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The graft-versus-leukemia (GVL) effect in allogeneic hematopoietic stem cell transplantation (alloSCT) is potent against
chronic phase chronic myelogenous leukemia (CP-CML), but blast crisis CML (BC-CML) and acute myeloid leukemias

(AML) are GVL resistant. To understand GVL resistance, we studied GVL against mouse models of CP-CML, BC-CML,
and AML generated by the transduction of mouse BM with fusion cDNAs derived from human leukemias. Prior work has

shown that CD4* T cell-mediated GVL against CP-CML and BC-CML required intact leukemia MHCII; however, stem
cells from both leukemias were MHCII negative. Here, we show that CP-CML, BC-CML, and AML stem cells upregulate
MHCII in alloSCT recipients. Using gene-deficient leukemias, we determined that BC-CML and AML MHC upregulation
required IFN-y stimulation, whereas CP-CML MHC upregulation was independent of both the IFN-y receptor (IFN-yR)
and the IFN-o/B receptor IFNAR1. Importantly, IFN-yR—deficient BC-CML and AML were completely resistant to CD4-
and CD8-mediated GVL, whereas IFN-yR/IFNAR1 double-deficient CP-CML was fully GVL sensitive. Mouse AML and

BC-CML stem cells were MHCI* without IFN-y stimulation, suggesting that IFN-y sensitizes these leukemias to T cell
killing by mechanisms other than MHC upregulation. Our studies identify the requirement of IFN-y stimulation as a
mechanism for BC-CML and AML GVL resistance, whereas independence from IFN-y renders CP-CML more GVL
sensitive, even with a lower-level alloimmune response.
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Introduction

Allogeneic hematopoietic stem cell transplantation (alloSCT) is
the most successful and widely applied form of adoptive T cell
immunotherapy. Alloreactive off T cells in allografts can rec-
ognize and kill recipient leukemia cells, thereby mediating the
graft-versus-leukemia (GVL) effect (1). Unfortunately, alloreac-
tive T cells also attack nonmalignant host tissues, causing graft-
versus-host disease (GVHD) (2-4). A longstanding and elusive
objective has been to develop approaches that preserve GVL
while minimizing GVHD. A second and arguably more import-
ant goal is to overcome GVL resistance, as relapse of malignant
neoplasms is the greatest single cause of post-transplantation
mortality (5). GVL resistance and sensitivity are not equal across
different types of hematopoietic malignancies. For example,
chronic phase chronic myelogenous leukemia (CP-CML) is
exquisitely GVL sensitive, whereas blast crisis CML (BC-CML)
is relatively GVL resistant, despite the two sharing a common
biology, in that both are reliant on breakpoint cluster region/
Abelson murine leukemia viral oncogene homolog 1 (BCR/ABL)
signaling (6-8). Acute myeloid leukemias (AML) and acute lym-
phoblastic leukemias are also relatively GVL resistant.
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The graft-versus-leukemia (GVL) effect in allogeneic hematopoietic stem cell transplantation (alloSCT) is potent against
chronic phase chronic myelogenous leukemia (CP-CML), but blast crisis CML (BC-CML) and acute myeloid leukemias (AML) are
GVL resistant. To understand GVL resistance, we studied GVL against mouse models of CP-CML, BC-CML, and AML generated
by the transduction of mouse BM with fusion cDNAs derived from human leukemias. Prior work has shown that CD4* T cell-
mediated GVL against CP-CML and BC-CML required intact leukemia MHCII; however, stem cells from both leukemias were
MHCII negative. Here, we show that CP-CML, BC-CML, and AML stem cells upregulate MHCII in alloSCT recipients. Using gene-
deficient leukemias, we determined that BC-CML and AML MHC upregulation required IFN-y stimulation, whereas

CP-CML MHC upregulation was independent of both the IFN-y receptor (IFN-yR) and the IFN-o/p receptor IFNAR1.
Importantly, IFN-yR-deficient BC-CML and AML were completely resistant to CD4- and CD8-mediated GVL, whereas IFN-yR/
IFNART1 double-deficient CP-CML was fully GVL sensitive. Mouse AML and BC-CML stem cells were MHCI* without IFN-y
stimulation, suggesting that IFN-y sensitizes these leukemias to T cell killing by mechanisms other than MHC upregulation.
Our studies identify the requirement of IFN-y stimulation as a mechanism for BC-CML and AML GVL resistance, whereas
independence from IFN-y renders CP-CML more GVL sensitive, even with a lower-level alloimmune response.

Because GVL resistance and sensitivity track with the
identity of the underlying neoplasm, we reasoned that they are
leukemia cell-intrinsic properties. To understand the mech-
anisms of GVL resistance, we used mouse models to evaluate
GVL against CP-CML (mCP-CML) and BC-CML (mBC-CML)
(9-11). mCP-CML is created via retroviral transfer of the
BCR-ABL fusion cDNA, the defining genetic abnormality of
CP-CML, into mouse BM cells (12, 13), whereas mBC-CML is
created via retroviral transfer of both BCR-ABL and nucleoporin
98-homeobox A9 (NUP98-HOXAY) fusion cDNAs (14, 15). The
NUP98-HOXAY fusion is a second-hit translocation in BC-CML
that has also been identified in de novo AML (14-22), as have
NUP98 fusions with other class I HOX genes. mCP-CML and
mBC-CML are therefore excellent phenocopies and genocopies
of their human counterparts, have defined stem cell populations
(15, 23), and, importantly, are GVL sensitive and GVL resis-
tant, respectively (11). A powerful advantage of this approach
is that, by transducing BM from gene-deficient mice, we can
create gene-deficient leukemias as a means to explore mecha-
nisms of GVL resistance (10, 11, 24-26). Using these systems,
we found that GVL against mCP-CML and GVL against mBC-
CML share essential features: (a) both leukemias must express
ICAMI1; (b) T cell killing mechanisms are highly redundant;
and (c) CD8* and CD4* T cell killing requires T cell receptor-
MHCI (TCR-MHCI) or TCR-MHCII interactions, respectively
(11, 24, 25). Paradoxically, however, despite the fact that
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Figure 1. Expression of MHC molecules on mCP-CML
and mBC-CML LSCs increases in the alloimmune
environment, independently of cognate TCR-MHC
interactions. MHCII expression on WT and MHCII"-
mBC-CML (A, left) or mCP-CML (A, right) LSCs harvested
from mice transplanted with leukemia cells but without

