.5
Cyn2h10	1	-0.0
H2-D1	1	-0.4
H2-Gs10	1	-0.7
H2-06	11	-0.6
H2-T23	12	-0.8
Gbp11	1.2	-0.8
Oasl1	1.3	-0.7
Gbp2	1.4	-0.5
Chchd10	1.4	-0.6
NIrp2	1.5	-1.7
AI607873	1.8	-0.5
Gbp4	1.9	-0.6
Psmb9	2.3	-0.9
BC023105	2.5	-0.8
Gm12185	2.6	-0.9
Gbp10	2.8	-1.9

Supplemental Table 3. Top pathways enriched in the three major clusters identified in Figure 3B by GSEA using DAVID.

	Pathways enriched	p-value
C1	Immune response	3.9X10 ⁻¹⁵
	Nucleotide binding	6.8X10 ⁻⁷
	MHC protein complex	4.0X10 ⁻⁵
C2	Insulin signaling	3.2X10 ⁻²
C3	PPAR signaling pathway	3.8X10 ⁻³
	Lipid transport	1.1X10 ⁻²

Supplemental Table 4. List of pathways regulated in clusters identified in Figure 3B with ≤25% FDR.

Cluster 1 (C1)		Cluster 2 (C2)		Cluster 3 (C3)	
Pathway	pValue	Pathway	pValue	Pathway	pValue
immune response	3.89E-15	cell junction	0.022229	Secreted	0.00112
2'-5'-oligoadenylate synthetase 1, domain 2/C- terminal	7.34E-10	adherens junction	0.024905	extracellular region part	0.002057
2-5-oligoadenylate synthetase, ubiquitin-like region	1.27E-09	Insulin signaling pathway	0.032366	zymogen	0.002373
2-5-oligoadenylate synthetase, conserved site	2.86E-09			chemotaxis	0.003315
Guanylate-binding protein, C-terminal	6.4E-09			taxis	0.003315
Guanylate-binding protein, N-terminal	6.35E-08			triglyceride-rich lipoprotein particle	0.003657
purine nucleotide binding	7.63E-08			very-low-density lipoprotein particle	0.003657
guanine nucleotide-binding protein 1	5.04E-07			PPAR signaling pathway	0.00379
nucleotide binding	6.75E-07			metal ion-binding site:Zinc 2; in inhibited form	0.004388
purine ribonucleotide binding	6.89E-07			integrin-mediated signaling pathway	0.005257
ribonucleotide binding	6.89E-07			extracellular region	0.005369
response to virus	4.39E-06			endopeptidase activity	0.006371
2'-5'-oligoadenylate synthetase activity	1.59E-05			locomotory behavior	0.006578
nucleotidyltransferase activity	2.58E-05			coenzyme A	0.008045
adenyl nucleotide binding	2.6E-05			metal ion-binding site:Zinc 2; catalytic	0.00864
purine nucleoside binding	3.07E-05			C-acyltransferase activity	0.009664
nucleoside binding	3.48E-05			Peptidase M10A, matrix metallopeotidase	0.010561
MHC protein complex	4.03E-05			lipid transport	0.011292
HIN-200/IF120x	5.58E-05			Peptidoglycan binding-like	0.012967
class I histocompatibility antigen	6.83E-05			extracellular matrix	0.01362
mhc i	8.77E-05			Peptidase_M10A_matrix	0.013828
antigen processing and presentation	0.000113			Acyltransferase	0.013915
ATP binding	0.000142			Nitrogen metabolism	0.014892
Nucleotidyltransferase	0.000143			Hemopexin/matrixin	0.015587
adenyl ribonucleotide binding	0.000173			serpin	0.0161
				Hemopexin/matrixin, repeat	0.016975
				Hemopexin/matrixin, conserved site	0.016975
				integrin	0.018269
				domain:Hemopexin-like 4	0.019033
				metal ion-binding site:Calcium 3; via carbonyl oxygen	0.019033
				domain:Hemopexin-like 3	0.019033
				cofactor binding	0.01993
				Biosynthesis of unsaturated fatty acids	0.020237
				proteinaceous extracellular matrix	0.020591

Supplemental Table 5. Plasma parameters of *Irf3^{-/-}* **mice on chow and high-fat diet.** Plasma samples were collected from 16 week old male *Irf3^{-/-}* mice on chow and high-fat diet (HFD) in the fed state. Data is represented as mean \pm SEM. N=6-7/group (chow), N=7-8/group (HFD), **p*<0.01.

