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The past few years have seen a remarkable process of coalescence
in which several distinct areas of AIDS research have been brought
to bear on the search for a cure. The development of effective
combination antiretroviral therapy (ART) in the mid-1990s ini-
tially raised hopes for a cure because plasma levels of HIV fell
quickly to undetectable levels in treated patients (1-3). However,
simultaneous studies demonstrated the presence in infected
individuals of resting memory CD4" T cells harboring stably inte-
grated viral genomes that did not produce infectious virus while
the cells were in a resting state but could do so following T cell acti-
vation (4, 5). With the subsequent demonstration that this latent
reservoir could persist indefinitely, even in the setting of optimal
ART (6-11), hopes for a cure faded rapidly. In fact, cure became
an almost taboo subject because of concerns that discussing cure
would raise unrealistic expectations in infected individuals that
this reservoir could ever be eliminated. In the meantime, steady
improvements were made in the tolerability and convenience of
ART regimens, such that infected individuals can now maintain
indefinite suppression of viral replication to clinically undetect-
able levels on single-pill, once-daily regimens that have few side
effects (12). Recent studies suggest that infected individuals start-
ing treatment early with modern regimens have near-normal life
expectancies (13-16).

The success of ART is one reason that there has been renewed
interest in HIV cure. In addition, recent studies, beginning with the
pioneering work of David Margolis and colleagues, have indicated
that the latent reservoir can be perturbed in vivo with latency-
reversing agents (LRAs) (17, 18). Importantly, the revival of opti-
mism for HIV cure was further stimulated by the remarkable case
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of Timothy Brown, a courageous patient with HIV infection who
received a hematopoietic stem cell transplant (HSCT) for leukemia
from a carefully selected donor whose cells were resistant to HIV
infection (19, 20). To date, Mr. Brown is the one and only person
considered to be cured. His case gave rise to renewed hope that
the problems posed by the latent reservoir could be overcome. In
this issue of the JCI, a distinguished group of experts review excit-
ing recent developments in the HIV cure field and describe how
research discoveries in the areas of HIV pathogenesis, vaccines,
and treatment are all now contributing to the search for a cure.

The latent reservoir as a barrier to cure

Although other reservoirs for HIV may exist, the latent reservoir in
resting CD4" T cells is considered to be the major barrier to curing
HIV infection. In everyone with HIV infection, regardless of how
long they have been on suppressive ART, replication-competent
virus can be isolated from resting CD4* T cells simply by activat-
ing the cells in vitro (6-10). T cell activation serves to reverse the
state of latency that is observed in resting CD4* T cells, allowing
the outgrowth of virus (4, 5). This concept underlies the quanti-
tative viral outgrowth assay (QVOA) that is considered to be the
“gold-standard” method for measuring the latent reservoir. The
important problem of measuring the latent reservoir is discussed
in detail by Marta Massanella and Douglas Richman in this issue
(21). Longitudinal measurements by the QVOA in patients on sup-
pressive ART established that the half-life of the pool of latently
infected resting CD4" T cells is extremely long (3.7 years), thus
requiring over 70 years of treatment to eradicate a pool of 10° cells
(9, 10). This estimate was based on studies published in 1999 and
2003, when ART regimens still had considerable problems with
side effects. Recently, Margolis and colleagues published a new
longitudinal analysis of the half-life of the latent reservoir, as mea-
sured by the QVOA (22). Although many of the patients in this
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study were on newer, less toxic regimens, the observed half-life
was essentially the same (3.6 years). This means that the improve-
ments in ART over the last several years have not affected the
fundamental problem of HIV persistence in latently infected cells.
The persistence of replication-competent HIV on a time scale of
years in the setting of optimal ART has not been demonstrated for
any other cell population, and thus the latent reservoir in resting
CD4* T cells is a major focus of HIV cure research.

The question of why HIV establishes a state of latent infection
is of considerable interest. Latency is a reversibly nonproductive
state of infection of individual cells. For some viruses, especially
those of the herpes virus family, latency is an important mechanism
for immune evasion (23). It is not so clear that latency serves this
function for HIV. Pioneering studies by Jeff Lifson and colleagues
established that HIV replicates actively throughout the course of
the infection in untreated individuals (24). The rapid evolution of
escape mutants provides the principal mechanism by which the virus
avoids elimination by antibody and cytolytic T lymphocyte (CTL)
responses (25-30). Intriguing recent theoretical studies by Leor
Weinberger suggest that latency is a “hard-wired” feature of the reg-
ulation of HIV gene expression that evolved as a “bet-hedging strat-
egy” to allow the virus to be successfully transmitted across mucosal
barriers, with subsequent reactivation once the initially infected cells
reach a tissue site that is more favorable for viral replication (31, 32).
If this hypothesis is correct, the form of latency involved is likely dif-
ferent from the one that allows persistence of the virus during ART.
Asis discussed below, the latter form of latency allows infected cells
to persist for very long periods of time (months to years) without
reactivation. In contrast, a long delay between mucosal exposure
and systemic viral replication has never been reported.