MHCII MHCII MHCI
F  MHCIM
;' o — MHCIIM
— MHCII®
- FMO
-
EGFP MHCII

MHCII-deficient mCP-CML and mBC-CML were completely
resistant to CD4-mediated GVL, WT mCP-CML and mBC-
CML leukemia stem cells (LSCs) expressed little to no surface
MHCII, as MHCII staining was similar in WT and MHCII-
deficient LSCs (11). Here, we report that expression of MHCII
and MHCI on mBC-CML and MHCII on mouse AML (mAML;
induced by transduction with the MLL-AF9 fusion cDNA) (27)
and mCP-CML LSCs is upregulated in the alloimmune environ-
ment. Upregulation of MHC on mBC-CML and mAML required
IFN-y receptor (IFN-yR) stimulation, whereas MHC upregula-
tion on mCP-CML LSCs was entirely independent of IFN-yR or
IFN-0/p (IFNARI1) signaling. Importantly, IFN-yR-deficient
(Ifngr”) mBC-CML and mAML were highly resistant to both
CD4- and CD8-mediated GVL, whereas Ifngr”", Ifugr”" Ifnarl”",
and Stat17- Stat2”- mCP-CML were fully GVL sensitive. Our data
further suggest that IFN-y sensitizes myeloblastic leukemias to
GVL by mechanisms beyond simply upregulating MHC. The
differential requirements for IFN-y stimulation at least in part
explain the exquisite GVL sensitivity of CP-CML and GVL resis-
tance of myeloblastic leukemias and suggest a therapeutic strate-
gy for overcoming the GVL resistance of myeloblastic leukemias.
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- gzﬂwa;g?gmo GVH-inducing T cells. (B) Irradiated B6 mice were
— CD4 reconstituted with C3H.SW BM and CD4 or CD8 T cells
— CD8 and either mBC-CML or mCP-CML. Mice were sacrificed
between days 10 and 14, and LSCs were analyzed for
MHCI and MHCII expression. Representative data from
at least 3 independent experiments are shown. (C)
Irradiated B6 mice were reconstituted with C3H.SW BM
with B6 B2m~- mBC-CML (MHCI") and C3H.SW CD8 cells;
B6 MHCII/- mBC-CML (MHCII") and C3H.SW CD4 cells;
or WT B6 mBC-CML and C3H.SW CD4 or CD8 cells. On
day 15 after BMT, splenocytes were harvested, and MHCI
and MHCII expression on mBC-CML LSCs was assessed.
— BM alone Similar MHC upregulation was noted on LSCs harvested
- Isotype/FMO from BM (data not shown). Data are representative of 3
— CD4 independent experiments. (D) Mice were transplanted
— Co8 as in C, except with B2m~- or MHCII/- mCP-CML cells.
MHC upregulation was also independent of TCR-MHC
interactions. (E) Irradiated BALB/c mice were recon-
stituted with B6 BM and B6 mCP-CML with no T cells
or with B6 CD4 or CD8 cells. MHCIl and MHCI were
upregulated on splenic mCP-CML LSCs on day 15 after
— BM alone BMT. Similar MHC upregulation was seen in BM LSCs
----- Isotype/FMO  (data not shown). (F) MHCII" and MHCII'* mBC-CML LSCs
— CD4 from mice undergoing a GVHD response (C3H.SW—B6
— cobe model with GVH induced by CD4 cells) were sort purified
and transferred into sublethally irradiated B6 mice. Both
populations transferred disease (F, left panels). Progeny
of sorted MHCII" and MHCII'* mBC-CML cells recovered
15 days after transfer were MHCII® (F, right panel). FMO,
fluorescence minus one.
Results

MHCII and MHCI are upregulated on leukemia cells in a GVH envi-
ronment. Although MHCII”- mCP-CML and mBC-CML were
completely resistant to CD4-mediated GVL, staining for surface
MHCII on WT and MHCII/- LSCs harvested from sublethally
irradiated syngeneic recipients or alloBMT recipients that did not
receive donor T cells was similar (ref. 11 and Figure 1A). To account
for the MHCII requirement in GVL, we hypothesized that surface
MHCII was upregulated in an alloimmune environment. To test
this, we analyzed mBC-CML and mCP-CML cells from mice with
or without an ongoing GVH response in the C3H.SW—B6 mod-
el. MHCII was upregulated on both mBC-CML LSCs (lineage"
[lin'Jor CD11b") (ref. 15 and data not shown) and mCP-CML LSCs
(lin'sca-1*c-kit*) (ref. 28 and Figure 1B) harvested from mice in
which GVH was induced by either CD4 or CD8 cells. We found
that MHCI was consistently upregulated on mBC-CML LSCs but
minimally and inconsistently so on mCP-CML LSCs (Figure 1B).
MHC upregulation does not require TCR-MHC interactions.
Because CD4-mediated GVL absolutely requires both mCP-CML
and mBC-CML to express MHCII (10, 11, 24), we reasoned that
MHCII upregulation would occur in the GVH environment inde-
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Figure 2. The IFN-yR on
mBC-CML cells is required for
GVH-induced MHC upregula-
tion and effective CD4- and
CD8-mediated GVL, whereas
MHCII upregulation on mCP-CML
cells and GVL are independent
of both the IFN-yR and IFNAR1
and STAT1/STAT2. (A) Irradiated
B6 mice were reconstituted with
C3H.SW BM and Bé6 Ifngr’-, B6
Ifnar1”-, or control WT B6 mBC-
CML cells, with no C3H.SW T cells
or C3H.SW CD4 or CD8 cells. MHCI
and MHCII upregulation did not
occur on Ifngr’- mBC-CML LSCs
but was intact on Ifnar1/- LSCs.
(B) Mice were transplanted as in
A, except with B6 WT or Ifngr/-
mCP-CML cells. MHCII upreg-
ulation was similar in WT and
gene-deficient mCP-CML LSCs.
Consistent with the upregula-
tion data, IFN-yR mBC-CML was
resistant to CD4- and CD8-me-
diated GVL in the C3H.SW—B6
model (C) and to CD8-mediated
GVL in the BALB/c—B6 model
(D). In contrast, Ifngr’- mCP-CML
(E), Ifnar1’- mBC-CML (F), Ifngr/-
Ifnar1”’- (double-KO [DKO]) mCP-
CML (G), and Stat1/- Stat2”/-
mCP-CML (H) cells were GVL
sensitive. Experiments shown

