SUPPLEMENTARY MATERIAL from:

Genomic and Transcriptomic Hallmarks of Poorly-Differentiated and Anaplastic Thyroid Cancers

Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP, Xu B, Schultz N, Berger MF, Sander C, Taylor BS, Ghossein R, Ganly I, Fagin JA

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure S1. Diagrams showing mutation location, count and alteration type for common somatic variants in ATCs and PDTCs. Each graph depicts the mutations found in each gene altered in our series of 117 advanced thyroid tumors. Graphs were generated with the MutationMapper tool (v1.0.1) available at cBioPortal (http://cbioportal.org). Proteins are represented left to right from N- to Cterminal regions, with aminoacid (aa) positions shown on the X-axis and with main domains highlighted. Location of mutations in the protein are depicted as circles, the height of which represents the mutation count for that position, as measured in Y-axis. Circles are color-coded as follows: green= missense; red= truncating (nonsense, nonstop, frameshift deletion, frameshift insertion, splice site); black= in-frame (inframe deletion, in-frame insertion), blue= promoter mutations; purple= residues affected by different mutation types in the same proportion. Where different mutation types occur at a single position, color is determined by the most frequent mutation type. The most common residue mutated for each protein is spelled out in the graph. A. BRAF; B. NRAS; C. HRAS; D. KRAS; E. NF1; F. TSHR; G. STK11; H. EIF1AX; I. PIK3CA; J. PTEN; K. TERT promoter; L-P. Tumor suppressor genes frequently mutated; L. TP53; M. ATM; N. RB1; O. NF2; P. MEN1; I, J, Q-Y. PI3K/AKT/mTOR pathway proteins; Q. PIK3C2G; R. PIK3CG; S. PIK3C3; T. PIK3R1; U. PIK3R2; V. AKT3; W. TSC1; X. TSC2; Y. MTOR; Z-AF. SWI/SNF complex: Z. ARID1A; AA. ARID1B; AB. ARID2; AC. ARID5B; AD. SMARCB1; AE. PBRM1; AF. ATRX; AG-AJ. Histone methyltransferases (HMTs): AG. KMT2A; AH. KMT2C; AI. KMT2D; AJ. SETD2; AK-AM. Mismatch excision repair (MMR): AK. MSH2; AL. MSH6; AM. MLH1; AN-AQ. Proteins involved in histone acetylation; AN. CREBBP; AO. EP300; AP. BCOR; AQ. BCL6; AR-AV. Receptor tyrosine kinases; AR. EGFR; AS. EPHA3; AT. FLT1 (VEGFR1); AU. FLT4 (VEGFR3); AV. KDR (VEGFR2); AW-AZ. NOTCH: AW. NOTCH1; AX. NOTCH2; AY. NOTCH3; AZ. NOTCH4; BA. PRKAR1A; BB. DIS3; BC. FAT1; BD. POLE; BE. RBM10; BF. RAD54L; BG. RECQL4; BH. SF3B1; BI. CDKN1B; BJ. CDKN2A; BK. CDKN2C; BL. ERBB2; BM. PTCH1; BN. DAXX.

Supplementary Figure S2. Tumor purity of PTCs, PDTCs and ATCs. A. Calculation of tumor purity was based on the assumption that driver mutations are clonal heterozygous events (see Methods). Graph shows percentage of tumor content for 62 PDTCs and 32 ATCs. We applied the same purity calculation method to 286 *BRAF-* or *RAS-*mutated tumors from the PTC-TCGA dataset. Horizontal blue bars show the median value for each tumor type, which is also shown in the adjacent table. p-values were derived from Mann-Whitney tests.

Supplementary Figure S3. Comparison of copy number calls in a subset of 37 frozen tumors (17 PDTCs and 20 ATCs) by array-CGH vs IMPACT with or without correction for tumor purity. Examples for chromosome 1p loss (panels A-C) and chromosome 20q gain (D-F) are shown. Copy number alterations were assessed by an array-CGH platform from Agilent (A, D) and by MSK-IMPACT targeted sequencing without (B, E) or with tumor purity-correction (C, F). Samples were ranked based on log-ratio values for identical regions in the respective chromosomes. Sample IDs and log-ratios corresponding to each sample are listed in the figure. A-C: The nine tumors with top 1p losses (mostly PDTCs with high tumor content) were similarly detected by both CGH and IMPACT, with minor changes in sample order, although IMPACT showed more negative log-ratios. D-F: IMPACT-detected 20q gains (an alteration enriched in ATCs) matched those with the highest log-ratios as called by array-CGH (green), and identified gains in additional highly impure specimens (black), particularly after correcting for tumor purity.

Supplementary Figure S4. Genome-wide copy number alterations in 117 advanced thyroid cancers. IGV representation of copy number gains and losses in all chromosomes in 84 PDTCs and 33 ATCs expressed as red (gain) or blue (loss), with shading intensity proportional to the log-ratio (lr) values. Samples are grouped by tumor type and sorted by genetic driver alteration: *BRAF, RAS*, fusions (RET/PTC, PAX8-PPARG and ALK), or none/unknown. Color key and annotations are shown on the left. Top panel shows the eight arm-level regions recurrently gained or lost in PDTCs and ATCs, further discussed in Figure 5 and in the main text.

Supplementary Figure S5. Extended BRS heatmaps for 17 PDTCs and 20 ATCs. Heatmaps representing the complete 67-gene BRS signature applied separately to PDTCs (panel **A**) and ATCs (**B**). Expression values are displayed as Z-scores after scaling the values of each gene across the 17 and 20 tumors, respectively. Samples are sorted by ascending BRS score (*BRAF^{V600E}*-like on the left and *RAS*-like on the right, within each panel) and annotated for driver alteration. This is an expanded version of Figure 6B, which only shows 26 out of the 67 genes in the signature, and combines PDTCs and ATCs in the same heatmap.

Supplementary Figure S6. Extended M2 macrophage gene signature heatmap in 37 advanced thyroid tumors. Unsupervised clustering showing the complete 68-gene signature of "genes overexpressed in M2 macrophages" in 17 PDTCs (green) and 20 ATCs (orange). Expression values are displayed as Z-scores after scaling the values of each gene across the 37 samples. This figure is an expanded version of Figure 7A, which only shows the 11 most discriminative genes out of the total 68 genes in this signature.

Supplementary Figure S7. TDS heatmap in 37 advanced thyroid tumors. Unsupervised clustering using the 16-gene TDS signature in 17 PDTCs (green) and 20 ATCs (orange). Expression values are absolute (not scaled across samples) and they match the ones represented in the box-plots shown in Figure 7B.

SUPPLEMENTARY TABLE LEGENDS

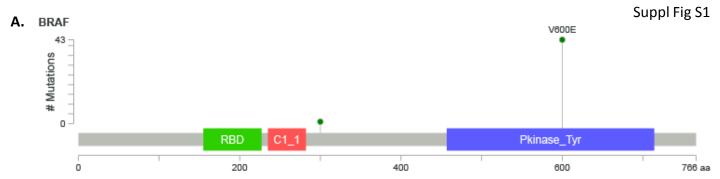
Supplementary Table S1. Clinicopathological features of 117 advanced thyroid tumors. Detailed information of the main features of 84 poorly-differentiated (PDTC) and 33 anaplastic thyroid cancers (ATC) reported in the study. All categories and color codes depicted in Figure 1 and summarized in Table 1 are expanded here.

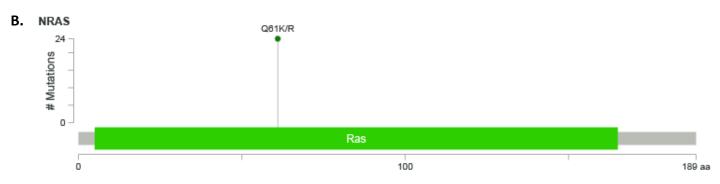
Supplementary Table S2. Impact of mutation burden on clinicopathological features of advanced thyroid tumors.

Supplementary Table S3. Contingency tables for the main genetic alterations found in PDTCs and ATCs. Mutation distribution and associated tests for all genes/pathways in PDTCs *vs.* ATCs, as shown in Figure 1. ¹ "*RAS*" category includes *NRAS*, *HRAS* and *KRAS*; ² "Thyroid fusions" include rearrangements of genes previously reported in thyroid tumors: RET/PTC, PAX8-PPARG and *ALK* fusions; ³ Significant p-values are highlighted in yellow; marginally significant are highlighted in grey; Abbreviations: PDTC= Poorly-Differentiated Thyroid Cancer, ATC= Anaplastic Thyroid Cancer, HMT= histone methyltransferase, MMR= mismatch excision repair.

Supplementary Table S4. Full list of single nucleotide variants (SNVs) and short indels in 341 genes in 117 advanced thyroid tumors. Complete list of all variants called in 84 poorly-differentiated (PDTC) and 33 anaplastic thyroid cancers (ATC). The following categories are listed: Tumor type= PDTC or ATC; Sample ID= identification code of each tumor; Alternate ID= alternative tumor identification code; Normal = paired or pooled normal tissue identification code; Gene_mutation summary= the first column refers to the gene and the second to the protein; Chrom= chromosome number; Coordinate start site= genomic coordinate (hg19); Ref= reference (wildtype) allele; Alt= alternative (mutant) allele; Variant Class= type of alteration, depending on its effect on the protein product; Gene= gene name (HUGO nomenclature); cDNA change= variant nomenclature, based on the complementary DNA coordinates; AA change= variant nomenclature, based on the change in the protein (AA= aminoacid); dbSNP_ID= "rs" code from NCBI SNP database (<u>http://www.ncbi.nlm.nih.gov/snp</u>); COSMIC_ID= mutation code from Sanger's Catalogue of Somatic Mutations in Cancer (COSMIC, <u>http://cancer.sanger.ac.uk/cosmic</u>); T_Total Depth= total number of sequencing reads that include position of variant nucleotide in each sample; T_Ref Count= number of reads for the reference allele in the tumor; T_Alt Count= number of reads for the alternative allele in the tumor; T_Alt Count= number of reads for the alternative allele in the tumor (=T_Alt Count/T_Total Depth); N_Total Depth= total number of sequencing reads in the normal tissue; N_Ref Count= number of reads for the reference allele in the normal; N_Alt Count= number of reads for the alternative allele in the normal; N_Alt Freq= frequency of the alternative allele in the normal (=N_Alt Count/N_Total Depth).

Supplementary Table S5. Clinicopathological characteristics of ATCs and PDTCs according to *BRAF* and *RAS* mutation status and gene fusions.

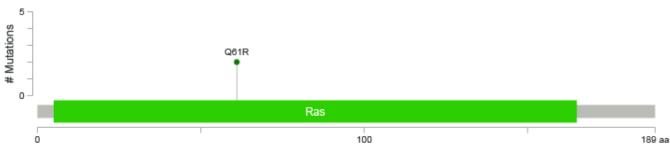

Supplementary Table S6. Clinicopathological characteristics of ATCs and PDTCs according to *EIF1AX* mutation status.

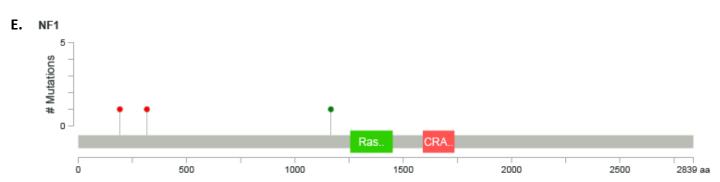

Supplementary Table S7. Clinicopathological characteristics of ATCs and PDTCs according to *TERT* promoter mutation status.