Diagma Daramatar	Ch	OW	HFD		
Plasma Parameter	WT	Irf3-/-	WT	Irf3-/-	
Glucose (mg/dl)	224.0 ± 13.5	197.1 ± 7.4	211.6 ± 9.5	218.1 ± 22.3	
Insulin (ng/ml)	1.0 ± 0.4	0.6 ± 0.1	4.2 ± 1.1	1.5 ± 0.4*	
TG (mg/dl)	60.4 ± 5.1	55.2 ± 3.6	83.3 ± 4.8	90.9 ± 7.4	
NEFA (mM)	0.4 ± 0.06	0.3 ± 0.08	0.8 ± 0.03	0.8 ± 0.09	

Gene Name	Primer sequence	GenBank Acc.
(Symbol)	(5' - 3')	No.
2'-5' oligoadenylate synthetase-like 2 (Oasl2)	F: TTGTGCGGAGGATCAGGTACT	NM 011854
	R: TGATGGTGTCGCAGTCTTTGA	_
Acyl-Coenzyme A oxidase 1, palmitoyl (Acox1)	F: TCCAGACTTCCAACATGAGGA	NM_015729
	R: CTGGGCGTAGGTGCCAATTA	
Adhesion G protein-coupled receptor E1	F: CTTTGGCTATGGGCTTCCAGTC	NM_010130
(Adgre1 or F4/80)	R: GCAAGGAGGACAGAGTTTATCGTG	
Adiponectin (Adipoq)	F: CAGTGGATCTGACGACACCAA	NM_009605
	R: CTGGGCAGGATTAAGAGGAACA	
Carnitine palmitoyltransferase 2 (Cpt2)	F: CAGCACAGCATCGTACCCA	NM_009949
	R: TCCCAATGCCGTTCTCAAAAT	
Carnitine palmitoyltransferase 1a (Cpt1a)	F: CACCAACGGGCTCATCTTCTA	NM_013495
	R: CAAAATGACCTAGCCTTCTATCGAA	
CD68 antigen (Cd68)	F: CTTCCCACAGGCAGCACAG	NM_001291058
	R: AATGATGAGAGGCAGCAAGAGG	
Cell death-inducing DNA fragmentation factor,	F: TACTACCCGGTGTCCATTTCT	NM_007702
alpha subunit-like effector A (Cidea)	R: ATCACAACTGGCCTGGTTACG	
Chemokine (C-C motif) ligand 2 (Ccl2)	F: TTAAAAACCTGGATCGGAACCAA	NM_011333
	R: GCATTAGCTTCAGATTTACGGGT	
Chemokine (C-C motif) ligand 5 (Ccl5)	F: GCTGCTTTGCCTACCTCTCC	NM_013653
	R: ICGAGIGACAAACACGACIGC	
Chemokine (C-C motif) ligand 6 (Ccl6)		NM_009139
Colony stimulating factor 1 receptor (Csf1r)		NM_001037859
Outophysma o pyidogo pyhynit Villo 1 (Opy7c1)		
Cytochrome c oxidase subunit vila I (Cox/al)		NM_009944
Gluppkingge (Gek)		NIM 010202
Glucokillase (GCK)		NM_010292
Glycerol kinase (Gyk)		NM 008194
Ciycerol Killase (Ciyk)		
Glucose transporter type 4 (Slc2a4)	F: TCATTGTCGGCATGGGTTT	NM 009204
Glycogen synthase 2 (Gys2)	F: CCAGCTTGACAAGTTCGACA	NM 145572
	R: ATCAGGCTTCCTCTTCAGCA	
Insulin receptor substrate 1 (Irs1)		NM 010570
	R: GTAGAGAGCCACCAGGTGCTTGT	
Integrin alpha X (Itgax)	F: CTGGATAGCCTTTCTTCTGCTG	NM 021334
	R: GCACACTGTGTCCGAACTCA	
Interferon alpha 1 (Ifnα1)	F: GGACTTTGGATTCCCGCAGGAGAAG	NM 010502
	R: GCTGCATCAGACAGCCTTGCAGGTC	_
Interferon beta 1 (Ifnβ1)	F: CAGCTCCAAGAAAGGACGAAC	NM_010510
	R: GGCAGTGTAACTCTTCTGCAT	
Interferon-induced protein with	F: CAAGGCAGGTTTCTGAGGAG	NM_008331
tetratricopeptide repeats 1 (Ifit1)	R: TGAAGCAGATTCTCCATGACC	
Interferon-induced protein with	F: TCTGATTCTGAGGCCTTGCA	NM_008332
tetratricopeptide repeats 2 (Ifit2)	R: CTTGCTGACCTCCTCCATTCTC	
Interferon-induced protein with	F: CCTACATAAAGCACCTAGATGGC	NM_010501
tetratricopeptide repeats 3 (Ifit3)	R: ATGTGATAGTAGATCCAGGCGT	
Interferon Regulatory Factor 3 (Irf3)	F: GGCTTGTGATGGTCAAGGTT	NM_016849
	R: CATGTCCTCCACCAAGTCCT	

