Supplemental Data

Methods

 flanking exons 1-2 (Srsff ${ }^{\text {fl }}$) and albumin-Cre (Alb-Cre) transgenic mice (B6.Cg-Tg(Albcre) $21 \mathrm{Mgn} / \mathrm{J}$) were obtained from The Jackson Laboratory (Bar Harbor, Me). The Srsf $2^{\text {fl }}$ allele was genotyped with forward primer 5^{\prime}-GTTATTTGGCCAAGAATCACA- 3^{\prime} and reverse primer 5^{\prime}-AACCTTGTTCGTTGACCGAT-3'; this reaction yields a 321-bp product for the wild-type allele and a 410-bp product for the $\operatorname{Srsf} 2^{\text {fl }}$ allele. Cre-mediated recombination excises exons 1-2 and inactivates $\operatorname{Srsf} 2$ (42). The $\operatorname{Srsf} 2$ knockout allele was detected by PCR with forward primer 5'-GTTATTTGGCCAAGAATCACA-3' and reverse primer 5'-ACTCTCCACACCTAGTATTGTAAA- 3^{\prime}; this reaction yields a 518 -bp product. The Alb-Cre transgenic allele (Alb-Cre ${ }^{+}$) was genotyped with forward primer 5'-GCATTACCGGTCGATGCAACGAGTGATGAG-3' and reverse primer 5'-GAGTGAACGAACCTGGTCGAAATCAGTGCG-3', which yields a 408-bp product. The $L m n a^{\mathrm{G} 609 \mathrm{G}}$ allele was created with a sequence-replacement vector as described (21), except that a $\mathrm{C}>\mathrm{T}$ mutation in codon 609 was introduced into the 5^{\prime} arm of the Lmna targeting vector by sitedirected mutagenesis (QuikChange kit, Stratagene). After electroporating the vector into 129/OlaHsd embryonic stem (ES) cells, targeted ES cell clones were identified by long-range PCR (TaKaRa LA Taq polymerase, Clontech). Targeted ES cells were injected into C57BL/6 blastocysts, and the resulting chimeras were bred with C57BL/6 females to generate heterozygous knock-in mice, which were then intercrossed to generate homozygotes. All mice were fed a chow diet and housed in a virus-free barrier facility with a 12-h light/dark cycle.