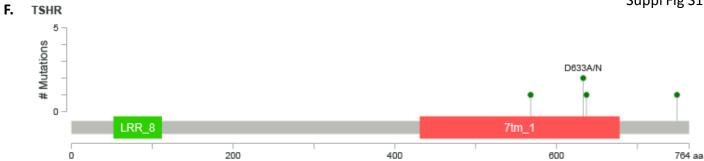
Supplementary Table S8. Prevalence of common gene mutations in advanced thyroid cancers reported in the literature. Summary of published studies reporting genetic alterations in PDTCs and/or ATCs for BRAF, RAS, RET/PTC, TP53, PIK3CA, PTEN, AKT1, CTNNB1, AXIN1, APC, TERT promoter and EIF1AX.

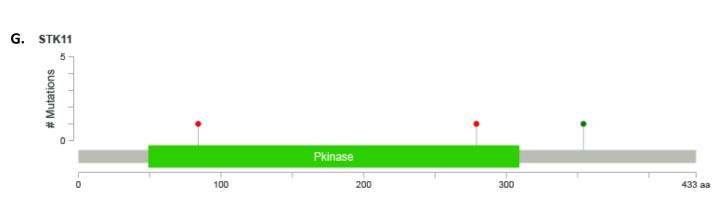
Supplementary Table S9. Tumor characteristics and gene expression results of 37 advanced thyroid tumors. Characteristics of the 17 PDTCs and 20 ATCs frozen tissues used for gene expression studies. Sample types, tumor purity and driver alterations are listed. Individual gene expression scores for the

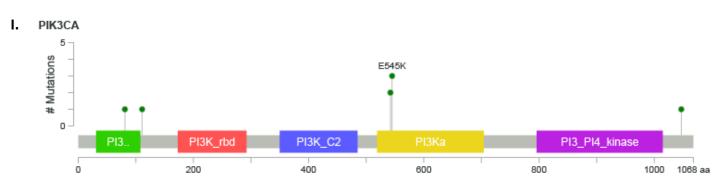
following signatures are shown: BRAF-RAS score (BRS; see as well Figures 6B, C and Supplementary Figure S5), M2 macrophage signature (Figure 7A and Supplementary Figure S6) and the thyroid differentiation score (TDS, Figure 7B-D and Supplementary Figure S7). Average expression values are listed for all three signatures for each sample, and individual expression values (relative to all genes expressed) are given for the 16 thyroid genes that define the TDS.

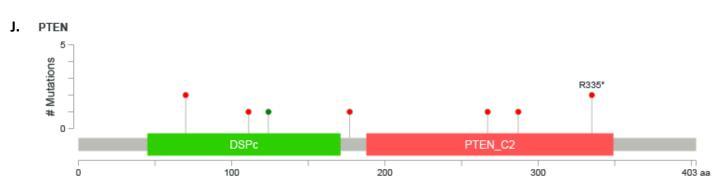


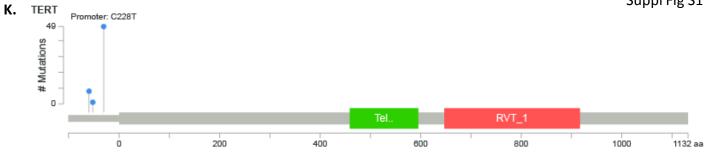


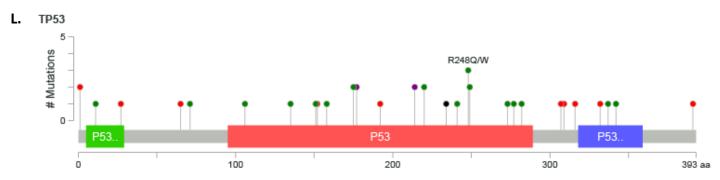


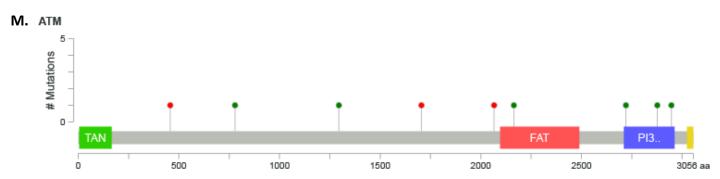


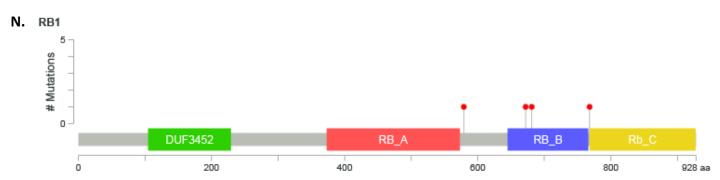


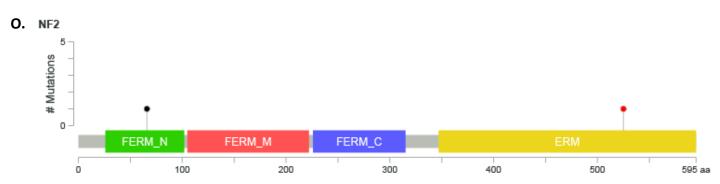


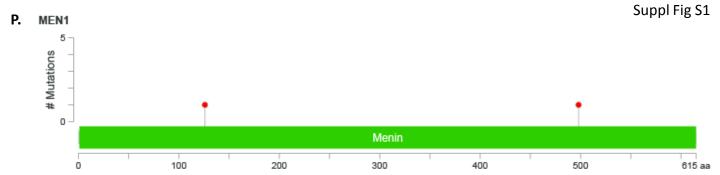


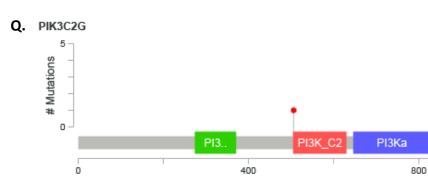




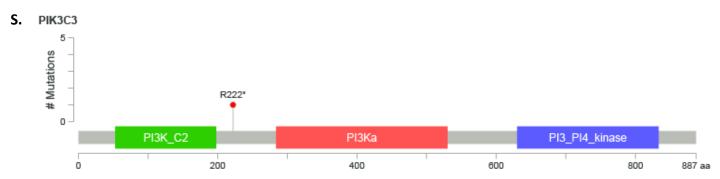


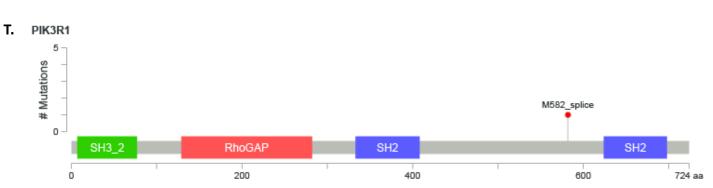


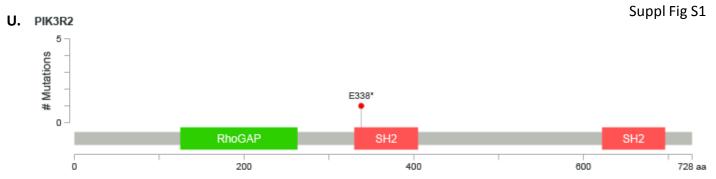




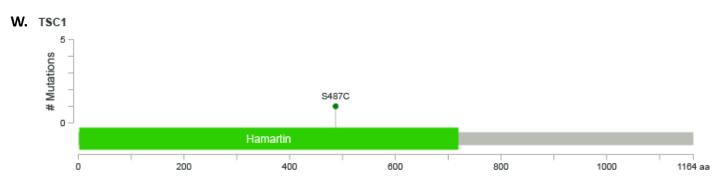
Suppl Fig S1

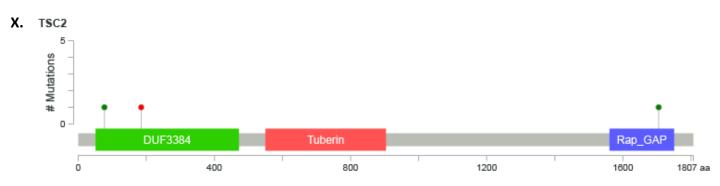

R.

