#### **Supplemental Data**

#### Methods

Mice. Srsf2 conditional knockout mice (B6;129S4-Srsf2tm1Xdfu/J); SC35<sup>fl</sup>) with loxP sites flanking exons 1-2 (Srsf2<sup>fl</sup>) and albumin-Cre (Alb-Cre) transgenic mice (B6.Cg-Tg(Albcre)21Mgn/J) were obtained from The Jackson Laboratory (Bar Harbor, Me). The Srsf2<sup>fl</sup> allele was genotyped with forward primer 5'-GTTATTTGGCCAAGAATCACA-3' and reverse primer 5'-AACCTTGTTCGTTGACCGAT-3'; this reaction yields a 321-bp product for the wild-type allele and a 410-bp product for the Srsf2<sup>fl</sup> allele. Cre-mediated recombination excises exons 1-2 and inactivates Srsf2 (42). The Srsf2 knockout allele was detected by PCR with 5'-GTTATTTGGCCAAGAATCACA-3' forward primer and reverse primer 5'-ACTCTCCACACCTAGTATTGTAAA-3'; this reaction yields a 518-bp product. The Alb-Cre  $(Alb-Cre^+)$ allele primer 5'transgenic was genotyped with forward GCATTACCGGTCGATGCAACGAGTGATGAG-3' primer 5'and reverse GAGTGAACGAACCTGGTCGAAATCAGTGCG-3', which yields a 408-bp product. The Lmna<sup>G609G</sup> allele was created with a sequence-replacement vector as described (21), except that a C>T mutation in codon 609 was introduced into the 5' arm of the *Lmna* targeting vector by sitedirected mutagenesis (QuikChange kit, Stratagene). After electroporating the vector into 129/OlaHsd embryonic stem (ES) cells, targeted ES cell clones were identified by long-range PCR (TaKaRa LA Tag polymerase, Clontech). Targeted ES cells were injected into C57BL/6 blastocysts, and the resulting chimeras were bred with C57BL/6 females to generate heterozygous knock-in mice, which were then intercrossed to generate homozygotes. All mice were fed a chow diet and housed in a virus-free barrier facility with a 12-h light/dark cycle.

*Hepatocyte isolation. Srsf2*<sup>fl/fl</sup> mice were bred with Alb-*Cre*<sup>+</sup>*Srsf2*<sup>fl/+</sup> mice to generate *Srsf2*<sup>fl/fl</sup> and *Srsf2*<sup>fl/fl</sup>Alb-*Cre* mice. At age P23, the mice were anesthetized and the inferior vena cava cannulated with a 22-gauge catheter. The portal vein was cut, and the liver was perfused with warm PBS, followed by liver digest medium (17703-034, Invitrogen) containing 0.015%

collagenase IV (Gibco). The liver was removed, dispersed, and filtered through a 70-µm basket. Cells were suspended in William's E medium (Gibco) and fractionated on a Percoll gradient (P1644, Sigma-Aldrich). Hepatocytes were isolated, and extracts were prepared for protein and RNA analyses.