in E-H were in the C3H.SW—B6
model. AR1, IFNAR1-, P < 0.006,
comparing any WT mBC-CML

or IFNAR mBC-CML CD4 or CD8
recipient group with its BM-alone
control; P < 0.002, comparing
any mCP-CML T cell recipient
group with its BM-alone control.
P values determined by 2-tailed
Mann-Whitney U test.

— = WT BC-CML/CDS (n=10)
== WT BC-CML/CD4 (n=10)
== WT BC-CML/BM (n=10)

WT CP-CML/CDS (n=10)
WT CP-CML/CD4 (n=10)
WT CP-CML/BM (n=5)

pendently of TCR interactions with MHC on mBC-CML or mCP-
CML LSCs. Consistent with this, donor CD8" T cells induced
MHCII upregulation on MHCI-deficient (B-2-microglobulin-
deficient, referred to herein as B2m~") B6 mBC-CML and mCP-
CML, and CD4 cells induced MHCI upregulation on MHCII-
deficient B6 mBC-CML cells (Figure 1, C and D). To further inves-
tigate the requirement of TCR-MHC interactions for MHC upreg-
ulation, we asked whether donor-strain mCP-CML cells in mice
undergoing a GVH response would upregulate MHCII. Irradiated
BALB/c mice were reconstituted with B6 BM and B6 mCP-CML
cells, with or without B6 CD4 or CD8 cells. In this design, donor
T cells are activated by host BALB/c cells, but because the T cells
are syngeneic with the B6 mCP-CML, they do not mediate GVL
and presumably do not have high-avidity TCR-MHC interactions
with them. In line with data using MHC-deficient mCP-CML,
we observed that MHCII was upregulated on donor mCP-CML

WT CP-CML/CD8 (n=9)
WT CP-CML/CD4 (n=9)
WT CP-CML/BM (n=5)

LSCs in GVH mice relative to LSCs in mice that did not receive
donor T cells (Figure 1E).

MHCII" mBC-CML cells can serially transplant leukemia. To
determine whether LSC-phenotype cells induced to express
MHCII have functional properties of LSCs, we sort purified
MHCIMCD11b- and MHCII®CD11b- mBC-CML cells from mice
undergoing a GVH response and transferred them into sublethally
irradiated syngeneic B6 mice. Both MHCII® and MHCII" mBC-
CML cells transferred mBC-CML, but the progeny of MHCII!
cells lost MHCII expression (Figure 1F), indicating that MHCII
upregulation was transient.

Role of IFNs in leukemia MHC upregulation and GVL. IFNs
upregulate MHC on many cell types. To test the role of IFNs
in GVH-induced MHC upregulation on mBC-CML cells, we
created type I IFN receptor-deficient (Ifnarl”") and IFN-yR-
deficient (Ifugr”) mBC-CML. Whereas MHC upregulation
Volume 127 Number7
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Figure 3. IFN-y stimulation is required for
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was intact in Ifnarl”- mBC-CML cells, we found that it was
completely abrogated in Ifngr”- mBC-CML cells (Figure 2A).
In contrast, MHCII upregulation was similar in WT and Ifngr’-
mCP-CML LSCs harvested from GVH mice (Figure 2B). Strik-
ingly, consistent with the MHC upregulation data, Ifngr”-mBC-
CML was completely resistant to CD4- and CD8-mediated
GVL in the C3H.SW—B6 strain pairing (Figure 2C), whereas
Ifnarl”- mBC-CML, Ifugr”- mCP-CML, Ifungr”~ Ifnarl”-, and
Statl”- Stat27- mCP-CML were as GVL sensitive as their WT
counterparts (Figure 2, E-H). It was unexpected that Ifngr/-
mBC-CML was completely resistant to CD8-mediated GVL as
there is substantial basal MHCI expression that is only modestly
increased with IFN-y stimulation. We considered the possibil-
ity that there is a dominant, targeted minor histocompatibility
antigen (miHA) that depends on IFN-y for its generation and
presentation. We therefore performed a GVL experiment in the

jci.org  Volume127  Number7  July 2017

10 20 30
Days after transplantation

1 diated and CD8-mediated GVL is shown in
G and H, respectively. P < 0.0016, comparing
the survival in the WT mAML BM-alone
group with WT CD4 or CD8 recipients;

P = 0.024, comparing Ifngr’- BM alone with
CD4 recipients; P = 0.0079 and P = 0.0053,
comparing CD4 and CD8 recipients of WT
versus Ifngr’/- MLL-AF9 AML, respectively.
P values determined by 2-tailed Mann-
Whitney U test. Data in G and H were
combined from 2 repetitions.

BALB/c (H-2¢)—»B6 MHC-mismatched system, in which it would
be unlikely that CD8 alloimmunity would rely on a single miHA.
Even with an MHCI mismatch, IFN-yR7- mBC-CML was com-
pletely resistant to CD8-mediated GVL (Figure 2D), suggesting
that IFN-y sensitization of mBC-CML cells to CD8-mediated
GVL involves more than MHCI upregulation.