The simplest explanation for the existence of the latent reser-
voir is that HIV latency is a consequence of viral tropism for acti-
vated CD4" T cells (4). T cell activation results in a gradual upreg-
ulation of the CCRS5 coreceptor that is essential for entry of the
commonly transmitted forms of HIV (33). Activation also increases
deoxynucleoside triphosphate (ANTP) pools required for reverse
transcription and releases sequestered forms of the host transcrip-
tion factors NF-kB, nuclear factor of activated T cells (NFAT), and
positive transcription elongation factor-b (PTEFD), all of which
play an important role in HIV gene expression (as reviewed by
Daniele Cary, Koh Fujinaga, and B. Matija Peterlin in this issue;
ref. 34). Infection of activated CD4" T cells results in rapid reverse
transcription, integration, viral gene expression, and virus produc-
tion, followed generally by the death of the cells, usually in one to
two days (35, 36). In contrast, infection of resting CD4* T cells is
hindered by the absence of CCR5, by low levels of dNTPs main-
tained by the dNTP triphosphohydrolase SAMHD1 (37, 38), and by
arecently described cell death pathway that is triggered by innate
immune recognition of reverse transcription intermediates (39).
While infection of both activated and resting CD4* T cells results
in cell death, infection of activated CD4* T cells that are transi-
tioning back to a resting state, while the cells are still permissive
for reverse transcription and integration of the viral genome but
not for high-level viral gene expression, may allow the establish-
ment of a stable state of latent infection in resting CD4* T cells (4).
This is a rare event, consistent with the extremely low frequency
of latently infected cells in vivo (1:10°). Viewed in this light, HIV
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latency is an unfortunate accident of viral tropism. Whether this or
other explanations for the origins of HIV latency are correct, there
is no doubt that latency is established in all infected individuals
and that it serves as a formidable barrier to HIV cure.

A cure and some “near cure” cases
The single cure of HIV infection mentioned above involved a
HSCT from an HLA-matched donor selected to be homozygous
for a common 32-base pair deletion in the CCR5 gene (19). As is
reviewed by Daniel Kuritzkes in this issue (40), elimination of
the latent reservoir in this patient likely involved the conditioning
regimen given prior to transplant as well as the graft-versus-host
reactions that occurred following transplant. Together, these fac-
tors resulted in complete or near-complete replacement of the host
immune system (including latently infected cells) with HIV-resis-
tant donor cells. Even if a small number of infected cells remained
in this patient, any virus released would not be able to infect the
HIV-resistant, donor-derived cells that now constitute his immune
system. This remarkable case has proven that cure is possible.
Even more instructive were two subsequent cases in which
HIV-infected individuals with recurrent lymphomas were given
HSCTs from donors who were wild type at the CCR5 locus (41,
42). ART was continued throughout the transplant period and
for several years thereafter to protect donor cells from infection.
ART was then discontinued, and, in both cases, the plasma virus
levels remained below the limit of detection for several months.
Normally there is an exponential increase in viremia at approx-
imately two weeks after treatment interruption (43, 44). Both
patients eventually experienced a sudden and dramatic rebound
in viremia (at 3 and 8 months after ART interruption), presum-
ably as the result of reactivation of one or more residual latently
infected cells. A similar delay in viral rebound was observed in the
“Mississippi baby,” an infant born to an infected mother who had
no prenatal care (45). High levels of HIV were detected in the baby
shortly after birth, and an aggressive ART regimen was started
immediately. Viremia fell rapidly to below the limit of detec-
tion and remained undetectable even after ART was interrupted
(against medical advice) at approximately 15 months. Initially,
there was hope that early ART had prevented the establishment of
the latent reservoir, since the reservoir resides in memory CD4* T
cells that are largely generated by exposure to antigen in postna-
tal life. However, there was again a sudden and dramatic rebound
in viremia over 2 years after interruption of ART. Interestingly,
all three cases were characterized by a lack of adaptive immune
responses to HIV, either as a result of the transplant process or
early treatment. In the absence of immune responses and ART,
viral replication is exponential, with an R of 20 (20 new infected
cells for each infected cell) (46). Therefore, the prolonged periods
of aviremia in these patients can only be explained by the persis-
tence of HIV in a latent, nonreplicating form. These cases provide
in vivo proof for the concept of HIV latency and demonstrate the
difficulty of the problem we face in trying to cure the infection.