LMNA reporter construct. A LMNA fragment spanning exons 8-12 (including the 3' UTR) was amplified from human genomic DNA with forward primer 5'-5'-GAGATGATCCCTTGCTGACTTACC-3' and primer reverse CCAAAGTGCTCTGATCTCTAATTGT-3'. The fragment was purified and subcloned into pGEM-T (A3600, Promega; Madison, WI), and the sequence was verified by sequencing. Three potential SRSF2 sites (site-1, site-2, and site-3) in exon 11 were mutated individually (or in combination) by site-directed mutagenesis with the QuickChange kit (Agilent Technologies; Santa Clara, CA). SRSF2 site 1, located between nucleotides 24-31 of exon 11, was mutated with forward primer 5'-GTACTCAGCGGGTTCGCCCGAGCTGCTG-3' and reverse primer 5'-CAGCAGCTCGGGCGAACCCGCTGAGTAC-3'. SRSF2 site 2, located between bases 46-53 of 11. 5'mutated with forward primer exon was GCTGAGTACAACCTGAGATCTCGCACCGTGCTGTGC-3' 5'and reverse primer GCACAGCACGGTGCGAGATCTCAGGTTGTACTCAGC-3'. SRSF2 site 3, located between bases 54-60, was mutated with forward primer 5'-CCGCACAGCACTGTGCGCGAGCG-3' and reverse primer 5'-CGCTCGCGCACAGTGCTGTGCGG-3'. The SRSF6 site, located forward primer 5'between bases 64–69 of exon 11, was mutated with GGGACCCCGCCGAGTTCAACCTGCGCT-3' and primer 5'reverse AGCGCAGGTTGAACTCGGCGGGTCCCC-3'. The cytosine in codon 608 (c.1824 or base thymidine forward 5'-126 of exon 11) was changed to а with primer AGCCCAGGTGGGTGGACCCATCTCC-3' 5'and primer reverse GGAGATGGGTCCACCCACCTGGGCT-3'. All nucleotide changes were confirmed by DNA sequencing. A DNA fragment from exon 10 to exon 12 (including the 3' UTR) was amplified from each plasmid and subcloned into the  $\beta$ -globin reporter RHCglo (a gift from Dr. Thomas A. Cooper, Baylor College of Medicine; Houston, TX) with the In-Fusion HD kit (Clontech Laboratories; Mountain View, CA). Each fragment was amplified with exon 10 primer 5'– ACCTCCAAGCTCCGGAGAAGTGGCCATGCGCAAGCTG-3' and exon 12 primer 5'– ACCGCGGTGGCGGCCGCGCCAGGGGTAGAAACAACTAG-3' and subcloned with restriction enzymes *Bsp*EI and *Not*I. All constructs were verified by DNA sequencing.

| Sequence             | Length | Mouse ASO | ISIS # |
|----------------------|--------|-----------|--------|
| GCAGGTTGTACTCAGC     | 16     | E11-31    | 641439 |
| CAGGTTGTACTCAGCGGG   | 18     | E11-28    | 641412 |
| GCAGGTTGTACTCAGCGG   | 18     | E11-29    | 641413 |
| CGCAGGTTGTACTCAGCG   | 18     | E11-30    | 641414 |
| GCGCAGGTTGTACTCAGC   | 18     | E11-31    | 641415 |
| AGCGCAGGTTGTACTCAG   | 18     | E11-32    | 641416 |
| GAGCGCAGGTTGTACTCA   | 18     | E11-33    | 641417 |
| TGAGCGCAGGTTGTACTC   | 18     | E11-34    | 641418 |
| GTGAGCGCAGGTTGTACT   | 18     | E11-35    | 641419 |
| CGTGAGCGCAGGTTGTAC   | 18     | E11-36    | 641420 |
| GCGTGAGCGCAGGTTGTA   | 18     | E11-37    | 641421 |
| TGCGTGAGCGCAGGTTGT   | 18     | E11-38    | 641422 |
| GTGCGTGAGCGCAGGTTG   | 18     | E11-39    | 641423 |
| GGTGCGTGAGCGCAGGTT   | 18     | E11-40    | 641424 |
| CGGTGCGTGAGCGCAGGT   | 18     | E11-41    | 641425 |
| CAGCTTGCGCATGGCCACTT | 20     | E10-2     | 549468 |
| CGCACCAGCTTGCGCATGGC | 20     | E10-7     | 549469 |
| GTGAGCGCACCAGCTTGCGC | 20     | E10-12    | 549470 |
| GGTCAGTGAGCGCACCAGCT | 20     | E10-17    | 549471 |
| ACCATGGTCAGTGAGCGCAC | 20     | E10-22    | 549472 |
| CCTCAACCATGGTCAGTGAG | 20     | E10-27    | 549473 |
| ATTGTCCTCAACCATGGTCA | 20     | E10-32    | 549474 |
| TCCTCATTGTCCTCAACCAT | 20     | E10-37    | 549475 |
| CGTCATCCTCATTGTCCTCA | 20     | E10-42    | 549476 |
| CTCGTCGTCATCCTCATTGT | 20     | E10-47    | 549477 |
| CCATCCTCGTCGTCATCCTC | 20     | E10-52    | 549478 |
| CTTCTCCATCCTCGTCGTCA | 20     | E10-57    | 549479 |
| GAGCTCTTCTCCATCCTCGT | 20     | E10-62    | 549480 |
| TGGAGGAGCTCTTCTCCATC | 20     | E10-67    | 549481 |
| GGTGATGGAGGAGCTCTTCT | 20     | E10-72    | 549482 |
| ACGGTGGTGATGGAGGAGCT | 20     | E10-77    | 549483 |
| CTCACACGGTGGTGATGGAG | 20     | E10-82    | 549484 |
| TGCCACTCACACGGTGGTGA | 20     | E10-87    | 549485 |
| GCGGCTGCCACTCACACGGT | 20     | E10-92    | 549486 |
| CAGCGGCGGCTGCCACTCAC | 20     | 110-1     | 549487 |
| GGCCTCAGCGGCGGCTGCCA | 20     | 110-6     | 549488 |
| GGCTGGGCCTCAGCGGCGGC | 20     | 110-11    | 549489 |
| TTGTGGGCTGGGCCTCAGCG | 20     | 110-16    | 549490 |
| CTAGGCTGGCAGGGCTACCC | 20     | 110-36    | 549494 |