Hepatocyte isolation. Srsf2 $2^{\mathrm{fl} / f 1}$ mice were bred with Alb-Cre ${ }^{+}$Srsf $^{\mathrm{fl} /+}$ mice to generate $\operatorname{Srsf} 2^{\mathrm{fl} / \mathrm{fl}}$ and $\operatorname{Srsf} 2^{\mathrm{fl} / \mathrm{fl}}$ Alb-Cre mice. At age P23, the mice were anesthetized and the inferior vena cava cannulated with a 22-gauge catheter. The portal vein was cut, and the liver was perfused with warm PBS, followed by liver digest medium (17703-034, Invitrogen) containing 0.015%
collagenase IV (Gibco). The liver was removed, dispersed, and filtered through a $70-\mu \mathrm{m}$ basket. Cells were suspended in William's E medium (Gibco) and fractionated on a Percoll gradient (P1644, Sigma-Aldrich). Hepatocytes were isolated, and extracts were prepared for protein and RNA analyses.
$L M N A$ reporter construct. A $L M N A$ fragment spanning exons $8-12$ (including the 3^{\prime} UTR) was amplified from human genomic DNA with forward primer 5'-GAGATGATCCCTTGCTGACTTACC-3' and reverse primer 5'-CCAAAGTGCTCTGATCTCTAATTGT-3'. The fragment was purified and subcloned into pGEM-T (A3600, Promega; Madison, WI), and the sequence was verified by sequencing. Three potential SRSF2 sites (site-1, site-2, and site-3) in exon 11 were mutated individually (or in combination) by site-directed mutagenesis with the QuickChange kit (Agilent Technologies; Santa Clara, CA). SRSF2 site 1, located between nucleotides 24-31 of exon 11, was mutated with forward primer 5^{\prime}-GTACTCAGCGGGTTCGCCCGAGCTGCTG-3' and reverse primer 5'-CAGCAGCTCGGGCGAACCCGCTGAGTAC-3'. SRSF2 site 2, located between bases 4653 of exon 11, was mutated with forward primer 5'-GCTGAGTACAACCTGAGATCTCGCACCGTGCTGTGC-3' and reverse primer 5'-GCACAGCACGGTGCGAGATCTCAGGTTGTACTCAGC-3'. SRSF2 site 3, located between bases 54-60, was mutated with forward primer 5'-CCGCACAGCACTGTGCGCGAGCG-3' and reverse primer 5^{\prime}-CGCTCGCGCACAGTGCTGTGCGG-3'. The SRSF6 site, located between bases 64-69 of exon 11, was mutated with forward primer 5'-GGGACCCCGCCGAGTTCAACCTGCGCT-3' and reverse primer 5'-AGCGCAGGTTGAACTCGGCGGGTCCCC-3'. The cytosine in codon 608 (c. 1824 or base 126 of exon 11) was changed to a thymidine with forward primer 5'-AGCCCAGGTGGGTGGACCCATCTCC-3' and reverse primer 5'-GGAGATGGGTCCACCCACCTGGGCT-3'. All nucleotide changes were confirmed by DNA sequencing. A DNA fragment from exon 10 to exon 12 (including the 3^{\prime} UTR) was amplified
from each plasmid and subcloned into the β-globin reporter RHCglo (a gift from Dr. Thomas A. Cooper, Baylor College of Medicine; Houston, TX) with the In-Fusion HD kit (Clontech Laboratories; Mountain View, CA). Each fragment was amplified with exon 10 primer $5^{\prime}-$ ACCTCCAAGCTCCGGAGAAGTGGCCATGCGCAAGCTG-3' and exon 12 primer $5^{\prime}-$ ACCGCGGTGGCGGCCGCGCCAGGGGTAGAAACAACTAG-3' and subcloned with restriction enzymes BspEI and NotI. All constructs were verified by DNA sequencing.

Table 1. Sequence of ASOs and primers.

Sequence	Length	Mouse ASO	ISIS \#
GCAGGTTGTACTCAGC	16	E11-31	641439
CAGGTTGTACTCAGCGGG	18	E11-28	641412
GCAGGTTGTACTCAGCGG	18	E11-29	641413
CGCAGGTTGTACTCAGCG	18	E11-30	641414
GCGCAGGTTGTACTCAGC	18	E11-31	641415
AGCGCAGGTTGTACTCAG	18	E11-32	641416
GAGCGCAGGTTGTACTCA	18	E11-33	641417
TGAGCGCAGGTTGTACTC	18	E11-34	641418
GTGAGCGCAGGTTGTACT	18	E11-35	641419
CGTGAGCGCAGGTTGTAC	18	E11-36	641420
GCGTGAGCGCAGGTTGTA	18	E11-37	641421
TGCGTGAGCGCAGGTTGT	18	E11-38	641422
GTGCGTGAGCGCAGGTTG	18	E11-39	641423
GGTGCGTGAGCGCAGGTT	18	E11-40	641424
CGGTGCGTGAGCGCAGGT	18	E11-41	641425
CAGCTTGCGCATGGCCACTT	20	E10-2	549468
CGCACCAGCTTGCGCATGGC	20	E10-7	549469
GTGAGCGCACCAGCTTGCGC	20	E10-12	549470
GGTCAGTGAGCGCACCAGCT	20	E10-17	549471
ACCATGGTCAGTGAGCGCAC	20	E10-22	549472
CCTCAACCATGGTCAGTGAG	20	E10-27	549473
ATTGTCCTCAACCATGGTCA	20	E10-32	549474
TCCTCATTGTCCTCAACCAT	20	E10-37	549475
CGTCATCCTCATTGTCCTCA	20	E10-42	549476
CTCGTCGTCATCCTCATTGT	20	E10-47	549477
CCATCCTCGTCGTCATCCTC	20	E10-52	549478
CTTCTCCATCCTCGTCGTCA	20	E10-57	549479
GAGCTCTTCTCCATCCTCGT	20	E10-62	549480
TGGAGGAGCTCTTCTCCATC	20	E10-67	549481
GGTGATGGAGGAGCTCTTCT	20	E10-72	549482
ACGGTGGTGATGGAGGAGCT	20	E10-77	549483
CTCACACGGTGGTGATGGAG	20	E10-82	549484
TGCCACTCACACGGTGGTGA	20	E10-87	549485
GCGGCTGCCACTCACACGGT	20	E10-92	549486
CAGCGGCGGCTGCCACTCAC	20	110-1	549487
GGCCTCAGCGGCGGCTGCCA	20	110-6	549488
GGCTGGGCCTCAGCGGCGGC	20	110-11	549489
TTGTGGGCTGGGCCTCAGCG	20	110-16	549490
CTAGGCTGGCAGGGCTACCC	20	110-36	549494