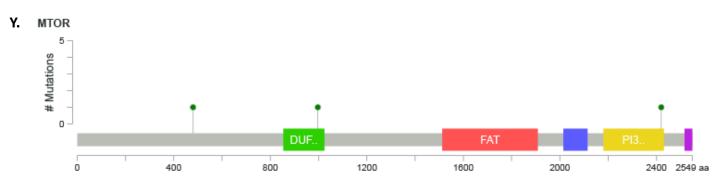


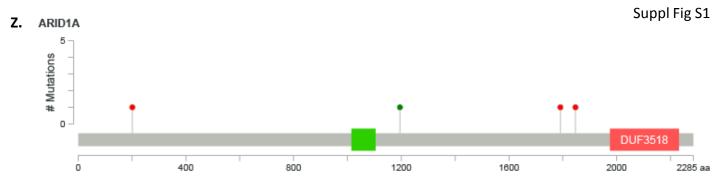

PX

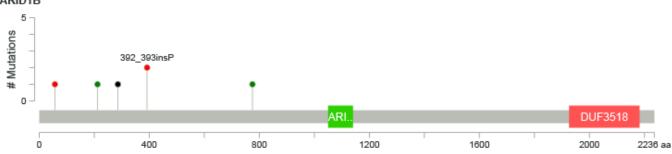
1445 aa

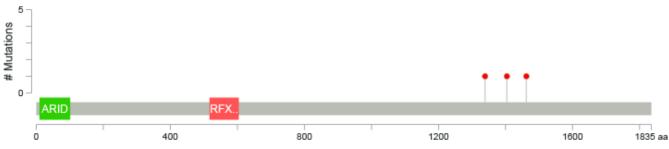

1200

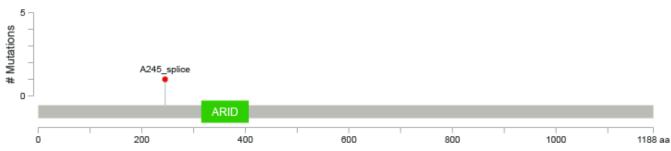


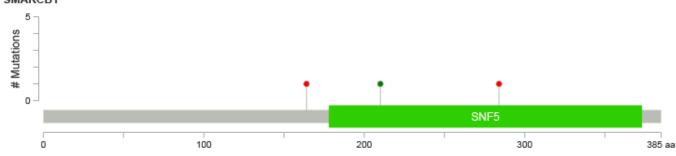


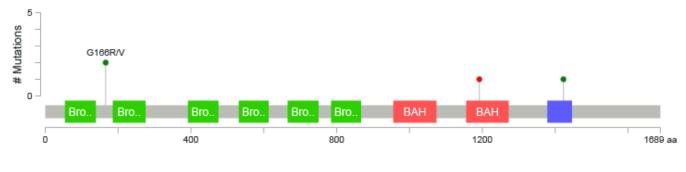


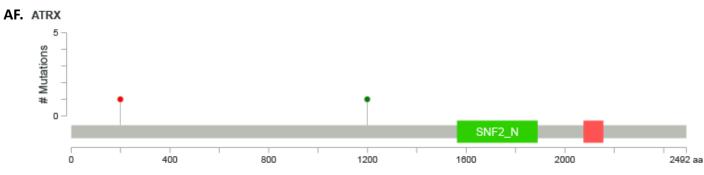


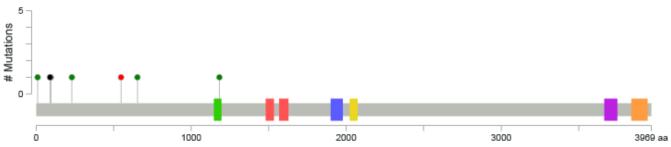


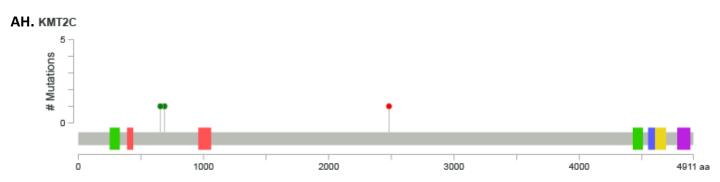


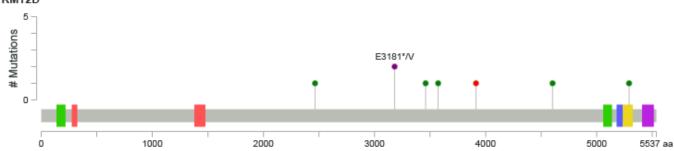


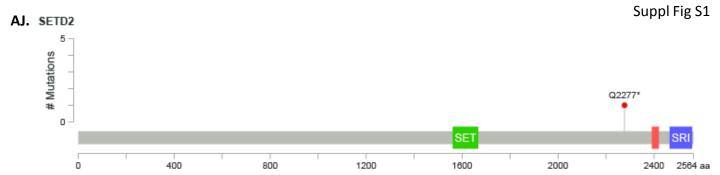

AC. ARID5B

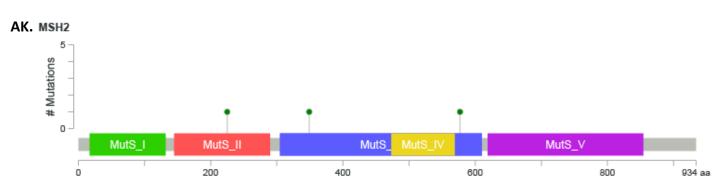


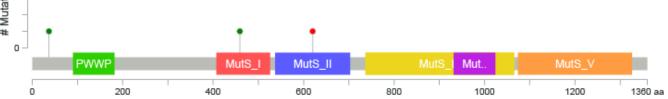


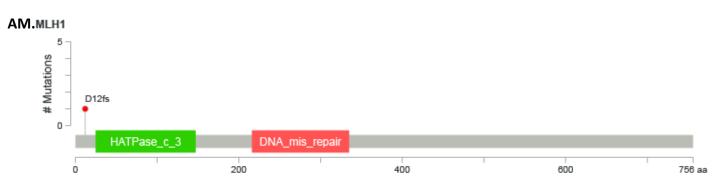


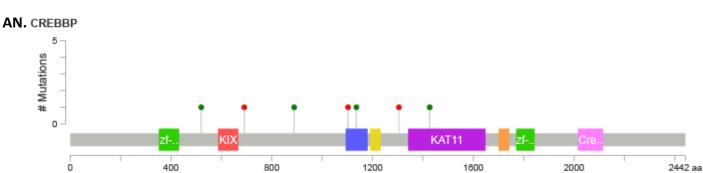


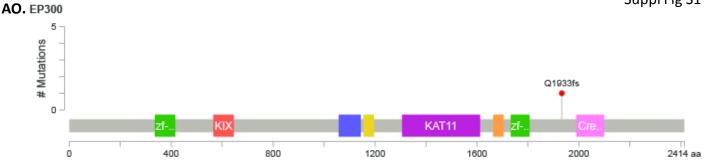


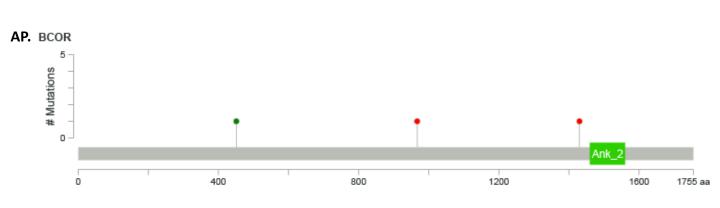


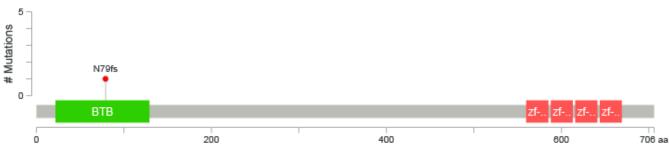


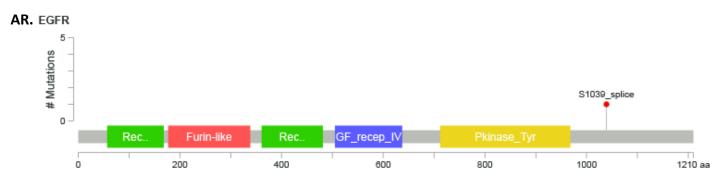


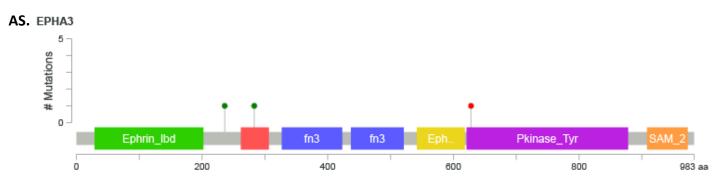


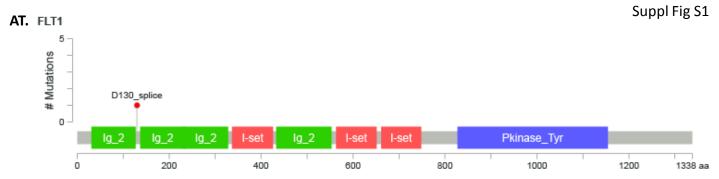


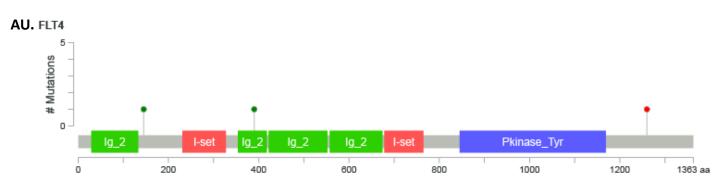


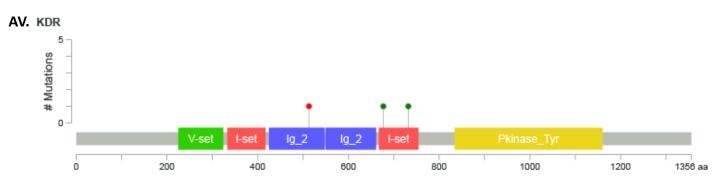


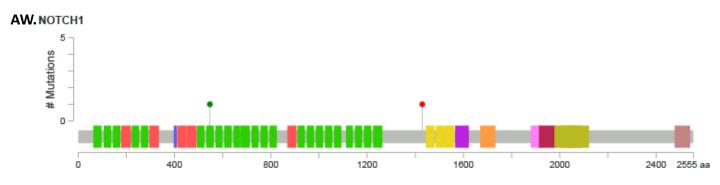


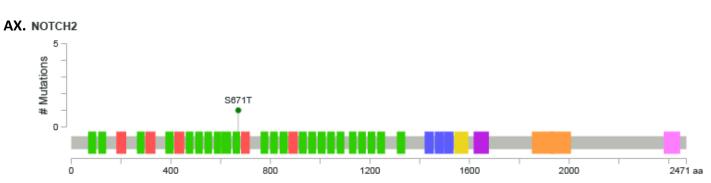




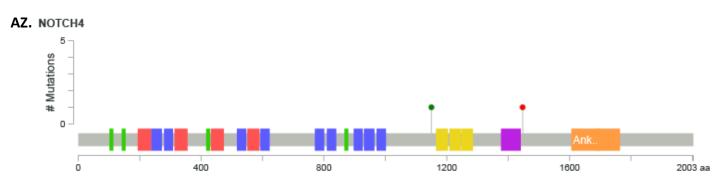




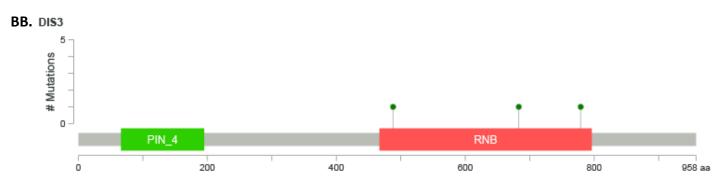


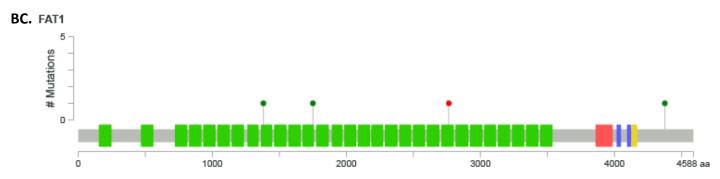


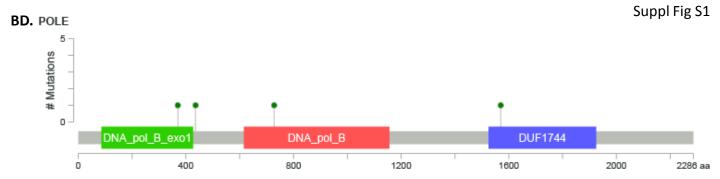


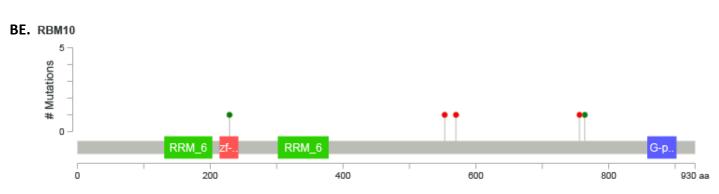


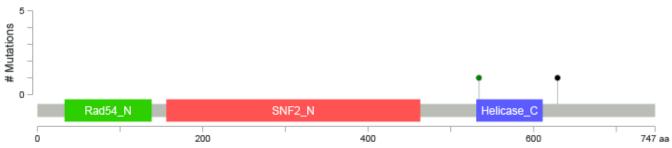


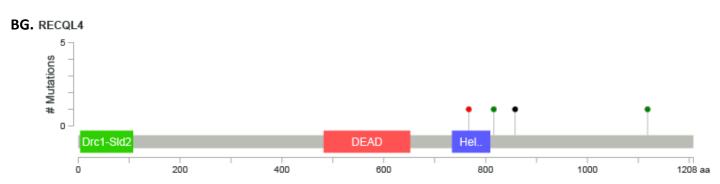


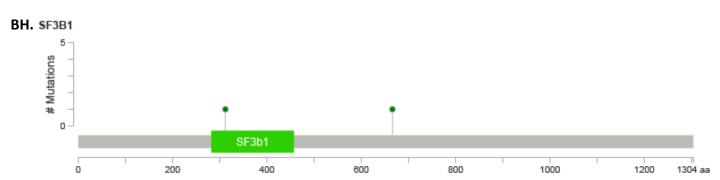


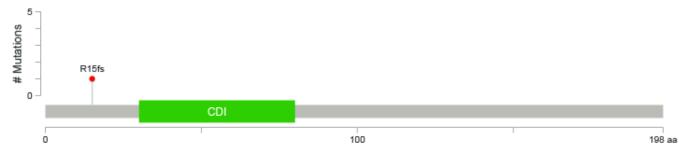


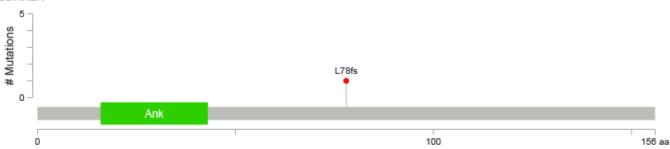


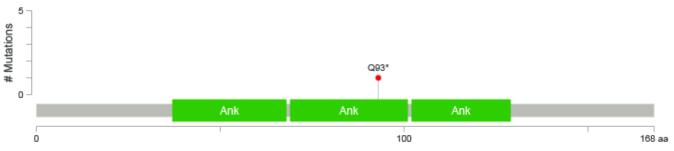


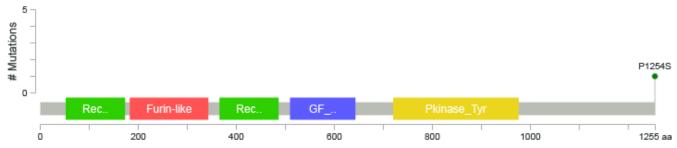


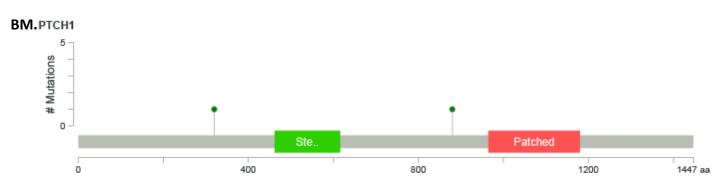


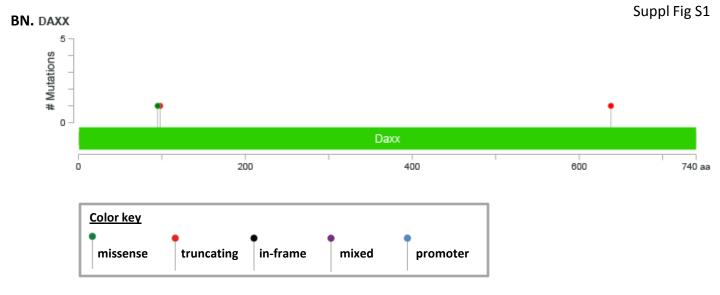


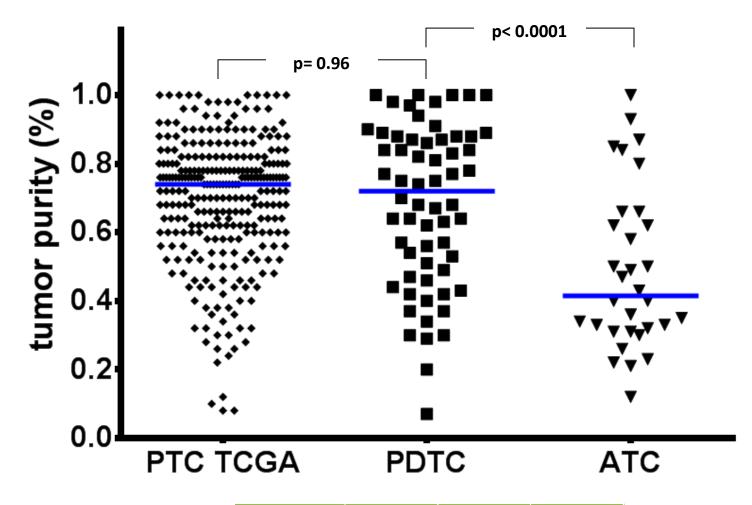



BI. CDKN1B

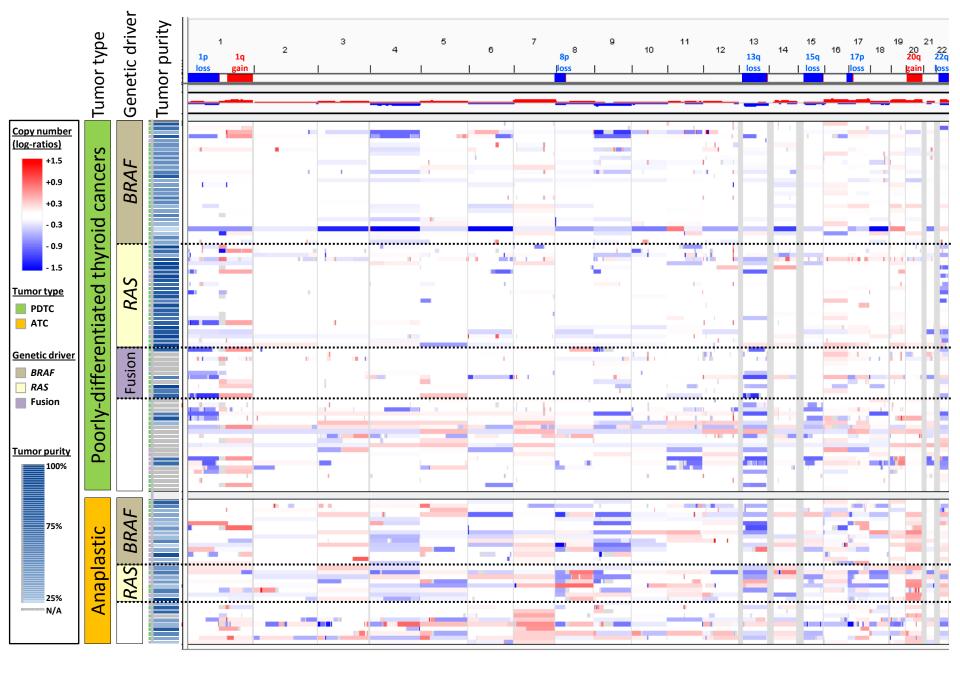

BJ. CDKN2A

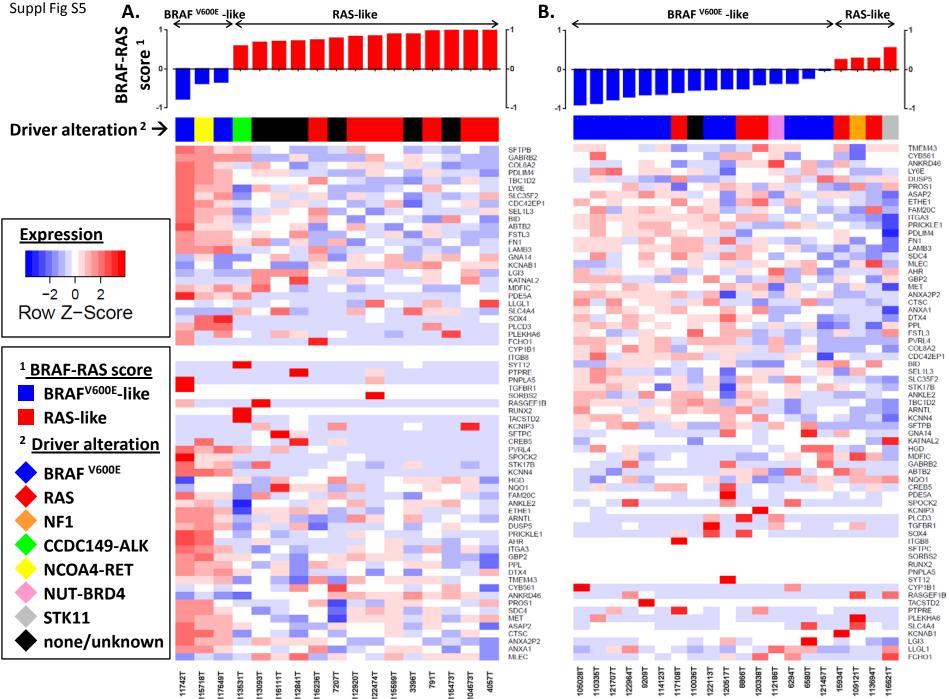


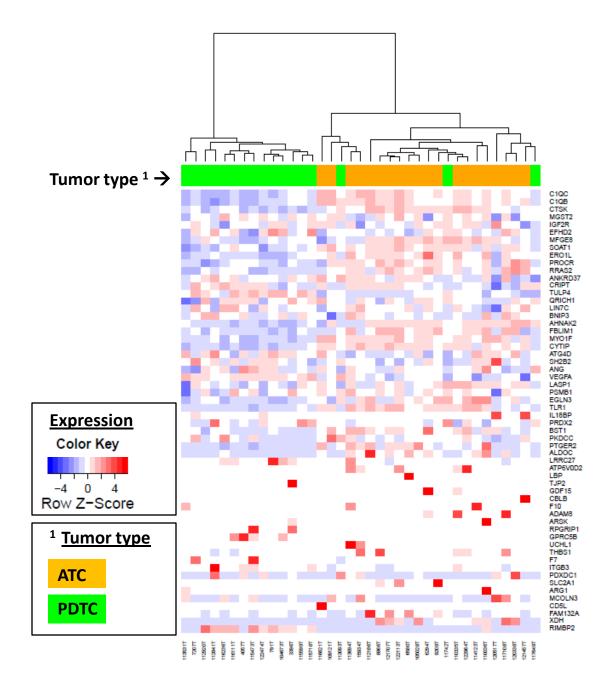

BK. CDKN2C

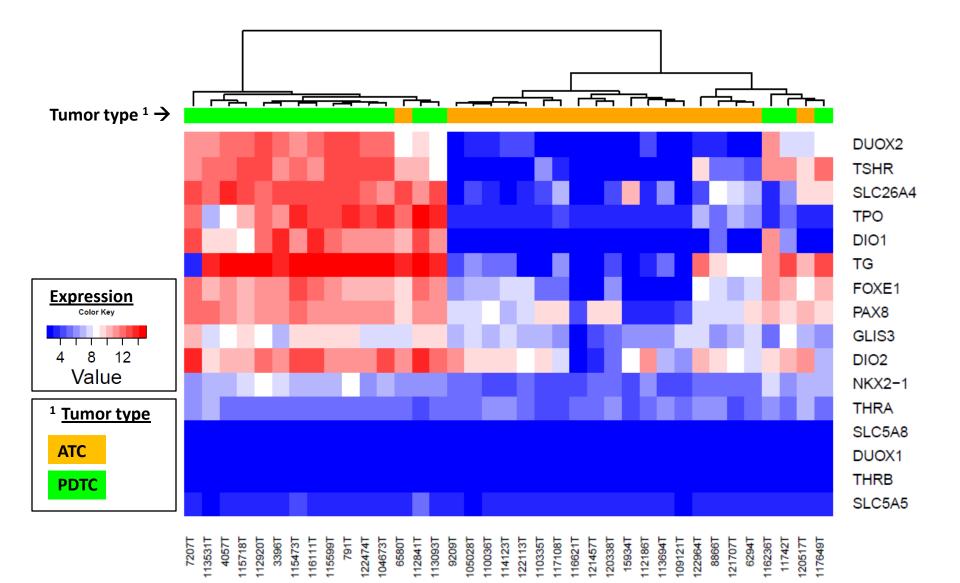


BL. ERBB2



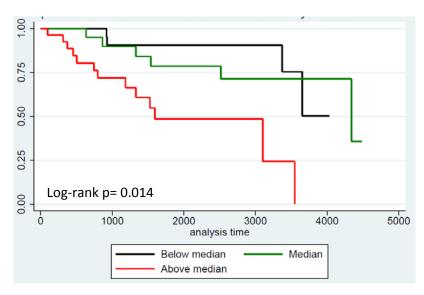





	PTC TCGA	PDTC	ATC
Number of tumors	286	62	32
Median purity	0.74	0.72	0.42

С	Copy number, array-CGH			Copy number, IMPACT			Copy number, IMPACT, corrected		
A. , 10, 1, 10, 1, 10, 10, 10, 10, 10, 10,	Lice the life the late and the lot	477 494 495 494 4971 4971 4971 49	B	داره ديره ديه بيه <mark>ترييم ديرم ديرم</mark> ديرم	451 455 411 415 411 415	••• C. •== •=	Life tip its the Life Life Life Life the	ຄາ ຄົມ ຄາວ ຄາວ ຄານ ຄານ	
Nob	Hinto Hinto	130 rab 111 na	1 Non Hon	53 mb	116.mb	12 Non 000	53 mb	50 mb 110 mb	
JF_thy_007	-0.42		JF_thy_007	-0.79		JF_thy_007			
JF_thy_009	-0.33		JF_thy_033	-0.63		IF_thy_009			
JF_thy_012	-0.33		JF_thy_020			IF_thy_018			
JF_thy_020	-0.37		JF_thy_012	-0.65		JF_thy_012			
JF_thy_033	-0.32		JF_thy_009	-0.59		JF_thy_033	-0.64		
JF_thy_018	-0.32		JF_thy_018	-0.69		JF_thy_020			
JF_thy_030	-0.32		JF_thy_030	-0.59		JF_thy_034	-0.66		
JF_thy_021	-0.13		JF_thy_021	-0.24		JF_thy_030	-0.65		