# Table 1. Sequence of ASOs and primers.

| CTGCCCTAGGCTGGCAGGGC | 20     | 110-41         | 549495 |
|----------------------|--------|----------------|--------|
| GAGAGCTGCCCTAGGCTGGC | 20     | 20 110-46      |        |
| GGTGGGAGAGCTGCCCTAGG | 20     | 110-51         | 549497 |
| ATGGAGGTGGGAGAGCTGCC | 20     | 110-56         | 549498 |
| TTGGCATGGAGGTGGGAGAG | 20     | 110-61         | 549499 |
| AGACTTTGGCATGGAGGTGG | 20     | 110-66         | 549500 |
| TGAAAAGACTTTGGCATGGA | 20     | 110-71         | 549501 |
| TTTAATGAAAAGACTTTGGC | 20     | 110-76         | 549502 |
| CATTCTTTAATGAAAAGACT | 20     | 110-81         | 549503 |
| CAAAACATTCTTTAATGAAA | 20     | 110-86         | 549504 |
| CATTCCAAAACATTCTTTAA | 20     | 110-91         | 549505 |
| AGTGGCATTCCAAAACATTC | 20     | I10-96         | 549506 |
| CAGCAAGTGGCATTCCAAAA | 20     | 110-101        | 549507 |
| CAGGGCAGCAAGTGGCATTC | 20     | 110-106        | 549508 |
| AAGGCCAGGGCAGCAAGTGG | 20     | 110-111        | 549509 |
| GAAGAAAGGCCAGGGCAGCA | 20     | 110-116        | 549510 |
| AGAGAGAAGAAAGGCCAGGG | 20     | 110-121        | 549511 |
| GCTCTTGGAGCTTCCTGGCC | 20     | 110-126        | 549512 |
| TGTGGGCTCTTGGAGCTTCC | 20     | 110-131        | 549513 |
| GTTTGGGACTGACTTCTTAG | 20     | i10-651        | 549520 |
| AGCGAGTTTGGGACTGACTT | 20     | 110-656        | 549521 |
| GGGACAGCGAGTTTGGGACT | 20     | 20             |        |
| CAGGAGGGACAGCGAGTTTG | 20     | 110-666        | 549523 |
| AGGCTCAGGAGGGACAGCGA | 20     | .0 110-671 549 |        |
| AGACAAGGCTCAGGAGGGAC | 20     | ) 110-676 5495 |        |
| AAGGGAGACAAGGCTCAGGA | 20     | 110-681        | 549526 |
| CTGGGAAGGGAGACAAGGCT | 20     | 110-686        | 549527 |
| GAGCCGCTGCAGTGGGAACC | 20     | E11-1          | 549531 |
| CCCCCGAGCCGCTGCAGTGG | 20     | E11-6          | 549532 |
| GGGGTCCCCCGAGCCGCTGC | 20     | E11-11         | 549533 |
| TCAGCGGGGTCCCCCGAGCC | 20     | E11-16         | 549534 |
| TGTACTCAGCGGGGTCCCCC | 20     | E11-21         | 386363 |
| CAGGTTGTACTCAGCGGGGT | 20     | E11-26         | 549535 |
| GAGCGCAGGTTGTACTCAGC | 20     | E11-31         | 549536 |
| TGCGTGAGCGCAGGTTGTAC | 20     | E11-36         | 549537 |
| CACGGTGCGTGAGCGCAGGT | 20     | E11-41         | 549538 |
| CACAGCACGGTGCGTGAGCG | 20     | E11-46         | 549539 |
| TCCCGCACAGCACGGTGCGT | 20     | E11-51         | 549540 |
|                      |        |                |        |
| Sequence             | Length | Human ASO      | ISIS # |
| CGCAGGTTGTACTCAGCGGG | 20     | E11-28         | 386364 |