Gene Name	Primer sequence	GenBank Acc.
(Symbol)	(5' – 3')	No.
ISG15 ubiquitin-like modifier (Isg15)	F: CATCTATGAGGTCTTTCTGACGC	NM_015783
	R: TTAGGCCATACTCCCCCAGC	
Lipocalin 2 (Lcn2)	F: ATGCACAGGTATCCTCAGGT	NM_008491
	R: TGGCGAACTGGTTGTAGTCC	
Nitric oxide synthase 2, inducible (Nos2)	F: CCAAGCCCTCACCTACTTCC	NM_010927
	R: CTCTGAGGGCTGACACAAGG	
Peroxisome proliferator activated receptor	F: GTACCACTACGGAGTTCACGCAT	NM_011144
alpha (Pparα)	R: CGCCGAAAGAAGCCCTTAC	
Peroxisome proliferative activated receptor,	F: GGACATGTGCAGCCAAGACTCT	NM_008904
gamma, coactivator 1 alpha (Pgc-1α)	R: CACTTCAATCCACCCAGAAAGCT	
Phosphoenolpyruvate carboxykinase	F: CTAACTTGGCCATGATGAACC	NM_011044
(Pck1)	R: CTTCACTGAGGTGCCAGGAG	
PR domain containing 16 (Prdm16)	F: TGACGGATACAGAGGTGTCAT	NM_027504
	R: ACGCTACACGGATGTACTTGA	
Radical S-adenosyl methionine domain	F: AGCATTAGGGTGGCTAGATCC	NM_021384
containing 2 (Rsad2)	R: CTGAGTGCTGTTCCCATCTTC	
Ribosomal protein, large, P0 (Rplp0)/36B4	F: GAGGAATCAGATGAGGATATGGGA	NM_007475
	R: AAGCAGGCTGACTTGGTTGC	
Ribosomal protein S6 kinase polypeptide 1	F: GCTCTGAGGATGAGCTGGAG	NM_001114334
(Rps6kb1)	R: CCATGCCAAGTTCATATGGTCC	
Serine (or cysteine) peptidase inhibitor,	F: CAATGTCTGCGAAACTGTACC	NM_009252
clade A, member 3N (Serpina3n)	R: TTTGGGGTTGGCTATCTTGGC	
Serine (or cysteine) peptidase inhibitor,	F: GTCACCCTGGGAAGGAACAC	NM_009251
clade A, member 3G (Serpina3g)	R: GCAGTGCAGATGCTGAATGG	
Src homology 2 domain-containing	F: CCCCTCCTCCAGGACATGAA	NM_001113331
transforming protein C1 (Shc1)	R: AGCCCATGTACCGAACCAAG	
Transmembrane protein 176A (Tmem176a)	F: TCCACAACCCACCCACATTG	NM_025326
	R: CACCCAGAACCACACTCAGA	
Transmembrane protein 176B (Tmem176b)	F: CAGTCCGCTCACATCAGCAT	NM_023056
	R: TCACAAGCCCCAGCAATATC	
Uncoupling protein 1 (mitochondrial, proton	F: AGGCTTCCAGTACCATTAGGT	NM_009463
carrier) (Ucp1)	R: CTGAGTGAGGCAAAGCTGATTT	

Figure 2B p-IRF3

Figure 2B IRF3

Supplemental Figure 2A

75-

50

Supplemental Figure 3B IRF3

Supplemental Figure 3B β-actin

p-AKT

- 75 7056K so

Figure 7D	p70	S6K
김 아내는 것을 많이 많이 많은 것을 많을 수 있다.	-	
	-	
	75	PROSER
	- 50	

Supplemental Figure 6D p70S6K

Supplemental Figure 6F

Supplemental Figure 6F

Supplemental Figure 8D

β-actin

Figure 9B Glut4 1 R.F.S-100 WT 75 50 37 Ghty

Figure 9B Glut4 WT ko inthe Genty