CTGCCCTAGGCTGGCAGGGC	20	110-41	549495
GAGAGCTGCCCTAGGCTGGC	20	110-46	549496
GGTGGGAGAGCTGCCCTAGG	20	110-51	549497
ATGGAGGTGGGAGAGCTGCC	20	110-56	549498
TTGGCATGGAGGTGGGAGAG	20	110-61	549499
AGACTTTGGCATGGAGGTGG	20	110-66	549500
TGAAAAGACTTTGGCATGGA	20	110-71	549501
TTTAATGAAAAGACTTTGGC	20	110-76	549502
CATTCTTTAATGAAAAGACT	20	110-81	549503
CAAAACATTCTTTAATGAAA	20	110-86	549504
CATTCCAAAACATTCTTTAA	20	110-91	549505
AGTGGCATTCCAAAACATTC	20	110-96	549506
CAGCAAGTGGCATTCCAAAA	20	I10-101	549507
CAGGGCAGCAAGTGGCATTC	20	110-106	549508
AAGGCCAGGGCAGCAAGTGG	20	\|10-111	549509
GAAGAAAGGCCAGGGCAGCA	20	110-116	549510
AGAGAGAAGAAAGGCCAGGG	20	110-121	549511
GCTCTTGGAGCTTCCTGGCC	20	\|10-126	549512
TGTGGGCTCTTGGAGCTTCC	20	110-131	549513
GTTTGGGACTGACTTCTTAG	20	i10-651	549520
AGCGAGTTTGGGACTGACTT	20	110-656	549521
GGGACAGCGAGTTTGGGACT	20	110-661	549522
CAGGAGGGACAGCGAGTTTG	20	110-666	549523
AGGCTCAGGAGGGACAGCGA	20	110-671	549524
AGACAAGGCTCAGGAGGGAC	20	110-676	549525
AAGGGAGACAAGGCTCAGGA	20	110-681	549526
CTGGGAAGGGAGACAAGGCT	20	110-686	549527
GAGCCGCTGCAGTGGGAACC	20	E11-1	549531
CCCCCGAGCCGCTGCAGTGG	20	E11-6	549532
GGGGTCCCCCGAGCCGCTGC	20	E11-11	549533
TCAGCGGGGTCCCCCGAGCC	20	E11-16	549534
TGTACTCAGCGGGGTCCCCC	20	E11-21	386363
CAGGTTGTACTCAGCGGGGT	20	E11-26	549535
GAGCGCAGGTTGTACTCAGC	20	E11-31	549536
TGCGTGAGCGCAGGTTGTAC	20	E11-36	549537
CACGGTGCGTGAGCGCAGGT	20	E11-41	549538
CACAGCACGGTGCGTGAGCG	20	E11-46	549539
TCCCGCACAGCACGGTGCGT	20	E11-51	549540
Sequence	Length	Human ASO	ISIS \#
CGCAGGTTGTACTCAGCGGG	20	E11-28	386364