| GAGCGCAGGTTGTACTCAGC | 20 | E11-31 | 549536 |
|----------------------|----|--------|--------|
| GCGAGCGCAGGTTGTACTCA | 20 | E11-33 | 573298 |
| TGCGCGAGCGCAGGTTGTAC | 20 | E11-36 | 573299 |
| GGTGCGCGAGCGCAGGTTGT | 20 | E11-38 | 573300 |
| CACGGTGCGCGAGCGCAGGT | 20 | E11-41 | 573301 |

| Sequence             | Length | Name        | ISIS # |
|----------------------|--------|-------------|--------|
| TGGTGCACGGTCTACGAGAC | 20     | Control ASO | 376024 |
| ACTCCAGGCCTATGAGGGTG | 20     | Control ASO | 463309 |
| GTCACTTGCCAGGGTCAGGA | 20     | Control ASO | 556311 |
| GCTCATTTAGTCTGCCTGAT | 20     | Control ASO | 389629 |

### qPCR primers

| Human transcript |                         |                           |
|------------------|-------------------------|---------------------------|
| Prelamin A       | atgaggatggagatgacctgc   | aggcagaagagccagaggaga     |
| Lamin C          | tggtgtggaaggcacagaaca   | agcggcggctaccactca        |
| LMNA             | agcaaagtgcgtgaggagtt    | tcaggtcaccctccttcttg      |
| Progerin         | gctcaggagcccagagc       | gacgcaggaagcctccac        |
| SRSF1            | tgcctacatccgggttaaag    | ctgctgttgcttctgctacg      |
| SRSF2            | ccttacctttcttcaccttggtt | caaaggctaccatcagcatgta    |
| SRSF5            | agacctcgaaatgatagacgaaa | tgtctcatgaaatctttgagatcc  |
| SRSF6            | aaatacggaccacctgttcg    | cttcacctgcttgtcgcata      |
| LMNB1            | gctgctcctcaactatgctaaga | gaattcagtgctgcttcatattctc |
| Mouse transcript |                         |                           |
| Prelamin A       | ggttgaggacaatgaggatga   | tgagcgcaggttgtactcag      |

| Prelamin A | ggttgaggacaatgaggatga   | tgagcgcaggttgtactcag    |
|------------|-------------------------|-------------------------|
| Lamin C    | gacaatgaggatgacgacgag   | ttaatgaaaagactttggcatgg |
| Lmna       | cctatcgaaagctgctggag    | cctgagactgggatgagtgg    |
| Lmnb1      | caactgacctcatctggaagaac | tgaagactgtgcttctctgagc  |
| Ppia       | tgagcactggagagaaagga    | ccattatggcgtgtaaagtca   |
| Sfsr2      | gagcccacccaagtctcc      | cgcttgccgattcatcat      |
| CD31       | aaccgtatctccaaagccagt   | ccagacgactggaggagaact   |

# **RNA** sequences

Wild-type ΔSRSF-1 ΔSRSF-2 ΔSRSF-3 ΔSRSF-2/3 Scrambled

| GGGACCCCGCUGAGUACAACCUGCGCUCGCGCACCGUGCUG |
|-------------------------------------------|
| GCGAACCCGCUGAGUACAACCUGCGCUCGCGCACCGUGCUG |
| GGGACCCCGCUGAGUACAACCUGAGAUCUCGCACCGUGCUG |
| GGGACCCCGCUGAGUACAACCUGCGCUCGCGCACAGUGCUG |
| GGGACCCCGCUGAGUACAACCUGAGAUCUCGCACAGUGCUG |
| CAUCAACCUGUAUGGGAACUUUCUAUAUGGUUCUUCGACGG |



Supplemental Figure 1. Screening of *Lmna* antisense oligonucleotides that affect lamin C/prelamin A mRNA splicing. Wild-type mouse embryonic fibroblasts were transfected with ASOs corresponding to sequences in exon 10, intron 10, and exon 11 of *Lmna*. After 2 days, extracts were prepared and analyzed by western blotting with antibodies against lamins A/C and actin (as a loading control). Cells treated with ASO E11-31 are marked with an asterisk.