We also compared the GVL effect against WT and Ifngr’-
mBC-CML mediated by memory T cells raised against the miHA
H60 (26, 29, 30). C3H.SW mice (H60") were vaccinated against
H60 as previously reported (26). B6.H60 mice (congenic for H60)
were irradiated and reconstituted with C3H.SW BM, with WT or
Ifngr’”- B6.H60 mBC-CML with no T cells, or with 5 x 10* sort-
purified CD8'CD44" cells from H60-vaccinated mice (T, )
containing 3,500 H60-reactive cells as determined by H60
tetramer staining (Tet"¢%; data not shown). Ifigr’- B6.H60 mBC-
CML was highly GVL resistant (Figure 3A, survival), despite an
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Figure 4. In vitro IFN-y treatment is sufficient to upregulate MHCIl on mBC-CML LSCs. (A) Sort-purified
mBC-CML LSCs were continuously cultured with graded concentrations of IFN-y, and MHCII expression was
measured 72 hours later. (B) mBC-CML LSCs were cultured for 30 minutes to 24 hours in IFN-y (200 pg/ml).
Stimulated cells were washed extensively and then further cultured without IFN-y for a total culture time
of 72 hours, followed by measurement of MHCII expression. The final supernatant from each wash was
cultured with fresh mBC-CML cells for 72 hours, and MHCIl was not upregulated (see “24-Hour wash super-
natant” in B). Data are representative of 2 experiments, with 3 replicates per condition. (€) mBC-CML cells
were cultured in IFN-y, and p-STAT1was measured by flow cytometry at the indicated times. (D) Irradiated
B6 mice were reconstituted with C3H.SW BM with or without C3H.SW CD4 cells. On day 7 after alloBMT,
sort-purified mBC-CML LSCs were injected. mBC-CML cells were recovered 48 and 96 hours later and MHCI
and MHCII expression was analyzed by flow cytometry. Shown are data from splenic mBC-CML cells; data
in BM were similar (not shown). Each line represents data from an individual mouse. (E) Irradiated B6

mice were transplanted with mBC-CML cells, C3H.SW BM, and CD4 cells. On day 21 after transplantation,
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the effects of IFN-y on mBC-CML cells
in vitro. Culture in media plus IFN-y,
but not media alone, induced MHCII
upregulation. With continuous culture
in IFN-y at concentrations detected in
the serum of GVHD mice (31), MHCII
upregulation was not detected until 24
to 48 hours and usually peaked between
48 and 72 hours (Figure 4A and data not
shown). An IFN-y pulse of as short as 1
hour induced MHCII upregulation on a
minority of cells at 72 hours, but max-
imum MHCII upregulation required
exposure for 8 to 18 hours (Figure 4B).
Despite this requirement, in vitro IFN-y
stimulation induced mBC-CML STAT1
phosphorylation within 15 minutes
(Figure 4C), indicating that, despite
rapid STAT1 phosphorylation, more
prolonged IFN-yR signaling is required
for maximal MHCII upregulation. To
determine whether the in vitro time
course of MHCII upregulation paral-
lels what occurs in vivo, we transferred
B6 MHCII® mBC-CML cells harvested
from sublethally irradiated syngeneic
B6 mice into irradiated B6 mice that
were transplanted with C3H.SW BM,
with or without C3H.SW CD4 cells, 7
days earlier. We observed that MHCI

sort-purified splenic MHCII- CD11b- mBC-CML cells were cultured with or without IFN-y for 72 hours. IFN-y

induced MHCII expression.

expansion of H60-reactive T cells in blood that was at least as
strong as that observed in recipients of WT B6.H60 mBC-CML
(Figure 3, B and C). Whereas T, reduced blood WT B6.H60
mBC-CML cells, they failed to do the same against Ifngr”- B6.H60
mBC-CML (Figure 3D). Finally, H60-reactive CD8 cells induced
MHCII upregulation (a marker for IFN-y stimulation) only on WT
B6.H60 mBC-CML cells (Figure 3E).

To determine whether the reliance on IFN-y stimulation for
effective GVL is unique to mBC-CML or is a more general property
of myeloblastic leukemias, we created WT and Ifingr”- AML by trans-
ducing WT or Ifingr’- BM with a retrovirus encoding the MLL-AF9
translocation (27) and then tested the sensitivities of these AML cells
to CD4- and CD8-mediated GVL in the C3H.SWgB6 model. Cohorts
were sacrificed 12 days after BMT for analysis of MHC expression
on splenic and BM AML cells. CD4 and CD8 cells induced a modest
upregulation of MHCII on WT AML cells but not on Ifigr”- AML cells
(Figure 3F). MHCI was not upregulated (date not shown). Important-
ly, compared with WT MLL-AF9, we found that Ifngr’- MLL-AF9
mAML was relatively resistant to both CD4- and CD8-mediated GVL
(Figure 3, G and H).

IFN-y is sufficient to upregulate MHC on mBC-CML cells. While
the IFN-yRwas required for MHC upregulation on mBC-CML cells
in vivo, it was possible that other unidentified stimuli were also
required. To test whether IFN-y alone is sufficient, we examined

and MHCII expression increased
on splenic (Figure 4D) and BM (not
shown) mBC-CML LSCs in GVH mice
at 48 and 96 hours after transfer, but not in mice that did not
receive CD4 cells.

These results identify a key mechanism that at least in part
explains the resistance of mBC-CML and AML GVL against GVL
compared with the GVL that develops against CP-CML. Effective
GVL against mBC-CML and mAML requires sufficient and sus-
tained IFN-y to sensitize LSCs to T cell killing, whereas effective
GVL against mCP-CML does not require IFN-y stimulation . mBC-
CML LSCs recovered from mice that were dying from leukemia
at later times after transplantation, despite being transplanted
with donor T cells, were mostly MHCII®. This decline in MHCII
expression was not due to selection for cells that could not respond
to IFN-y, as MHCIIP cells harvested from mice with progressive
mBC-CML, despite receiving donor T cells, uniformly upregulated
MHCII in vitro with IFN-y stimulation (Figure 4E). This suggests
that leukemia progression at later points after transplantation is
due to both a contraction of the alloreactive T cell response and a
drop in IFN-y levels.