Mechanisms of persistence

The molecular mechanisms by which latency is established and
maintained have been a subject of great interest and are reviewed
here by Cary et al. (34). Asis described in this elegant Review, there
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are at least seven distinct mechanisms that could contribute to HIV
latency. Some are clearly related to the activation state of the host
cells and the fact that the transcriptional environment in resting
CD4" T cells is nonpermissive for HIV gene expression (47, 48).
Another mechanism is related to the nature of HIV integration sites
in the human genome. Following reverse transcription, the dou-
ble-stranded DNA form of the HIV genome is stably integrated into
host cell DNA, typically within the introns of actively expressed
host genes (49, 50). This can lead to a phenomenon of transcrip-
tion interference, in which transcription complexes initiated at the
upstream host promoter interfere with HIV transcription (51).

Interestingly, the site of HIV integration may have another
effect on viral persistence. Recent studies from the laboratories of
Frank Maldarelli and Lisa Frenkel have used integration site anal-
ysis to identify expanded clones of cells carrying HIV proviruses
(52, 53). The identification of multiple infected cells with exactly
the same integration site in the 3 billion-base pair human genome
can only be explained by the proliferation of cells after infection.
This raises the disturbing possibility that latently infected cells
could undergo continuous clonal expansion, hampering efforts
to eliminate the reservoir. Interestingly, in some of the expanded
cellular clones, the provirus is integrated in genes associated with
cell survival and/or proliferation, leading to the hypothesis that
the presence of the provirus in these locations alters expression
of the relevant host genes in a way that promotes proliferation of
the infected cells.

A major issue is whether the expanded cellular clones detected
by integration site analysis harbor replication-competent virus.
Detailed analysis of proviruses in resting CD4* T cells from patients
on ART has shown that the vast majority have inactivating defects
in the form of hypermutation induced by apolipoprotein B mRNA
editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) or
large internal deletions arising during reverse transcription (54).
Cohn and colleagues examined 75 expanded cellular clones iden-
tified through integration site analysis and showed that all carried
defective proviruses (55). Nevertheless, it remains possible that
a small fraction of these expanded cellular clones harbor repli-
cation-competent HIV. Studies of the trace levels of free virus in
plasma of patients on ART have previously demonstrated the dom-
inance of clonal populations of virus, presumably derived from
expanded cellular clones capable of producing virus particles (56).
Thisissue and the overall concept of clonal expansion are discussed
in detail by Frank Maldarelli in this issue (57). How the existence of
expanded cellular clones alters the approach to elimination of the
reservoir is a currently a subject of great interest.

“Shock and kill”

The most widely discussed approach for eliminating the reservoir
is the “shock and kill” approach, in which small-molecule LRAs
are used to induce HIV gene expression in the hopes that the
infected cells will then die as a result of viral cytopathic effects
and/or natural or induced HIV-specific immune responses (17,
58-66). This would be done in patients on ART, and it is generally
assumed that reversal of latency will not result in new infection
events, given the remarkable efficacy of antiretroviral drugs (67,
68). Numerous LRAs have been identified in studies with trans-
formed cell lines carrying latent HIV proviruses and various pri-
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mary T cell models of latency (reviewed in refs. 69, 70). T cell acti-
vation was used to reverse latency in the original studies defining
the latent reservoir (4, 5), but this activation is associated with
substantial toxicities that preclude the use of this approach thera-
peutically (71,72). Nevertheless, LRA activity should be compared
to a positive control in which global T cell activation is induced
by mitogens or a combination of anti-CD3 and anti-CD28 anti-
bodies. For some of these LRAs, notably the PKC agonists, there
are obvious mechanistic explanations for their activity related to
effects on signaling pathways involved in T cell activation. For
other LRAs, including the histone deacetylase (HDAC) inhibitors,
the mechanisms remain controversial (65, 73). One of the major
problems in the search for effective LRAs is that, despite impres-
sive activity in various in vitro models, most LRAs, including the
HDAC inhibitors, have weak activity in ex vivo studies using rest-
ing CD4* T cells from patients on ART (74). Fortunately, some
combinations of LRAs are now beginning to show levels of latency
reversal comparable to global T cell activation (75, 76). In clinical
trials, no reduction in the reservoir has yet been demonstrated, but
there is evidence for increases in cell-associated HIV RNA and for
slight transient increases in plasma HIV RNA with certain HDAC
inhibitors (17, 18). Together, these findings suggest that it will be
possible to reverse HIV latency in vivo.