**Supplemental Figure 2. Modulation of** *LMNA* **alternative splicing with exon 11 ASOs.** (A) Longer ASOs are more effective in promoting lamin C splicing. Wild-type cells were transfected with E11-31 ASOs of different lengths (16 nt, 18 nt, 20 nt). After 2 days, transcript levels were measured by qRT-PCR. (B) Multiple ASOs near E11-31 promote lamin C splicing. Human fibroblasts (AG2429) in duplicate were transfected with ASOs. After 3 days, lamin A and lamin C protein levels were measured by western blotting. The bar graph shows lamin protein expression relative to cells treated with a scrambled ASO (set at a value of 1.0). (C) RT-PCR showing that ASO E11-31 does not increase usage of the HGPS donor splice site. Triplicate wells of human fibroblasts (AG2522) were transfected with ASO E11-31 or a scrambled control ASO. After 2 days, prelamin A transcripts were amplified by RT-PCR. RNA from

nontransfected HGPS cells (AG11513) was included as a control (HGPS). Only trace amounts of progerin transcripts were detected in the ASO-treated cells. (D) Western blot analysis showing that the effects of ASO E11-31 on lamin A and progerin levels in HGPS cells are dose dependent. (E) ASO E11-31 reduces prelamin A and progerin transcript levels in multiple HGPS cell lines. Wild-type cells (AG2429 and AG2522) and HGPS cells (hTERT immortalized 75-8, AG11513, and AG1972) were transfected twice with ASO E11-31 or transfection reagent alone (NTC). One day after the last transfection, transcript levels were measured by qRT-PCR and expressed relative to the NTC (set at a value of 1.0). (F) Western blot analysis showing that ASO E11-31 reduces lamin A and progerin protein levels in multiple HGPS cell lines.



**Supplemental Figure 3. Location of potential exonic splice enhancer (ESE) binding sites within exon 11 of** *LMNA*. Exon 11 *LMNA* sequences were analyzed with the program ESE Finder. Six potential ESE binding sites were identified: 3 SRSF2 sites (red and purple), one SRp55 site (blue), and 2 SF2/ASF sites (green). The sequences of several ASOs used in this study are shown at the bottom of the schematic.



Supplemental Figure 4. ASO E11-31 treatment lowers progerin levels in the aortas of  $Lmna^{G609G/G609G}$  mice and improves the arterial disease phenotype. (A) Western blot showing ASO E11-31 lowers progerin levels in the aorta of  $Lmna^{G609G/G609G}$  mice. Lamin A, progerin, and lamin C levels in four untreated  $Lmna^{G609G/+}$  mice (609/+) and three  $Lmna^{G609G/G609G}$  mice (609/609) treated with ASO E11-31 (ASO) or a scrambled ASO (Con) are shown. Actin levels were measured as a loading control. The results are shown for two  $Lmna^{G609G/G609G}$  mouse treated with ASO E11-31 (E11-31 ASO2 & E11-31 ASO3), and a  $Lmna^{G609G/G609G}$  mouse treated with the control ASO (Con ASO3; not reported in Figures 6C–6D). (B) ASO E11-31 lowers progerin levels in the aorta. Progerin levels shown in panel A were measured by laser scanning and normalized to actin levels. Levels reported for the  $Lmna^{G609G/+}$  mice are the average of four animals. (C) Histological images showing less disease in the aortas from  $Lmna^{G609G/G609G}$  mice treated with ASO E11-31. Images (10× magnification) of Masson's trichrome-stained cross sections through the ascending aorta are shown for one wild-type, two  $Lmna^{G609G/G609G}$  mice treated with ASO E11-31 (E11-31 ASO2 and Con ASO3), and two  $Lmna^{G609G/G609G}$  mice treated with ASO E11-31. Images (10× magnification) of Masson's trichrome-stained cross sections through the ascending aorta are shown for one wild-type, two  $Lmna^{G609G/G609G}$  mice treated with ASO E11-31 (E11-31 ASO1 and E11-31 ASO3). White colored bars identify the adventitia. Scale bars, 100 µm.