JF_thy_034	-0.11		JF_thy_034	-0.25		JF_thy_021	-0.26		
D. 103 113 113	روینها ایرینها ایرینها ایرینها ایرینها ایرینها ایرینها ایرینها		•	30 mb	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	F. P132 p132 p132	ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر	934 - 91437 - 91437 - 9145 944	
		013 0111 1 0113 0133 0133 1 0140						9-4- 1 1	
JF_thy_013	30mb +0.37		JF_thy_013			JF_thy_015	ланы 1 +0.73		
JF_thy_013 JF_thy_011	*** +0.37 +0.16		JF_thy_013 JF_thy_024	30mb +0.68 +0.35		JF_thy_015 JF_thy_011	50 mb +0.73 +0.68		
JF_thy_013 JF_thy_011 JF_thy_017	**** +0.37 +0.16 +0.15		JF_thy_013 JF_thy_024 JF_thy_017	+0.68 +0.35 +0.30		JF_thy_015 JF_thy_011 JF_thy_024	**** +0.73 +0.68 +0.67		
JF_thy_013 JF_thy_011 JF_thy_017 JF_thy_024	*** +0.37 +0.16		JF_thy_013 JF_thy_024 JF_thy_017 JF_thy_014	30mb +0.68 +0.35		JF_thy_015 JF_thy_011	50 mb +0.73 +0.68		
JF_thy_013 JF_thy_011 JF_thy_017 JF_thy_024 JF_thy_014	**** +0.37 +0.16 +0.15 +0.15		JF_thy_013 JF_thy_024 JF_thy_017	+0.68 +0.35 +0.30 +0.29		JF_thy_015 JF_thy_011 JF_thy_024 JF_thy_013	**** +0.73 +0.68 +0.67 +0.67		
JF_thy_013 JF_thy_011 JF_thy_017 JF_thy_024	**** +0.37 +0.16 +0.15 +0.15 +0.15 +0.12		JF_thy_013 JF_thy_024 JF_thy_017 JF_thy_014 JF_thy_011	+0.68 +0.35 +0.30 +0.29 +0.26		JF_thy_015 JF_thy_011 JF_thy_024 JF_thy_013 JF_thy_017	*0.73 +0.68 +0.67 +0.67 +0.67 +0.55		
JF_thy_013 JF_thy_011 JF_thy_017 JF_thy_024 JF_thy_024 JF_thy_014 JF_thy_015 JF_thy_025	**** +0.37 +0.16 +0.15 +0.15 +0.15 +0.12 +0.10		JF_thy_013 JF_thy_024 JF_thy_017 JF_thy_014 JF_thy_011 JF_thy_011 JF_thy_015	+0.68 +0.35 +0.30 +0.29 +0.26 +0.26		JF_thy_015 JF_thy_011 JF_thy_024 JF_thy_013 JF_thy_013 JF_thy_017 JF_thy_014	**** +0.73 +0.68 +0.67 +0.67 +0.67 +0.55 +0.53		
JF_thy_013 JF_thy_011 JF_thy_017 JF_thy_024 JF_thy_014 JF_thy_015 JF_thy_025 JF_thy_022	**** +0.37 +0.16 +0.15 +0.15 +0.15 +0.12 +0.10 +0.09		JF_thy_013 JF_thy_024 JF_thy_017 JF_thy_014 JF_thy_011 JF_thy_015 JF_thy_015 JF_thy_025	+0.68 +0.35 +0.30 +0.29 +0.26 +0.26 +0.18		JF_thy_015 JF_thy_011 JF_thy_024 JF_thy_013 JF_thy_013 JF_thy_017 JF_thy_014 JF_thy_025	+0.73 +0.68 +0.67 +0.67 +0.55 +0.55 +0.53 +0.47		
JF_thy_013 JF_thy_011 JF_thy_017 JF_thy_024 JF_thy_024 JF_thy_024 JF_thy_015 JF_thy_025	**** +0.37 +0.16 +0.15 +0.15 +0.12 +0.10 +0.09 +0.07		JF_thy_013 JF_thy_024 JF_thy_017 JF_thy_014 JF_thy_011 JF_thy_015 JF_thy_025 JF_thy_022	+0.68 +0.35 +0.30 +0.29 +0.26 +0.26 +0.18 +0.16		JF_thy_015 JF_thy_011 JF_thy_024 JF_thy_013 JF_thy_017 JF_thy_017 JF_thy_025 JF_thy_023	*** +0.73 +0.68 +0.67 +0.67 +0.67 +0.55 +0.53 +0.47 +0.44 +0.42 +0.37		
JF_thy_013 JF_thy_011 JF_thy_017 JF_thy_024 JF_thy_014 JF_thy_015 JF_thy_025 JF_thy_022	**** +0.37 +0.16 +0.15 +0.15 +0.12 +0.10 +0.09 +0.07		JF_thy_013 JF_thy_024 JF_thy_017 JF_thy_014 JF_thy_015 JF_thy_015 JF_thy_025 JF_thy_022 JF_thy_024 JF_thy_034 JF_thy_009 JF_thy_004	**** *********************************		JF_thy_015 JF_thy_011 JF_thy_024 JF_thy_013 JF_thy_013 JF_thy_017 JF_thy_014 JF_thy_025 JF_thy_023 JF_thy_016 JF_thy_002 JF_thy_034	*** +0.73 +0.68 +0.67 +0.67 +0.67 +0.55 +0.53 +0.47 +0.44 +0.42 +0.37 +0.34		