mBC-CML and mCP-CML gene expression changes in the GVH
environment. To better understand potential mechanisms of action
of IFN-y, we performed gene expression analyses on WT and
Ifngr’”- mBC-CML and WT mCP-CML LSCs sorted from mice
that were or were not undergoing a GVH response. For mBC-CML
LSCs, irradiated B6 mice were reconstituted with WT or Ifigr’-
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Figure 5. Gene expression analyses of mBC-CML and mCP-CML LSCs. (A-D)
WT or Ifngr’- mBC-CML cells were harvested from C3H.SW—B6 recipients
of C3H.SW CD4 cells. Shown are Gene Set Enrichment Analysis-style (GSEA-
style) barcode plots for IFN-y pathway gene expression using hallmark data.
Note the significant upregulation of IFN-yR pathway genes comparing WT
mBC-CML cells harvested from CD4 recipients with WT mBC-CML LSCs from
BM-alone recipients (A), Ifngr’- mBC-CML LSCs from CD4 recipients (B), and
Ifngr’- mBC-CML LSCs from BM-alone recipients (C). There was no IFN-yR
signature comparing Ifngr’- mBC-CML LSCs harvested from CD4 recipients
compared with those from BM-alone recipients (D), and few differentially
expressed genes distinguished these groups (Supplemental Figure 1). (E)
WT B6 mCP-CML LSCs were harvested from BALB/c recipients that did or
did not receive CD4 cells (BM alone). An IFN-yR signature was observed in
RNA from LSCs harvested from CD4 recipients as compared to RNA from
LSCs from BM alone controls.
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mBC-CML cells, C3H.SW T cell-depleted BM, with or without
C3H.SW CD4 cells. For mCP-CML, to facilitate recovery of suf-
ficient mCP-CML cells, we again used the B6gBALB/c GVH sys-
tem with B6 mCP-CML cells, with or without B6 CD4 cells. mBC-
CML and LSK mCP-CML cells (lin") were harvested between days
12 and 14 after BMT. LSCs from 3 individual mice were analyzed
from each group.

We saw a clear IFN-y gene signature when comparing mRNA
from Ifngr”- mBC-CML cells from the BM-alone group with mRNA
from WT mBC-CML cells harvested from CD4 recipients (Figure 5).
Relative to the Ifingr”~ groups, there was a background IFN-y signa-
ture in WT mBC-CML cells harvested from the B6 BM-alone group,
probably due to IFN-y produced by the host-versus-graft response.
In addition to a classic IFN-y signature, in WT BC-CML cells from
GVH mice, we observed changes in genes linked to antigen pre-
sentation, ubiquitination, proteasome function, and apoptosis. As
expected, there was no IFN-y signature in the IFN-yR mBC-CML
cells. By volcano plot analysis, we found that gene expression was
similar in Ifngr”- mBC-CML LSCs harvested from the BM-alone
and CD4 groups, and pathway analyses were unrevealing as to what
drove the few observed differences (data not shown).

mCP-CML gene expression analysis. We also detected an IFN-y
signature inmCP-CML LSCs harvested from CD4 recipients relative
to LSCs harvested from mice treated with BM alone (Supplemental
Figure 1; supplemental material available online with this article;
https://doi.org/10.1172/JCI85736DS1). Therefore, the fact that WT
mCP-CML and Ifngr’- mCP-CML were equivalently GVL sensitive
was not due to WT mCP-CML being unresponsive to IFN-y.

T cells are the critical source of IFN-y. T cells are the major, but
not exclusive, producers of IFN-y. To determine whether donor
T cell-derived IFN-y is required for MHC upregulation and GVL,
we compared mBC-CML MHC upregulation and GVL in recipi-
ents of WT or IFN-y-deficient CD4* T cells. Because TCR-MHC
interactions were not required for MHC upregulation, we also
considered the possibility that T cells unable to directly kill leu-
kemia cells could provide IFN-y in trans, thereby rescuing the
inability of IFN-y-deficient T cells to mediate GVL. Irradiated
B6 mice were reconstituted with B6 B2m”~ mBC-CML (MHCI)
and BALB/c BM with: a) no T cells; b) WT or IFN-y-deficient
BALB/c CD4 cells; or ¢) WT or IFN-y-deficient CD4 cells with
WT or IFN-y-deficient BALB/c CDS8 cells. B2m”- mBC-CML was
used to prevent donor CDS8 cells from directly killing leukemia
cells. Whereas WT CD4 cells induced MHCII expression and
reduced the number of splenic and BM mBC-CML cells by day
14 after BMT, IFN-y-deficient CD4 cells failed to do so (Figure 6,
A-C, and data not shown), indicating that donor T cell-derived
IFN-y is critical. The addition of WT, but not IFN-y-deficient,
CD8 cells restored IFN-y-induced MHCII upregulation and
diminished the number of mBC-CML cells in spleen and BM
by day 14 (Figure 6, A-C, and not shown), indicative of a GVL-
promoting effect. Consistent with this early GVL effect, the addi-
tion of WT, but not IFN-y-deficient, CD8 cells to IFN-y-deficient
CD4 cells prolonged the survival of mice in 2 of 3 repeated exper-
iments (Figure 6D). The rescue of IFN-y-deficient CD4 cells by
WT CD8 cells may have been incomplete because of differences
in the kinetics and magnitude of IFN-y production by CD4 and
CD8 cells, which is consistent with the lower mean fluorescence
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intensity (MFI) of MHCII in the IFN-y-deficient CD4 plus WT
CD8 group (mean of 443 vs. 167). That the addition of WT CD8
cells to IFN-y-deficient CD4 cells restored GVL also confirms
that the inability of IFN-y-deficient CD4 cells to mediate GVL
was not due to a failure to generate cytolytic effectors.