GAGCGCAGGTTGTACTCAGC	20	E11-31	549536
GCGAGCGCAGGTTGTACTCA	20	E11-33	573298
TGCGCGAGCGCAGGTTGTAC	20	E11-36	573299
GGTGCGCGAGCGCAGGTTGT	20	E11-38	573300
CACGGTGCGCGAGCGCAGGT	20	E11-41	573301

Sequence	Length	Name	ISIS \#
TGGTGCACGGTCTACGAGAC	20	Control ASO	376024
ACTCCAGGCCTATGAGGGTG	20	Control ASO	463309
GTCACTTGCCAGGGTCAGGA	20	Control ASO	556311
GCTCATTTAGTCTGCCTGAT	20	Control ASO	389629

qPCR primers

Human transcript

Prelamin A	atgaggatggagatgacctgc
Lamin C	tggtgtggaaggcacagaaca
agcaaagtgcgtgaggagtt	

Mouse transcript

Prelamin A
Lamin C
Lmna
Lmnb1
Ppia
Sfsr2
CD31

ggttgaggacaatgaggatga	tgagcgcaggttgtactcag
gacaatgaggatgacgacgag	ttaatgaaaagactttggcatgg
cctatcgaaagctgctggag	cctgagactgggatgagtgg
caactgacctcatctggaagaac	tgaagactgtgcttctctgagc
tgagcactggagagaaagga	ccattatggcgtgtaaagtca
gagcccacccaagtctcc	cgcttgccgattcatcat
aaccgtatctccaaagccagt	ccagacgactggaggagaact

RNA sequences
Wild-type
Δ SRSF-1
Δ SRSF-2
Δ SRSF-3
Δ SRSF-2/3
Scrambled

GGGACCCCGCUGAGUACAACCUGCGCUCGCGCACCGUGCUG GCGAACCCGCUGAGUACAACCUGCGCUCGCGCACCGUGCUG GgGACCCCGCUGAGUACAACCUGAGAUCUCGCACCGUGCUG GGGACCCCGCUGAGUACAACCUGCGCUCGCGCACAGUGCUG GGGACCCCGCUGAGUACAACCUGAGAUCUCGCACAGUGCUG CAUCAACCUGUAUGGGAACUUUCUAUAUGGUUCUUCGACGG

Supplemental Figure 1. Screening of Lmna antisense oligonucleotides that affect lamin C/prelamin A mRNA splicing. Wild-type mouse embryonic fibroblasts were transfected with ASOs corresponding to sequences in exon 10, intron 10, and exon 11 of Lmna. After 2 days, extracts were prepared and analyzed by western blotting with antibodies against lamins A / C and actin (as a loading control). Cells treated with ASO E11-31 are marked with an asterisk.