JF_thy_013 JF_thy_011 JF_thy_017 JF_thy_024 JF_thy_014 JF_thy_015 JF_thy_025 JF_thy_022	**** +0.37 +0.16 +0.15 +0.15 +0.12 +0.10 +0.09 +0.07		JF_thy_013 JF_thy_024 JF_thy_017 JF_thy_011 JF_thy_011 JF_thy_015 JF_thy_025 JF_thy_022 JF_thy_024 JF_thy_034 JF_thy_034 JF_thy_009	*** **********************************		JF_thy_015 JF_thy_011 JF_thy_024 JF_thy_013 JF_thy_013 JF_thy_017 JF_thy_014 JF_thy_025 JF_thy_023 JF_thy_0202 JF_thy_002 JF_thy_003	*** *0.73 +0.68 +0.67 +0.67 +0.67 +0.55 +0.53 +0.47 +0.44 +0.42 +0.37 +0.34 +0.26		
JF_thy_013 JF_thy_011 JF_thy_017 JF_thy_024 JF_thy_014 JF_thy_015 JF_thy_025 JF_thy_025 JF_thy_022	**** +0.37 +0.16 +0.15 +0.15 +0.12 +0.10 +0.09 +0.07		JF_thy_013 JF_thy_024 JF_thy_017 JF_thy_014 JF_thy_015 JF_thy_015 JF_thy_025 JF_thy_022 JF_thy_024 JF_thy_034 JF_thy_009 JF_thy_004	**** *********************************		JF_thy_015 JF_thy_011 JF_thy_024 JF_thy_013 JF_thy_013 JF_thy_017 JF_thy_014 JF_thy_025 JF_thy_023 JF_thy_016 JF_thy_002 JF_thy_034	*** +0.73 +0.68 +0.67 +0.67 +0.67 +0.55 +0.53 +0.47 +0.44 +0.42 +0.37 +0.34		

Supplementary Table S2. Impact of mutation burden on clinicopathological features of advanced thyroid tumors.


A. Anaplastic thyroid cancers (ATC)

Total ATC = 28	Below median(13)	Median(6)	Above median (9)	p value
Age (y)	67±13	67±9	64±8	0.402
Gender (%F)	54%	33%	67%	0.483
Tobacco (%yes)	31%	33%	25%	1
Tumor size	5.8±2.4	7.2±2	5.6±1	0.051
Pathology staging				
T2	1	0	0	
Т3	0	0	2	
T4	9	4	4	
T4b	1	1	1	0.743
NO	1	0	0	
N1a	0	1	2	
N1b	6	4	3	
Nx	4	0	2	0.566
MO	0	0	0	
M1	5	2	4	
Mx	7	3	3	0.876
Mitotic activity				0.895
Mild	0	0	1	
Moderate	1	1	1	
Marked	6	3	4	
Necrosis				0.922
None	2	0	1	
Present	1	0	1	
Extensive	5	4	4	
Vascular invasion				0.089
No	3	0	0	
Yes	5	5	6	
Extrathyroidal extension				0.805
No	1	0	1	
Minimal	3	3	3	
Gross	6	3	2	
Overall survival (died)	54%	100%	37.5%	0.053
Overall survival time (days±SD)	410±968	166±112	233±92	0.21
Survival analysis: HR (95%CI)			HR: 0.76 (0.43-1.35)	0.352

B. Poorly differentiated thyroid cancers (PDTC)

PDTC = 78	Below median (26)	Median (24)	Above median(28)	p value
Age (y)	47±15	58±15	64±15	<0.001
Gender (%F)	73%	58%	54%	0.314
Family history TC(%yes)	12%	0%	7%	0.452
Tumor size				
≤ 4	64%	57%	29%	
>4	36%	43%	71%	0.038
Pathology staging				
T1/T2	17%	15%	4%	
T3/T4	83%	85%	96%	0.405
Nx/N0	54%	45%	52%	
N1a/N1b	46%	55%	48%	0.822
M0	73%	54%	32%	
M1	8%	29%	57%	
Mx	19%	17%	11%	0.002
RAI				0.874
No	19%	29%	18%	
Yes	73%	63%	75%	
RAI Uptake				
No uptake	8%	4%	0%	
Thyroid bed	38%	29%	21%	
Outside thyroid bed	27%	29%	50%	0.391
Overall survival (died)	19%	25%	46%	0.07
Overall survival time (days±SD)	2242±1332	2181±1406	1469±1158	0.05
Survival analysis: HR (95%CI)			HR:2.03 (1.19-3.47)	0.01
Log rank				0.014

Kaplan-Meier. Mutation burden in PDTCs

Supplementary Table S3. Contingency analysis of the main genetic alterations in PDTCs and ATCs.