Reversal of latency will not reduce the reservoir unless the
infected cells die as a result. Studies in primary cell models of
HIV latency suggest that infected cells may not die as a result of
viral cytopathic effects following LRA treatment (77). In elegant
humanized mouse models of HIV infection, the elimination of
infected cells has been shown to be dependent upon additional
interventions designed to kill infected cells (48, 78). (Rapid prog-
ress in the use of humanized mice to study HIV eradication strate-
gies is discussed by J. Victor Garcia in this issue; ref. 79.) Following
latency reversal, infected cells will likely express viral antigens, but
it is not clear that they will be eliminated by host CTL responses.
Asis discussed in a comprehensive Review by Jones and Walker in
thisissue (80), these responses wane in patients on ART due to the
absence of antigen, and there are lingering effects of the immune
exhaustion seen in untreated HIV infection (81, 82). In addition,
recent studies have demonstrated that unless ART is started very
early in the course of HIV infection, the latent reservoir is com-
posed almost entirely of viruses with escape mutations in domi-
nant CTL epitopes (30). Jones and Walker consider differences
in features of the CTL response needed for control of active rep-
lication versus the clearance of latently infected cells and discuss
new results on the targeting of epitopes, which, if mutated, lead
to structural instability of the relevant viral proteins (80). Other
recently identified problems with the CTL response include the
negative effects of some LRAs on CTL function (84) and the pos-
sibility that infected cells may persist in anatomical sites that are
inaccessible to CTLs, including the germinal centers of the lymph
nodes, in which viral replication can occur in CD4" T follicular
helper cells (85, 86). Despite these problems, there is hope that
an appropriately primed CD8* T cell response may facilitate clear-
ance of infected cells following latency reversal.

Recently, an unusual form of T cell immunity has been show
to play a role in the clearance of infected cells in an important
animal model of HIV infection, namely SIV infection of rhesus
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macaques. A CMV-based vaccine carrying SIV antigens provided
durable protection against challenge with a pathogenic strain of
SIVin 50% of vaccinated animals (87-89). In these animals, there
was an initial burst of SIV replication that was rapidly controlled.
The animals went on to completely clear the infection, as demon-
strated by the transfer of cells to naive animals. The clearance of
SIV-infected cells was mediated by CD8" T cells, but the specificity
of the cells was atypical. A broad array of SIV peptides was recog-
nized by these cells in the context of class IT and nonclassical class
I MHC molecules. Whether similar noncanonical responses can
be induced in humans with CMV vectors and whether they will be
useful in HIV eradication strategies remain important questions.
Another approach to the elimination of infected cells involves
the use of antibodies directed at the HIV envelope protein, which
should be expressed on the cell surface following reversal of
latency. The last few years have seen extraordinary progress in
our understanding of the structure of the envelope protein and of
the antibody response that it induces. In particular, there has been
interest in broadly neutralizing antibodies (bNAbs) that can recog-
nize a very wide range of HIV isolates. This work is reviewed here
by Ariel Halper-Stromberg and Michel Nussenzweig (90). Nuss-
enzweig’s group developed methods for the cloning of these anti-
bodies. Many of them have unusual structural features that are the
result of a lengthy process of coevolution of the virus and the anti-
body response in infected individuals (26, 27). While these anti-
bodies may be difficult to induce by vaccination, there is hope that
passive infusion of bNADbs could contribute to the killing of latently
infected cells if done in conjunction with LRA treatment. As is
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reviewed by Halper-Stromberg and Nussenzweig, this killing may
involve the Fc receptor-dependent engagement of NK cells (90).

Summary

The renewed interest in HIV cure has brought together diverse
lines of HIV research, including studies of HIV molecular biology,
pathogenesis, and vaccine development, all of which may end up
contributing to a cure. Although infected individuals with access
to ART can now expect much better clinical outcomes than those
in the pre-ART era, they still face a lifetime of treatment. The
global burden of treating every infected individual for life with
combinations of expensive antiretroviral drugs is a strong motiva-
tion for finding simple, scalable, curative regimens that can reduce
the viral reservoir and allow prolonged ART-free remissions.
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