Supplemental Figure 2. Modulation of LMNA alternative splicing with exon 11 ASOs. (A) Longer ASOs are more effective in promoting lamin C splicing. Wild-type cells were transfected with E11-31 ASOs of different lengths ($16 \mathrm{nt}, 18 \mathrm{nt}, 20 \mathrm{nt}$). After 2 days, transcript levels were measured by qRT-PCR. (B) Multiple ASOs near E11-31 promote lamin C splicing. Human fibroblasts (AG2429) in duplicate were transfected with ASOs. After 3 days, lamin A and lamin C protein levels were measured by western blotting. The bar graph shows lamin protein expression relative to cells treated with a scrambled ASO (set at a value of 1.0). (C) RT-PCR showing that ASO E11-31 does not increase usage of the HGPS donor splice site. Triplicate wells of human fibroblasts (AG2522) were transfected with ASO E11-31 or a scrambled control ASO. After 2 days, prelamin A transcripts were amplified by RT-PCR. RNA from
nontransfected HGPS cells (AG11513) was included as a control (HGPS). Only trace amounts of progerin transcripts were detected in the ASO-treated cells. (D) Western blot analysis showing that the effects of ASO E11-31 on lamin A and progerin levels in HGPS cells are dose dependent. (E) ASO E11-31 reduces prelamin A and progerin transcript levels in multiple HGPS cell lines. Wild-type cells (AG2429 and AG2522) and HGPS cells (hTERT immortalized 75-8, AG11513, and AG1972) were transfected twice with ASO E11-31 or transfection reagent alone (NTC). One day after the last transfection, transcript levels were measured by qRT-PCR and expressed relative to the NTC (set at a value of 1.0). (F) Western blot analysis showing that ASO E11-31 reduces lamin A and progerin protein levels in multiple HGPS cell lines.

Supplemental Figure 3. Location of potential exonic splice enhancer (ESE) binding sites within exon 11 of $L M N A$. Exon $11 L M N A$ sequences were analyzed with the program ESE Finder. Six potential ESE binding sites were identified: 3 SRSF2 sites (red and purple), one SRp55 site (blue), and 2 SF2/ASF sites (green). The sequences of several ASOs used in this study are shown at the bottom of the schematic.

Supplemental Figure 4. ASO E11-31 treatment lowers progerin levels in the aortas of Lmna ${ }^{\text {G609G/G609G }}$ mice and improves the arterial disease phenotype. (A) Western blot showing ASO E11-31 lowers progerin levels in the aorta of Lmna ${ }^{\mathrm{G} 609 \mathrm{G} / \mathrm{G} 609 \mathrm{G}}$ mice. Lamin A, progerin, and lamin C levels in four untreated $L m n a^{\mathrm{G} 609 \mathrm{G} /+}$ mice (609/+) and three Lmna ${ }^{\mathrm{G} 609 \mathrm{G} / \mathrm{G} 609 \mathrm{G}}$ mice (609/609) treated with ASO E11-31 (ASO) or a scrambled ASO (Con) are shown. Actin levels were measured as a loading control. The results are shown for two Lmna ${ }^{\mathrm{G} 609 \mathrm{G} / \mathrm{G} 609 \mathrm{G}}$ mice treated with ASO E11-31 (E11-31 ASO2 \& E11-31 ASO3), and a Lmna $a^{\mathrm{G} 609 \mathrm{G} / \mathrm{G} 609 \mathrm{G}}$ mouse treated with the control ASO (Con ASO3; not reported in Figures 6C-6D). (B) ASO E11-31 lowers progerin levels in the aorta. Progerin levels shown in panel A were measured by laser scanning and normalized to actin levels. Levels reported for the Lmna ${ }^{\mathrm{G} 609 \mathrm{G} /+}$ mice are the average of four animals. (C) Histological images showing less disease in the aortas from Lmna ${ }^{\mathrm{G} 609 \mathrm{G} / \mathrm{G} 609 \mathrm{G}}$ mice treated with ASO E11-31. Images (10x magnification) of Masson's trichrome-stained cross sections through the ascending aorta are shown for one wild-type, two Lmna ${ }^{\mathrm{G} 609 \mathrm{G} / \mathrm{G} 609 \mathrm{G}}$ mice treated with a control ASO (Con ASO2 and Con ASO3), and two Lmna ${ }^{\mathrm{G} 609 \mathrm{G} / \mathrm{G} 609 \mathrm{G}}$ mice treated with ASO E11-31 (E11-31 ASO1 and E11-31 ASO3). White colored bars identify the adventitia. Scale bars, $100 \mu \mathrm{~m}$.