IFN-y alone is insufficient for GVL. Given the complete GVL
resistance of Ifngr”- mBC-CML, we considered the possibility that
IFN-y alone has direct and meaningful antileukemia activity. Argu-
ing against this is that for effective GVL, CD4 and CD8 cells require
leukemia expression of MHCII and MHCI, respectively (10, 11, 24)
despite alloreactive T cells activated in response to recipient allo-
antigens generating substantial IFN-y. However, sufficiently high
local IFN-y levels may only be achieved when IFN-y-producing T
cells make cognate TCR-MHC contacts. To test this hypothesis,
we engineered a situation in which cognate TCR-MHC interac-
tions occurred, but perforin and death receptor-dependent T cell-
induced apoptosis and necroptosis were prevented. We first creat-
ed Fas (TNFRSF6) via Fas-associated protein with death domain
(Fadd”~ Ripk37/") mBC-CML cells. FADD is required for all death
receptor signaling; however, Fadd”~ mice are embryonically lethal
unless they are crossed with Ripk3”~ mice due to the role of FADD
in inhibiting RIPK3-dependent necroptosis (32). We then compared
GVL mediated by WT or perforin”-CD4 or CD8 cells against Fadd”~
Ripk37~ and control Fadd*~ Ripk3”- mBC-CML. Effective GVL only
required either WT T cells or FADD/RIPK3-intact mBC-CML (Fig-
ure 7). In contrast, GVL was completely abrogated when donor T
cells were perforin/- and mBC-CML cells were Fadd”~ Ripk3”,
despite T cells being capable of producing IFN-y and making TCR-
MHC contacts with mBC-CML cells. Therefore, CD4- and CD8-
dependent GVL depends on T cell perforin and /or mBC-CML death
receptor signaling, and T cell-derived IFN-y alone is insufficient.

Discussion
Relapsed acute leukemia after alloSCT remains a major unmet medi-
cal need. Much of the early and exciting efficacy of alloSCT as a form
of adoptive T cell immunotherapy was observed in patients with
CP-CML (33); however, in the tyrosine kinase inhibitor era, these
patients infrequently undergo transplantation. While GVL is active
against myeloblastic leukemias, it is less potent than GVL against
CP-CML. This difference in potency is reflected in the higher rates
of BC-CML and AML relapse after alloSCT. Unfortunately, there has
been little progress in decreasing or treating relapses, in which the
withdrawal of immunosuppression and donor leukocyte infusions
infrequently result in durable remissions. A major barrier to prog-
ress has been a lack of understanding of the resistance mechanisms.
A central paradox, evident since the early days of clinical alloSCT,
is why an alloimmune response sufficient to cause GVHD, promote
100% donor hematopoietic chimerism, and mediate GVL against
CP-CML is so much less effective against AML. Here, we report a
mechanism that may explain this: the alloimmune T cell response
against AML and BC-CML must generate sufficient IFN-y to sensi-
tize myeloblast LSCs to T cell killing. In contrast, a smaller and more
smoldering alloreactive response, which does not generate high lev-
els of IFN-y, is sufficient for GVL against mCP-CML and for GVHD.
Ifngr/- mBC-CML and MLL-AF9 mAML were GVL resis-
tant, and, conversely, IFN-y-deficient T cells mediated no
GVL against mBC-CML, despite their expansion and induction
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Figure 6. T cell-derived IFN-y delivered in cis or in trans is required for CD4-mediated GVL. Irradiated B6 mice were reconstituted with BALB/c BM and B6
B2m- mBC-CML with no T cells or with the following BALB/c background T cells: (i) WT CD4 cells; (i) IFN-y-deficient CD4 cells; (iii) WT CD4 cells plus WT CD8
cells; (iv) IFN-y-deficient CD4 cells plus WT CD8 cells; or (v) IFN-y-deficient CD4 cells plus IFN-y-deficient CD8 cells. Cohorts were sacrificed 10-14 days after
transplantation, and mBC-CML cells were analyzed by flow cytometry. (A) Representative flow cytometry from splenocytes. (B) Percentage of leukemic sple-
nocytes from individual mice (n = 3 independent experiments). Each symbol represents data from an individual mouse; horizontal lines indicate mean values.
(C) Upper panel: WT, but not IFN-y-deficient, CD4 or CD8 cells induced MHCII upregulation on mBC-CML LSCs. The upper panel shows LSC MHCII expression.
Each line represents data from an individual mouse. Lower panel: Percentage of LSCs that were MHCII* from 2 of 3 experiments. Each symbol represents
data from an individual mouse; horizontal lines indicate the mean values. Insufficient numbers of LSCs were present to analyze in the third experiment (see
bottom panel in Figure 5B). (D) In 2 of 3 experiments, the addition of WT CD8 cells, but not IFN-y-deficient CD8 cells, to IFN-y-deficient CD4 cells prolonged

survival (data were combined from 2 experiments). P = 0.0037 comparing the KO CD4 + WT CD8 group to either the KO CD4 or KO CD4 + KO CD8 groups.

of clinical GVHD (data not shown). In mouse models without
immunosuppression, there is an early wave of IFN-y produc-
tion coincident with rapid alloreactive T cell expansion (34-36).
However, in clinical alloSCT, in which pharmacologic immuno-
suppression is given, such a rise in IFN-y may only infrequently
occur, and this may in part contribute to the more global GVL
resistance of myeloblastic leukemias. Chronic GVHD (cGVHD)
has been associated with a lower risk for AML relapse, and
recent data suggest that cGVHD is associated with the action of
IFN-y (37). Perhaps the sustained IFN-y associated with cGVHD
contributes to GVL, along with alloreactive cytolytic T cells. In
contrast, GVL against mCP-CML was independent of type I and
II IFNs or their downstream signaling components STAT1 and
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STAT2, even though gene expression analysis indicated that
mCP-CML LSCs are IFN-y responsive.

In an effort to understand the cell-intrinsic properties of mBC-
CML cells that render them GVL resistant relative to CP-CML cells,
we have tested in GVL models mouse blast crisis and chronic phase
leukemias deficient in numerous genes including those encoding
B2M, MHCII, Fas, TRAIL, TNFR1/R2, PD-L1, PD-L2, ICAM-1, and
IFNARI (10, 11, 24, 25). Until the present study, we found no defi-
ciency that selectively diminished GVL against mBC-CML without
equivalently reducing GVL against mCP-CML.