	Number of		
Gene status / Tumor type	PDTC	ATC	Fisher's exact test p-value ³
BRAF wildtype	56	18	0.29
BRAF mutant	28	15	0.29
NRAS wildtype	66	27	0.80
NRAS mutant	18	6	0.00
HRAS wildtype	80	31	1
HRAS mutant	4	2	I
KRAS wildtype	82	33	1
KRAS mutant	2	0	T
<i>RAS</i> wildtype ¹	60	25	0.82
RAS mutant ¹	24	8	0.82
NF1 wildtype	84	30	0.02
NF1 mutant	0	3	0.02
TSHR wildtype	82	31	0.32
TSHR mutant	2	2	0.32
STK11 wildtype	83	31	0.19
STK11 mutant	1	2	0.19
EIF1AX wildtype	75	30	1
EIF1AX mutant	9	3	1
PIK3CA wildtype	82	27	0.006
PIK3CA mutant	2	6	0.006
PTEN wildtype	81	28	0.04
PTEN mutant	3	5	0.04
<i>RET</i> wildtype	79	33	0.22
RET rearranged	5	0	0.32
PAX8-PPARG wildtype	81	33	0.56
PAX8-PPARG rearranged	3	0	0.56
ALK wildtype	81	33	0.56
ALK rearranged	3	0	0.50
Thyroid fusions not present ²	73	33	0.02
Thyroid fusions present ²	11	0	0.03
NUT-BRD4 wildtype	84	32	0.20
NUT-BRD4 rearranged	0	1	0.28
TERT promoter wildtype	50	9	0.000
TERT promoter mutant	34	24	0.002
TP53 wildtype	77	9	< 0.0001
TP53 mutant	7	24	< 0.0001

Supplementary Table S3. (continued)

	Number of		
Gene status / Tumor type	PDTC	ATC	Fisher's exact test p-value ³
ATM wildtype	78	30	0.71
ATM mutant	6	3	0.71
<i>RB1</i> wildtype	83	30	0.07
RB1 mutant	1	3	0.07
NF2 wildtype	84	31	0.08
NF2 mutant	0	2	0.08
MEN1 wildtype	83	32	0.49
MEN1 mutant	1	1	0.49
PI3K/AKT pathway wildtype	75	20	0.001
PI3K/AKT pathway mutant	9	13	0.001
SWI/SNF complex wildtype	79	21	0.0001
SWI/SNF complex mutant	5	12	0.0001
HMTs group wildtype	78	25	0.02
HMTs group mutant	6	8	0.02
MMR pathway wildtype	82	29	0.05
MMR pathway mutant	2	4	0.05

¹ "RAS" category includes NRAS, HRAS and KRAS.

² "Thyroid fusions" include rearrangements of genes previously reported in thyroid tumors.

³ Significant p-values are highlighted in yellow; marginally significant are highlighted in grey.

Abbreviations: HMT =histone methyltransferase, MMR= mismatch excision repair.

Supplementary Table S5. Clinicopathological characteristics of ATCs and PDTCs according to *BRAF* and *RAS* mutation status and gene fusions.

A. Anaplastic thyroid cancers (ATC)

Total ATC = 33	BRAF wt (18)	BRAF + (15)	p value
Age (y)	62±12	69±7	0.055
Gender (%F)	44%	67%	0.202
Tobacco (%yes)	35%	20%	0.337
Tumor size	7±2	5.1±2	0.012
Pathology staging			
T2	0	1	
Т3	1	1	
T4	11	10	
T4b	3	0	0.518
NO	1	0	
N1a	2	1	
N1b	7	8	
Nx	3	3	0.974
MO	0	0	
M1	9	6	
Мх	5	8	0.296
Mitotic activity			0.232
Mild	0	1	
Moderate	1	2	
Marked	10	4	
Necrosis			0.177
None	3	0	
Present	0	2	
Extensive	8	6	
Vascular invasion			0.566
No	1	2	
Yes	10	7	
Extrathyroidal extension			0.840
No	1	1	
Minimal	4	6	
Gross	6	6	
Positive LN (mean num ± SD)	4±3.5	4.75±3.4	0.615
Largest LN (mean ± SD, cm)	1.6±1.2	2.4±1.2	0.356
Extranodal extension	5/6	3/5	0.545
Overall survival (died)	56%	73%	0.458
Overall survival time (days±SD)	387±866	165±125	0.334
Survival analysis: HR (95%CI)		HR:1.3 (0.54-3.27)	0.528

Total ATC = 33	RAS wt (25)	RAS + (8)	p value
Age (y)	64±10	67±12	0.558
Gender (%F)	60%	37.5%	0.266
Tobacco (%yes)	25%	37.5%	0.496
Tumor size	5.8±2	7.4±2	0.07
Pathology staging			
T2	1	0	
Т3	2	0	
T4	14	7	
T4b	2	1	0.464
NO	1	0	
N1a	2	1	
N1b	10	5	
Nx	5	1	0.730
M0	0	0	
M1	9	6	
Mx	11	2	0.210
Mitotic activity			1
Mild	1	0	
Moderate	2	1	
Marked	10	4	
Necrosis			0.210
None	1	2	
Present	2	0	
Extensive	11	3	
Vascular invasion			1
No	2	1	
Yes	13	4	
Extrathyroidal extension			0.441
No	2	0	
Minimal	9	1	
Gross	8	4	
Positive LN (mean num ± SD)	4.2±3	4.6±4	0.818
Largest LN (mean ± SD, cm)	2±1.3	1.7±1	0.581
Extranodal extension	4/6	4/5	1
Overall survival (died)	57%	87.5%	0.203
Overall survival time (days±SD)	318±727	170±118	0.575
Survival analysis: HR (95%CI)		HR: 1.76 (0.68-4.56)	0.247

Total ATC = 33	BRAF/RAS/Fusion – (9)	BRAF/RAS/Fusion + (24)	p value
Age (y)	60±8	67±11	0.115
Gender (%F)	44%	58%	0.475
Tobacco (%yes)	37.5%	25%	0.496
Tumor size	7±1.6	6±2.2	0.237
Pathology staging			
T2	0	1	
Т3	1	1	
T4	3	18	
T4b	2	1	0.077
NO	0	1	
N1a	1	2	
N1b	2	13	
Nx	2	4	0.324
MO	0	0	
M1	3	12	
Mx	2	11	0.024
Mitotic activity			0.650
Mild	0	1	
Moderate	0	3	
Marked	5	9	
Necrosis			1
None	1	2	
Present	0	2	
Extensive	4	10	
Vascular invasion			0.539
No	0	3	
Yes	5	12	
Extrathyroidal extension			0.221
No	1	1	
Minimal	3	7	
Gross	1	11	
Positive LN (mean num ± SD)	4±2.6	4.4±3.6	0.874
Largest LN (mean ± SD, cm)	1.5±2	2±1	0.675
Extranodal extension	1/1	7/10	1
Overall survival (died)	29%	75%	0.024
Overall survival time (days±SD)	175±82	310±713	0.624
Survival analysis : HR (95%CI)		HR:2.1 (0.48-9.37)	0.323

B. Poorly differentiated thyroid cancers (PDTC)

Total PDTC = 84	BRAF wt (56)	BRAF + (28)	p value
Age (y)	58±16	53±18	0.179
Gender (%F)	50%	82%	0.004
Family history TC(%yes)	9%	4%	0.686
Tumor size			
≤ 4	40%	70%	
>4	60%	30%	0.01
Pathology staging			
T1/T2	11%	15%	
T3/T4	89%	85%	0.720
Nx/N0	61%	37%	
N1a/N1b	39%	63%	0.049
M0	38%	79%	
M1	45%	14%	
Mx	17%	7%	0.009
Encapsulation			0.121 (missing)
No	29%	46%	_
Partial	18%	18%	
Complete	34%	11%	
Capsular invasion			0.039 (missing)
No	9%	4%	
Yes	38%	14%	
Vascular invasion			0.001
No	11%	48%	
Yes	89%	52%	
Extrathyroidal extension			0.049
No	37%	15%	
Minimal	30%	26%	
Gross	33%	59%	
Multicentricity			0.074
No	48%	43%	
Yes	29%	50%	
Margins compromised			0.001
No	54%	18%	
Yes	30%	71%	
RAI			0.585
No	21%	18%	
Yes	70%	79%	
RAI Uptake			0.005
No uptake	2%	11%	
Thyroid bed	20%	46%	
Outside thyroid bed	46%	18%	
Overall survival (died)	30%	36%	0.62
Overall survival time (days±SD)	1942±1420	2206±1386	0.42
Survival analysis: HR (95%CI)		HR:0.95 (0.43-2.13)	0.91

Total PDTC = 84	RAS wt (60)	RAS + (24)	p value
Age (y)	54±17	64±12	0.015
Gender (%F)	66%	46%	0.077
Family history TC(%yes)	5%	12.5%	0.52
Tumor size			0.001
≤ 4	63%	19%	
>4	37%	81%	
Pathology staging			
T1/T2	16%	5%	
T3/T4	84%	95%	0.259
Nx/N0	37%	86%	
N1a/N1b	63%	14%	<0.001
M0	62%	25%	
M1	22%	67%	
Mx	16%	8	0.003
Encapsulation			0.003
No	38%	25%	
Partial	20%	13%	
Complete	15%	54%	
Capsular invasion			0.024
No	7%	8%	
Yes	22%	50%	
Vascular invasion			0.001
No	35%	0%	
Yes	65%	100%	
Extrathyroidal extension			0.220
No	22%	43%	
Minimal	33%	19%	
Gross	45%	38%	
Multicentricity			0.949
No	45%	50%	
Yes	37%	33%	
Margins compromised			0.137
No	35%	58%	
Yes	50%	30%	
RAI			0.150
No	25%	8%	
Yes	67%	88%	
RAI Uptake			<0.001
No uptake	5%	4%	
Thyroid bed	37%	8%	
Outside thyroid bed	23%	71%	
Overall survival (died)	30%	37.5%	0.506
Overall survival time (days±SD)	1889±1331	2381±1551	0.148
Survival analysis: HR (95%CI)	200021001	HR: 0.87 (0.38-2.02)	0.754

PDTC = 84	No fusions (73)	Fusions (11)	p value
Age (y)	58±16	49±17	0.04
Gender (%F)	64%	42%	0.203
Family history TC(%yes)	7%	8%	0.476
Tumor size			0.189
≤ 4	48%	70%	
>4	52%	30%	
Pathology staging			
T1/T2	12%	22%	
T3/T4	88%	78%	0.6
Nx/N0	55%	40%	
N1a/N1b	45%	60%	0.5
M0	49%	67%	
M1	36%	25%	
Mx	15%	8%	0.622
RAI			0.558
No	19%	25%	
Yes	72%	75%	
RAI Uptake			1
No uptake	6%	0%	
Thyroid bed	28%	33%	
Outside thyroid bed	38%	42%	
Overall survival (died)	34%	18%	0.49
Overall survival time (days±SD)	2092±1444	1620±1080	0.30

Total PDTC = 84	None(20)	BRAF +(28)	RAS+ (24)	Fusion + (11)	p value
Age (y)	58±16	53±18	64±12	49±17	0.04
Gender (%F)	60%	82%	46%	42%	0.02
Tobacco (%yes)	59%	82%	52%	42%	0.05
Tumor size			0.201	5	0.007
≤ 4	47%	68%	23%	70%	
>4	53%	32%	77%	30%	
Pathology staging					
T1/T2	14%	14%	9%	22%	
Т3/Т4	86%	86%	91%	78%	0.757
Nx/N0	36%	39%	87%	40%	
N1a/N1b	64%	61%	13%	60%	0.002
M0	35%	79%	25%	67%	
M1	30%	14%	67%	25%	
Mx	35%	7%	8%	8%	<0.001
RAI					0.043
No	35%	18%	8%	25%	
Yes	45%	79%	88%	75%	
RAI Uptake					0.001
No uptake	0%	11%	4%	0%	
Thyroid bed	25%	46%	8%	33%	
Outside thyroid bed	20%	21%	71%	42%	
Overall survival (died)	30%	36%	38%	17%	0.644
Overall survival time (days±SD)	1674±1335	2206±1386	2381±1551	1509±1099	0.182
Survival analysis: HR (95%CI)				HR:0.85(0.55-1.1.34)	0.493

Supplementary Table S6. Clinicopathological characteristics of ATCs and PDTCs according to *EIF1AX* mutation status.