Other factors in addition to the requirement for IFN-yR signal-
ing may also contribute to the relative GVL resistance of myeloblas-
tic leukemias as compared with that of CP-CML. Nonetheless, the
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Figure 7. CD4 and CD8-mediated GVL require intact T cell perforin or leukemia FADD/RIPK3,

and T cell-derived IFN-y alone is insufficient for GVL. Irradiated B6 mice were reconstituted with
BALB/c BM and B6 Fadd~- Ripk3~- (DKO) or control B6 Fadd*/~ Ripk3*- mBC-CML (WT) with no
BALB/c T cells or with WT or perforin-/- CD8 cells (A) or CD4 cells (B). Data show survival rates from
1of 2 similar experiments with 10 mice per group. P < 0.0003, comparing any WT or DKO BM-alone
group with any WT T cell group. P > 0.07, comparing DKO BM-alone versus perforin”/- CD4 or CD8

groups. P values determined by 2-tailed Mann-Whitney U test.

present results argue that GVL could be meaningfully augmented
by exposing malignant myeloblasts to IFN-y after transplantation,
timed to coincide with the presence of alloreactive cytolytic T cells.
The key translational question is how to achieve this. IFN-y-induced
MHC upregulation and GVL sensitization do not require TCR-MHC
contacts between IFN-y-producing T cells and leukemia cells (see
Figures 1 and 5). That is, IFN-y can be delivered to leukemia cells in
trans by T cells that do not target the leukemia cells. This suggests
a feasible clinical strategy. CMV reactivation early after transplanta-
tion and the use of CMV seropositive donors have been associated
with lower rates of AML relapse (38-41). CMV reactivation induces
the expansion of CMV-reactive T cells and NKG2C* NK cells (42),
both of which can produce IFN-y and raise serum IFN-y levels (43).
Although other explanations are possible, our data suggest that
anti-CMV immune responses could be promoting GVL through the
elaboration of IFN-y. Approaches to further promote the anti-CMV
immune response, perhaps by donor and recipient anti-CMV vacci-
nation (44, 45), might augment GVL without an increase in GVHD.
This strategy is analogous to our use of IFN-y-positive CD8 cells to
promote GVL by IFN-y-deficient CD4 cells.

That IFN-y was required for CD4-mediated GVL is easy to
understand, given its importance in upregulating MHCII. How-
ever, it was surprising that Ifngr”~ mBC-CML and MLL-AF9
mAML were resistant to CD8-mediated GVL, as these leukemias
are MHCI" at baseline, and IFN-y-induced MHCI upregulation is
modest or does not occur in the case of MLL-AF9 AML. It is pos-
sible that MHCI upregulation crosses a threshold of MHCI-miHA
peptide complexes to sufficiently engage alloreactive T cells. How-
ever, the fact that Ifingr”- mBC-CML was also resistant to CD8-
mediated GVL in the MHC-mismatched setting argues against this
being the sole explanation, considering the much higher frequency
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ing. Discovering precisely how IFN-yR signaling
sensitizes mBC-CML and AML cells to Kkilling
will require substantial further investigation, and
given the pleiotropic effects of IFN-yR signaling,
it is possible that no single downstream mech-
anism will explain its dominant role. Another
intriguing and unanswered question is what sig-
nal(s) in the alloimmune environment induce
MHCII upregulation on mCP-CML LSCs. Given
that TCR-MHC interactions are alsonot required,
a soluble factor is most likely responsible.

We used Fadd”’~ Ripk3”~ mBC-CML and
perforin”~ T cells to demonstrate that, despite
IFN-y being critical for GVL, alone it is insuffi-
cient, as there was no GVL when T cells lacked
perforin and leukemias lacked FADD and
RIPK3. These data also highlight the idea that
cytolytic pathways engaged by both CD4 and
CD8 cells are redundant, in that either perforin or death receptor
FADD/RIPK3-dependent killing is sufficient for GVL.

We studied models of CP-CML, BC-CML, and AML, which
share essential genetic and phenotypic features with their
human counterparts (49). It will be important to determine
the importance of IFN-y in GVL against other mouse myeloid
leukemias and against human AML samples. Available data
suggest that IFN-y could broadly impact GVL against human
AML. Human AML stem cells include MHCII cells (50), and
acute promyelocytic AML is classically MHCII". Other leuke-
mias reported to be MHCII* usually have cell populations that
are MHCII, as the MHCII expression threshold for calling an
AML MHCII* does not require all cells to express MHCII (51-
54). Therefore, if alloreactive CD4 cells are to directly medi-
ate GVL against these MHCII cells, MHCII expression must
be induced. Primary human AML cells and AML-like cell lines
express the IFN-yR and are IFN-y responsive (48, 55-62), with
both basal and IFN-y-induced STAT1 phosphorylation (58) and
MHCI and MHCII upregulation. We hope our results demon-
strating a critical role for IFN-y in GVL responses against two
clinically relevant mouse models of myeloblastic leukemias
will both stimulate a broader evaluation of the IFN-y respon-
siveness of additional mouse AML models and of human AML
specimens classified by molecular features, and the develop-
ment of approaches to safely deliver IFN-y in the clinic.

Methods

Mice
C57BL6 (B6; H-2Y) and BALB/c (H-29) mice were purchased from
Harlan Laboratories. C3H.SW mice were purchased from The Jack-
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son Laboratory and bred at Yale University. IFN-y-deficient (63) and
perforin”/~ mice backcrossed with BALB/c mice (64, 65) were bred at
the University of Iowa and at Yale University. Ifigr/- mice were pur-
chased from the Jackson Laboratory. Ifnarl”- mice were obtained
from H. Rosenberg (66) (National Cancer Institute [NCI], Bethesda,
Maryland, USA) and bred at Yale University. Ifinarl”" Ifngr’- mice were
obtained from William Klimstra (University of Pittsburgh School of
Medicine, Pittsburgh, Pennsylvania, USA). Stat1”~ Stat27- mice were
obtained from John Alcorn (University of Pittsburgh). B6.H60 mice
were originally obtained from Derry Roopenian (The Jackson Labora-
tory) and were bred at the University of Pittsburgh. B6 Fadd”~ Ripk37
and control B6 Fadd”* Ripk3”* mice were maintained at St. Jude Chil-
dren’s Research Hospital (Memphis, Tennessee, USA) (32).

Leukemia induction

mBC-CML and mCP-CML were created as previously described
(11, 12). Briefly, mBC-CML was created by spin-infection of BM
from 5FU-treated mice with two MSCV2.2-based retroviruses, one
expressing BCR-ABL (along with a truncated and nonsignaling
human nerve growth factor receptor [NGFR]) and a second express-
ing NUP98 and HOXA9 (coexpressing GFP) (11). MLL-AF9 AML
was induced by transduction with an MSCV2.2-based retrovirus
encoding the MLL-AF9 fusion cDNA and GFP (27) (gift of Scott Arm-
strong, Memorial Sloan Kettering Institute, New York, New York,
USA). Cells were passaged in vivo and frozen. For each experiment
mCP-CML was created by spin-infection with BCR-ABL retrovirus
alone as described previously (24).

BMT

Four different strain pairings were used in alloBMT experiments. All
irradiation was delivered by a cesium irradiator. All BM was T cell
depleted and is referred to herein as BM.

C3H.SW (H-2")—B6 (H-2"). B6 mice received 900 cGy irradiation
and were reconstituted with 5 x 10¢ to 7 x 10¢ C3H.SW BM, with or
without bead-purified C3H.SW CD4 or CD8 cells.

C3H.SW—B6.H60. B6.H60 mice received 900cGy irradiation
and were reconstituted with 7 x 10¢ C3H.SW BM cells and CD8*CD44*
cells from C3H.SW mice vaccinated against H60 as previously
described (26).

BALB/c (H-2)—B6. B6 mice were irradiated (900 cGy) and
reconstituted with 107 BALB/c BM cells, with or without purified
BALB/c (WT or gene-deficient) CD4 or CD8 cells.

B6—BALB/c. Irradiated BALB/c mice (900 cGy) were reconsti-
tuted with 107 B6 BM cells, with or without purified B6 CD4 or CD8
cells. mBC-CML and AML cells were either from frozen stocks or
fresh cells harvested from sublethally irradiated B6 mice seeded 14 to
21 days beforehand. Two hundred micrograms anti-NK1.1 (PKC136;
lab-prepared) was given i.p. on days -2 and -1 in experiments with the
BALB/c—B6 strain pair and on days -2, -1, and +7 in experiments with
f2M7- mBC-CML to prevent NK cell-mediated killing of MHCI" or
H-24cells.

Antibodies and flow cytometry

mCP-CML LSCs were identified by excluding lin* cells using stain-
ing with biotin-conjugated antibodies against TER-119, Gr-1, CD19,
and CD11b (all from BD Pharmingen; clones TER-119, RB6-8C5,
1D3, and M1/70, respectively); CD4 and CDS8 (clones GK1.5 and
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TIB120; lab-prepared); CD117 phycoerythrin (PE) and Sca-1 FITC
(BD Pharmingen; clones 2B8 and Ly-6a/E); and anti-NGFR Alexa 647
(clone HB8737; lab-prepared). mBC-CML cells (lin") could be identi-
fied by only staining for CD11b. Staining for K® and I-A/I-E (MHCII)
was done with clones AF6-88.5 and M5/114.15.2, respectively (BioLeg-
end). Phosphorylated STAT1 (p-STAT1) staining was performed with
or without IFN-y stimulation, followed by fixation in 2% paraformalde-
hyde in PBS. The cells were permeabilized in BD Phosflow Perm Buffer
I1I for 30 minutes on ice, washed twice in BD Pharmingen Stain Buf-
fer, and stained with PE-conjugated p-STAT1 antibody (pY701; BD).
H60-reactive T cells, which detect the LTFNYRNL peptide bound to
K®, were identified by MHCI tetramer staining (Tet"¢°"). H60 tetram-
ers were created at the NIH’s tetramer facility (Atlanta, Georgia, USA).

Cell purifications

Lymph node (LN) and splenic cells were prepared as previously
described (11). T cell purifications were performed using EasySep neg-
ative selection reagents according to the manufacturer’s instructions
(STEMCELL Technologies). Cell purities were greater than 88%,
with less than 2% of contaminating CD4 or CD8 cells. CD8 memory
T cells were isolated from H60-vaccinated mice by first using a CD8
EasySep negative selection kit. Cells were then stained with antibod-
ies against CD8 and CD44, followed by sorting on a FACSAria cell
sorter (BD Biosciences).

In vitro mBC-CML stimulation

Splenocytes from sublethally irradiated B6 mice injected with mBC-
CML cells approximately 2 to 3 weeks earlier (at least 80% EGFP*
NGFR*) were cultured for different lengths of time in DMEM with
10% FCS with graded amounts of IFN-y (Peprotech). In experiments
in which IFN-y was removed and cells were recultured, cells were
washed 4 times in 50 cc of media. The final supernatant was cultured
with fresh mBC-CML cells for another 72 hours as a confirmation that
IFN-y had been removed. At the end of the culture period, cells were
more than 80% viable.

Gene expression profiling
mCP-CML. Irradiated BALB/c mice were reconstituted with B6 BM,
7 x 10° BCR-ABL spin-infected B6 BM (see leukemia induction) with
no B6 T cells, or with 5 x 10° B6 CD4 cells. On day 12 after BMT,
NGFR*LSK cells were separately sorted from the spleens of 3 individ-
ual mice from each group.

mBC-CML. Irradiated B6 mice were reconstituted with C3H.
SW BM, B6 WT or Ifngr”- mBC-CML, with no T cells, or with 4 x 10¢
C3H.SW CD#4 cells. On day 14 after BMT, lin- mBC-CML cells were
sorted from the spleens of 3 individual mice from each group. RNA
was isolated using a QTAGEN RNA Extraction Kit, followed by library
preparation using an Epicentre kit. Expression was analyzed by quan-
titation using an Illumina WG-6 v2.0 Expression Bead Chip. Differen-
tial expression was computed using the Bioconductor package (67),
and pathway analysis was performed using the limma “camera” func-
tion (68), which controls for intercorrelation among genes, and the
“canonical pathways” gene sets provided by mSigDB (69).

Statistics
Survival differences were calculated using the log-rank test (Mantel-
Cox) (GraphPad Prism; GraphPad Software version 7). In some
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CD8-mediated GVL against mCP-CML experiments, some mice
reached predetermined criteria for sacrifice due to GVHD. If spleens
were small and the most recent analysis of peripheral blood showed,
at most, only a few NGFR* CP-CML cells, these mice were scored as
having GVHD and were censored (see Figure 2, G and H). Differences
in cell percentages were determined by 2-tailed Mann-Whitney U test.
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