A. Anaplastic thyroid cancers (ATC)

Total ATC = 33	EIF1AXwt (30)	EIF1AX+ (3)	p value
Age (y)	65.5±11	59±5.7	0.351
Gender (%F)	57%	33%	0.579
Tobacco (%yes)	28%	33%	1
Tumor size	6.1±2	7.6±1.9	0.252
Pathology staging			
Τ2	1	0	
Т3	2	0	
T4	19	2	
T4b	2	1	0.525
NO	1	0	
N1a	2	1	
N1b	13	2	
Nx	6	0	0.372
M0	0	0	
M1	13	2	
Mx	12	1	1
Mitotic activity			1
Mild	1	0	
Moderate	3	0	
Marked	11	3	
Necrosis			1
None	3	0	
Present	2	0	
Extensive	11	3	
Vascular invasion			
No	3	0	
Yes	14	3	
Extrathyroidal extension			1
No	2	0	
Minimal	9	1	
Gross	10	2	
Positive LN (mean num ± SD)	4±3	5.7±5	0.455
Largest LN (mean ± SD, cm)	2±1.2	1.6±1.3	0.604
Extranodal extension	6/8	2/3	1
Overall survival (died)	61%	100%	0.535
Overall survival time (days±SD)	283±662	250±75	0.934
Survival analysis: HR (95%CI)		HR: 1.10(0.32-3.85)	0.877

B. Poorly differentiated thyroid cancers (PDTC)

Total PDTC = 84	EIF1AXwt (75)	EIF1AX+ (9)	p value
Age (y)	56±17	67±8	0.04
Gender (%F)	61%	55%	0.737
Family history TC(%yes)	7%	11%	0.268
Tumor size			0.001
≤ 4	57%	0%	
>4	43%	100%	
Pathology staging			
T1/T2	15%	0%	
T3/T4	85%	100%	0.347
Nx/N0	47%	100%	
N1a/N1b	53%	0%	0.003
M0	53%	33%	
M1	31%	67%	
Mx	16%	0%	0.279
RAI			0.839
No	21%	11%	
Yes	71%	89%	
RAI Uptake			0.404
No uptake	5%	0%	
Thyroid bed	29%	22%	
Outside thyroid bed	35%	67%	
Overall survival (died)	29%	56%	0.139
Overall survival time (days ±SD)	2073±1443	1667±1040	0.416
Survival analysis: HR (95% Cl)		HR:2.6 (0.97-7.14)	0.05
Logrank			0.048

Supplementary Table S7. Clinicopathological characteristics of ATCs and PDTCs according to *TERT* promoter mutation status.

A. Anaplastic thyroid cancers (ATC)

Total ATC = 33	TERT wt (9)	TERT + (24)	p value
Age (y)	60±12	67±10	0.08
Gender (%F)	44%	58%	0.476
Tobacco (%yes)	22%	30%	0.642
Tumor size	6.5±1.7	6.1±2.3	0.657
Pathology staging			
Т2	0	1	
Т3	1	1	
Τ4	4	17	
T4b	2	1	0.288
NO	1	0	
N1a	2	1	
N1b	4	11	
Nx	0	6	0.108
M0	0	0	
M1	3	12	
Mx	5	8	0.577
Mitotic activity			0.339
Mild	0	1	
Moderate	0	3	
Marked	7	7	
Necrosis			0.225
None	0	3	
Present	0	2	
Extensive	7	7	
Vascular invasion			0.242
No	0	3	
Yes	8	9	
Extrathyroidal extension			1
No	1	1	
Minimal	3	7	
Gross	4	8	
Positive LN (mean num ± SD)	3.6±3.6	4.8±3.3	0.477
Largest LN (mean ± SD, cm)	1.2±1.3	2.3±1	0.150
Extranodal extension	2/3	6/8	1
Overall survival (died)	57%	67%	0.676
Overall survival time (days±SD)	732±1271	147±112	0.027
Survival analysis: HR (95%CI)		HR:2.2 (0.73-6.71)	0.164

Total ATC = 33	None(5)	BRAF/RAS+(4)	TERT + (5)	RAF/RAS+TERT(19)	p value
Age (y)	56±13	64.3±11	59±10	69±8.5	0.651
Gender (%F)	40%	50%	60%	58%	0.947
Tobacco (%yes)	20%	25%	50%	26%	0.856
Tumor size	6±1.5	6.9±2	7.5±1.7	5.8±2.3	0.748
Pathology staging					
T2	0	0	0	1	
Т3	1	0	0	1	
T4	1	3	3	14	
T4b	1	1	1	0	0.185
NO	1	0	0	0	
N1a	1	1	0	1	
N1b	1	3	1	10	
Nx	0	0	2	4	0.194
MO	0	0	0	0	
M1	1	2	2	10	
Mx	3	2	0	8	0.071
Mitotic activity					0.738
Mild	0	0	0	1	
Moderate	0	0	0	3	
Marked	4	3	2	5	
Necrosis					0.644
None	0	0	1	2	
Present	0	0	0	2	
Extensive	4	3	1	6	
Vascular invasion					0.544
No	0	0	0	3	
Yes	4	4	2	7	
Extrathyroidal extension					0.841
No	1	0	0	1	
Minimal	2	1	1	6	
Gross	1	3	1	7	
Positive LN (mean num ±	1.7±1.5	5±4.3	7±0	4.5±3.4	0.416
SD)					
Largest LN (mean ± SD, cm)	0.1±0	1.6±1.3	3±0	2.2±1	0.730
Extranodal extension		2/3	1/1	5/7	1
Overall survival (died)	0	100%	40%	74%	0.020
Overall survival time	1382±50	245±62	138±58	150±124	<0.001
(days ±SD)					
Survival analysis: HR (95%Cl)				HR: 1.5 (0.95-2.46)	0.08

B. Poorly differentiated thyroid cancers (PDTC)

Total PDTC = 84	TERT wt (50)	TERT + (34)	p value
Age (y)	53±17	62±14	0.01
Gender (%F)	64%	56%	0.455
Family history TC(%yes)	8%	6%	1
Tumor size			0.201
≤ 4	57%	41%	
>4	43%	59%	
Pathology staging			
T1/T2	16%	7%	
T3/T4	84%	93%	0.468
Nx/N0	56%	46%	
N1a/N1b	44%	54%	0.448
MO	64%	32%	
M1	20%	56%	
Mx	16%	12%	0.013
Encapsulation			0.484
No	38%	29%	
Partial	20%	15%	
Complete	26%	26%	
Capsular invasion			0.05
No	12%	0%	
Yes	24%	38%	
Vascular invasion			0.401
No	27%	19%	
Yes	73%	81%	
Extrathyroidal extension			0.235
No	32%	22%	
Minimal	33%	22%	
Gross	35%	56%	
Multicentricity			0.597
No	44%	50%	
Yes	40%	29%	
Margins compromised			0.953
No	40%	44%	
Yes	46%	41%	
RAI		/.	0.599
No	24%	15%	
Yes	68%	79%	
RAI Uptake			0.07
No uptake	6%	3%	
Thyroid bed	36%	18%	
Outside thyroid bed	26%	53%	
Overall survival (died)	26%	41%	0.144
Overall survival time (days±SD)	2152±1263	1850±1595	0.337
Survival analysis: HR (95%CI)		HR: 1.7 (0.79-3.7)	0.175

Total PDTC = 52	BRAF/RAS alone (26)	BRAF/RAS+TERT (26)	p value
Age (y)	52±16	64±14	0.007
Tumor size			0.171
≤ 4	58%	38%	
>4	42%	62%	
Pathology staging			
T1/T2	15%	8%	
T3/T4	85%	92%	0.668
Nx/N0	65%	56%	
N1a/N1b	35%	44%	0.493
M0	69%	38%	
M1	23%	54%	
Mx	8%	8%	0.05
RAI			0.703
No	19%	8%	
Yes	77%	88%	
RAI Uptake			0.309
No uptake	12%	9%	
Thyroid bed	35%	23%	
Outside thyroid bed	31%	58%	
OS (died)	23%	50%	0.08
OS time (days±SD)	2413±1266	2161±1633	0.536
Survival analysis HR (95%CI)		HR: 1.5(0.94-2.49)	0.09

Supplementary Table S8. Prevalence of common gene mutations in advanced thyroid cancers reported in the literature. Summary of published studies reporting genetic alterations in PDTCs and/or ATCs for BRAF, RAS, RET/PTC, TP53, PIK3CA, PTEN, AKT1, CTNNB1, AXIN1, APC, TERT promoter and EIF1AX.

		/	ATC		PDTC
Gene	Study (reference)	Ν	%	Ν	%
BRAF	Nikiforova <i>et al</i> , 2003 (1)	3/29	10.3	2/16	12.5
	Soares <i>et al,</i> 2004 ¹ (2)	6/17	35.3	0/19	0.0
	Garcia Rostan <i>et al,</i> 2005 (3)	19/69	27.5	N/A	N/A
	Santarpia <i>et al,</i> 2008 (4)	2/18	11.1	N/A	N/A
	Liu <i>et al,</i> 2008 [#] (5)	14/50	28.0	N/A	N/A
	Costa <i>et al,</i> 2008 (6)	9/36	25.0	4/24	16.7
	Ricarte-Filho <i>et al</i> , 2009 (7)	8/18	44.4	4/34	11.8
	Pita <i>et al,</i> 2014 (8)	2/26	7.7	1/22	4.5
	Kuntsman <i>et al,</i> 2015 (9)	6/22	27.3	N/A	N/A
	Current series	15/33	45.5	28/84	33.3
RAS	Manenti <i>et al,</i> 1994 (10)	1/5	20.0	3/11	27.3
	Capella <i>et al,</i> 1996 (11)	8/13	61.5	N/A	N/A
	Pilotti <i>et al,</i> 1997 ¹ (12)	N/A	N/A	5/8	62.5
	Garcia Rostan <i>et al,</i> 2003 (13)	15/29	51.7	16/29	55.2
	Hou <i>et al,</i> 2007 [#] (14)	4/50	8.0	N/A	N/A
	Santarpia <i>et al,</i> 2008 (4)	2/18	11.1	N/A	N/A
	Liu <i>et al,</i> 2008 [#] (5)	4/51	7.8	N/A	N/A
	Costa <i>et al,</i> 2008 (6)	13/36	36.1	11/24	45.8
	Ricarte-Filho <i>et al</i> , 2009 (7)	4/18	22.2	15/34	44.1
	Pita <i>et al,</i> 2014 (8)	8/26	30.8	4/22	18.2
	Kuntsman <i>et al,</i> 2015 (9)	4/22	18.2	N/A	N/A
	Current series	8/33	24.2	24/84	28.6
RET/PTC	Santoro <i>et al,</i> 1992 (15)	0/15	0.0	N/A	N/A
	Santoro <i>et al,</i> 2002 (16)	N/A	N/A	8/62	12.9
	Ricarte-Filho <i>et al,</i> 2009 (7)	0/18	0.0	6/34	17.6
	Kuntsman <i>et al,</i> 2015 (9)	N/A	N/A	N/A	N/A
	Current series	0/33	0.0	5/84	6.0

Supplementary Table S8. (continued)

			АТС	PD.	тс
Gene	Study (reference)	N	%	N	%
TP53	lto <i>et al,</i> 1992 (17)	6/7	85.7	N/A	N/A
	Nakamura <i>et al,</i> 1992 (18)	2/9	22.2	N/A	N/A
	Fagin <i>et al,</i> 1993 (19)	5/6	83.3	N/A	N/A
	Donghi <i>et al,</i> 1993 (20)	5/7	71.4	2/8	25.0
	Dobashi <i>et al</i> , 1994 ² (21)	4/6	66.7	2/6	33.3
	Ho <i>et al,</i> 1996 (22)	0/4	0.0	5/29	17.2
	Takeuchi <i>et al</i> , 1999 ¹ (23)	N/A	N/A	14/46	30.4
	Pita <i>et al,</i> 2014 (8)	11/26	42.3	6/22	27.3
	Kuntsman <i>et al,</i> 2015 (9)	6/22	27.3	N/A	N/A
	Current series	24/33	72.7	7/84	8.3
РІКЗСА	Garcia Rostan <i>et al</i> , 2005 ³ (3)	16/70	22.9	N/A	N/A
	Hou <i>et al,</i> 2007 ^{4, #} (14)	6/50	12.0	N/A	N/A
	SantarpiaSherman, 2008 (4)	4/18	22.2	N/A	N/A
	Ricarte-Filho <i>et al,</i> 2009 (7)	1/18	5.6	2/34	5.9
	Pita <i>et al,</i> 2014 (8)	1/26	3.8	3/22	13.6
	Kuntsman <i>et al</i> , 2015 (9)	2/22	9.1	N/A	N/A
	Current series	6/33	18.2	2/84	2.4
PTEN	Hou <i>et al,</i> 2007 ^{4, #} (14)	8/50	16.0	N/A	N/A
	Santarpia <i>et al,</i> 2008 (4)	2/18	11.1	N/A	N/A
	Pita <i>et al,</i> 2014 (8)	2/20	10.0	3/15	20.0
	Kuntsman <i>et al,</i> 2015 (9)	0/22	0.0	N/A	N/A
	Current series	5/33	15.2	3/84	3.6
AKT1	Liu <i>et al,</i> 2008 [#] (5)	0/47	0.0	N/A	N/A
	Ricarte-Filho <i>et al,</i> ⁵(7)	0/18	0.0	0/34, 6/32	0.0, 18.8
	Kuntsman <i>et al,</i> 2015 (9)	0/22	0.0	N/A	N/A
	Current series	0/33	0.0	0/84	0.0
CTNNB1	Garcia Rostan <i>et al</i> , 1999 ^{6,} * (24)	19/31	61.3	N/A	N/A
	Garcia Rostan <i>et al,</i> 2001 * (25)	19/29	65.5	7/28	25.0
	Kurihara <i>et al,</i> 2004 ⁷ (26)	1/22	4.5	N/A	N/A
	Pita <i>et al,</i> 2014 ⁸ (8)	0/26	0.0	1/22	4.5
	Kuntsman <i>et al,</i> 2015 (9)	1/22	4.5	N/A	N/A
	Current series ⁹	0/33	0.0	1/84	1.2
AXIN1	Kurihara <i>et al,</i> 2004 ⁷ (26)	18/22	81.8	N/A	N/A
	Kuntsman <i>et al</i> , 2015 (9)	0/22	0.0	N/A	N/A
	Current series ¹⁰	1/33	3.0	1/84	1.2
		_,		-, - ·	

Supplementary Table S8. (continued)

		A	АТС		DTC
Gene	Study (reference)	N	%	N	%
APC	Kurihara <i>et al,</i> 2004 ⁷ (26)	2/22	9.1	N/A	N/A
	Kuntsman <i>et al,</i> 2015 (9)	0/22	0.0	N/A	N/A
	Current series	1/33	3.0	0/84	0.0
TERT	Liu <i>et al,</i> 2013 ^{\$} (27)	25/54	46.3	3/8	37.5
promoter	Landa <i>et al,</i> 2013 ¹¹ (28)	10/20	50.0	30/58	51.7
	Vinagre <i>et al,</i> 2013 ^{&} (29)	2/16	12.5	3/14	21.4
	Liu <i>et al,</i> 2013 (30)	10/20	50.0	N/A	N/A
	Melo <i>et al,</i> 2014 ^{&} (31)	12/36	33.3	9/31	29.0
	Shi <i>et al,</i> 2015 ^{\$} (32)	41/106	38.7	N/A	N/A
	Kuntsman <i>et al,</i> 2015 (9)	N/A	N/A	N/A	N/A
	Current series ¹¹	24/33	72.7	34/84	40.5
EIF1AX	Kuntsman <i>et al,</i> 2015 (9)	3/22	13.6	N/A	N/A
	Current series	3/33	9.1	9/84	10.7

¹ Only "insular and insular-like" PDTCs were studied.

² Cases with negative p53 immunostaining were not sequenced for *TP53* mutations.

³ Among *PIK3CA* mutations there are some canonical (E542K found in one tumor and H1047R in three) and some non-canonical events. Paired normals were available for 22/70 ATCs.

⁴ It is unclear whether paired normals were available. Reported *PIK3CA* mutations are non-canonical; PTEN mutations are all missense

⁵ AKT1 mutations found exclusively on metastatic/recurrent PDTC but not on primary tumors

⁶ No paired normals available; all CTNNB1 mutations cluster on exon 3

⁷ Paired normals available at least for some tumors, unclear if for all

⁸ Only seven paired normals available

⁹ *CTNNB1* mutation not in COSMIC and different from those reported.

¹⁰ AXIN1 mutations not confirmed somatic.

¹¹ 20/33 ATCs and 17/84 PDTCs were evaluated for *TERT* mutations in both studies

[#] These two papers used overlapping series of ATCs (n=50 vs. 51)

* These two papers used overlapping series of ATCs (n=31 vs. 29)

 $^{\$}$ 49 ATCs from Shi, 2015 already reported in Liu, 2013

[&] Probably partially overlapping series

1. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399-404.

Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. 2003;22:4578-80.
Garcia-Rostan G, Costa AM, Pereira-Castro I, Salvatore G, Hernandez R, Hermsem MJ, et al.

Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65:10199-207.

4. Santarpia L, El-Naggar AK, Cote GJ, Myers JN, Sherman SI. Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J Clin Endocrinol Metab. 2008;93:278-84.

5. Liu Z, Hou P, Ji M, Guan H, Studeman K, Jensen K, et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab. 2008;93:3106-16.

6. Costa AM, Herrero A, Fresno MF, Heymann J, Alvarez JA, Cameselle-Teijeiro J, et al. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2008;68:618-34.

7. Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69:4885-93.

8. Pita JM, Figueiredo IF, Moura MM, Leite V, Cavaco BM. Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99:E497-507.

9. Kunstman JW, Juhlin CC, Goh G, Brown TC, Stenman A, Healy JM, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24:2318-29.

10. Manenti G, Pilotti S, Re FC, Della Porta G, Pierotti MA. Selective activation of ras oncogenes in follicular and undifferentiated thyroid carcinomas. Eur J Cancer. 1994;30A:987-93.

11. Capella G, Matias-Guiu X, Ampudia X, de Leiva A, Perucho M, Prat J. Ras oncogene mutations in thyroid tumors: polymerase chain reaction-restriction-fragment-length polymorphism analysis from paraffin-embedded tissues. Diagnostic molecular pathology : the American journal of surgical pathology, part B. 1996;5:45-52.

12. Pilotti S, Collini P, Mariani L, Placucci M, Bongarzone I, Vigneri P, et al. Insular carcinoma: a distinct de novo entity among follicular carcinomas of the thyroid gland. Am J Surg Pathol. 1997;21:1466-73.

13. Garcia-Rostan G, Zhao H, Camp RL, Pollan M, Herrero A, Pardo J, et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21:3226-35.

14. Hou P, Liu D, Shan Y, Hu S, Studeman K, Condouris S, et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res. 2007;13:1161-70.

15. Santoro M, Carlomagno F, Hay ID, Herrmann MA, Grieco M, Melillo R, et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest. 1992;89:1517-22.

16. Santoro M, Papotti M, Chiappetta G, Garcia-Rostan G, Volante M, Johnson C, et al. RET activation and clinicopathologic features in poorly differentiated thyroid tumors. J Clin Endocrinol Metab. 2002;87:370-9.

17. Ito T, Seyama T, Mizuno T, Tsuyama N, Hayashi T, Hayashi Y, et al. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 1992;52:1369-71.

18. Nakamura T, Yana I, Kobayashi T, Shin E, Karakawa K, Fujita S, et al. p53 gene mutations associated with anaplastic transformation of human thyroid carcinomas. Japanese journal of cancer research : Gann. 1992;83:1293-8.

19. Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest. 1993;91:179-84.

20. Donghi R, Longoni A, Pilotti S, Michieli P, Della Porta G, Pierotti MA. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest. 1993;91:1753-60.

21. Dobashi Y, Sugimura H, Sakamoto A, Mernyei M, Mori M, Oyama T, et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagnostic molecular pathology : the American journal of surgical pathology, part B. 1994;3:9-14.

22. Ho YS, Tseng SC, Chin TY, Hsieh LL, Lin JD. p53 gene mutation in thyroid carcinoma. Cancer Lett. 1996;103:57-63.

23. Takeuchi Y, Daa T, Kashima K, Yokoyama S, Nakayama I, Noguchi S. Mutations of p53 in thyroid carcinoma with an insular component. Thyroid. 1999;9:377-81.

24. Garcia-Rostan G, Tallini G, Herrero A, D'Aquila TG, Carcangiu ML, Rimm DL. Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res. 1999;59:1811-5.

25. Garcia-Rostan G, Camp RL, Herrero A, Carcangiu ML, Rimm DL, Tallini G. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol. 2001;158:987-96.

26. Kurihara T, Ikeda S, Ishizaki Y, Fujimori M, Tokumoto N, Hirata Y, et al. Immunohistochemical and sequencing analyses of the Wnt signaling components in Japanese anaplastic thyroid cancers. Thyroid. 2004;14:1020-9.

27. Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013;20:603-10.

28. Landa I, Ganly I, Chan TA, Mitsutake N, Matsuse M, Ibrahimpasic T, et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab. 2013;98:E1562-6.

29. Vinagre J, Almeida A, Populo H, Batista R, Lyra J, Pinto V, et al. Frequency of TERT promoter mutations in human cancers. Nature communications. 2013;4:2185.

30. Liu T, Wang N, Cao J, Sofiadis A, Dinets A, Zedenius J, et al. The age- and shorter telomeredependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene. 2013.

31. Melo M, Rocha AG, Vinagre J, Batista R, Peixoto J, Tavares C, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014:jc20133734.

32. Shi X, Liu R, Qu S, Zhu G, Bishop J, Liu X, et al. Association of TERT promoter mutation 1,295,228 C>T with BRAF V600E mutation, older patient age, and distant metastasis in anaplastic thyroid cancer. J Clin Endocrinol Metab. 2015;100:E632-7.