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Inflammation and hypoxia
Inflammation constitutes the body’s defensive response to injury 
and/or infection in order to eliminate pathogens and damaged tis-
sue, while initiating tissue repair and healing. Upon tissue injury 
or pathogen invasion, local sentinel cells such as resident mac-
rophages and mast cells respond to dilate blood vessels, increase 
vascular permeability, and recruit a variety of leukocytes to the 
site of inflammation. During the acute phase of inflammatory 
responses, a major task of such recruited cells is the clearance of 
damaged tissue or pathogens. Upon transition into the resolution 
phase, tissue homeostasis is gradually restored. If acute inflam-
mation fails to subside, it progresses into chronic inflammation 
with potentially serious consequences for the afflicted patient (1, 
2). One feature of inflammation sites is low oxygen (O2) tension, 
termed “hypoxia.” Oxygen tension ranges between 2.5% and 9% 
in most healthy tissues. However, poor O2 availability resulting 
from damaged vasculature, high metabolic rates of bacteria and 
other pathogens, and numerous infiltrating immune cells deprive 
inflamed tissue of O2, frequently leading to partial O2 pressures 
(pO2) of less than 1% (3, 4).

The interdependence between inflammation and hypoxia 
has been evident for many years. Hypoxia is prevalent in multi-
ple inflammatory scenarios, such as inflammatory bowel diseases 
(IBDs) and rheumatoid arthritis (RA) (5–8). The intestinal mucosa 
exhibits an O2 gradient from crypt to villus, wherein O2 is high-
est in the crypts and lowest in the villus tips, which are closest to 
the anoxic gut lumen (9). This “physiological” hypoxia is largely 
extended with intestinal inflammation (7, 8). Hypoxia is also a 
characteristic of inflamed joints in patients with RA. Using a high-
ly sensitive gold microelectrode, investigators accurately mea-
sured synovial O2 tension in RA patients (5), demonstrating that 
RA median O2 tension in synovial tissue (2%–4%) was much lower 
than that in the noninflamed synovium (9%–12%) (5, 6).

Low O2 tension can also directly contribute to inflammation. 
In the setting of obesity, hypoxia develops as adipose tissue mass 
expands, initiating inflammatory responses. Secretion of inflam-
mation-related adipokines (e.g., TNF-α and leptin) increases in 
hypoxic adipose tissue. Together with additional disruptions in 
glucose and lipid metabolism, this inflammation can become 
chronic and systemic, eventually leading to insulin resistance (10, 
11). In the lung, alveolar hypoxia can be induced by exposing rats 
to 10% O2 for up to 8 hours, which triggers macrophage recruit-
ment, enhances expression of HIF-1α and inflammatory cytokines 
(e.g., macrophage inflammatory protein 1-α [MIP-1α], monocyte 
chemoattractant protein-1 [MCP-1], and TNF-α), promotes NF-κB 
activity, and elevates albumin leakage (12). Similar observations 
were made in mice exposed to 5% O2 for 60 minutes, where lev-
els of IL-6, TNF-α, and IL-1α were elevated in serum and isolated 
peritoneal macrophages and Kupffer cells (liver macrophages) 
(13). In humans, hypoxia-induced inflammation is evident in indi-
viduals with high-altitude illness. Those who ascend rapidly are at 
risk of developing high-altitude pulmonary and cerebral edema, 
caused by hypoxic pulmonary vasoconstriction, high arterial and 
capillary pressure, and elevated levels of circulating IL-6, IL-1 
receptor antagonist (IL-1RA), and C-reactive protein (CRP) (14, 
15). All of these examples indicate that the relationship between 
inflammation and hypoxia exists in many pathological settings, 
and is a potentially attractive therapeutic target.

Hypoxia and hypoxia-inducible factors
In many of the pathological situations described above (5, 7, 8, 12, 
16, 17), HIFs are activated in response to the hypoxic and inflam-
matory microenvironment. HIFs represent the primary O2-sens-
ing transcription factors (18–21) as heterodimers comprised of 
an O2-sensitive α subunit (HIF-α) and a constitutively expressed 
β subunit (HIF-1β or aryl hydrocarbon receptor nuclear translo-
cator [ARNT]). Three α subunits have been discovered thus far: 
HIF-1α, HIF-2α, and HIF-3α. While HIF-1α and HIF-2α are well 
characterized, relatively little is known about HIF-3α (22, 23). The 
HIF3A gene encodes multiple HIF-3α variants, which are struc-
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cells. When most of the pathogens or tissue debris are removed, 
hyperactivation of macrophage bactericidal activity may result in 
unnecessary destruction of healthy tissue. As highly plastic cells, 
macrophages then respond to microenvironmental cues (e.g., 
TH2-type cytokines IL-4 and IL-13) and adopt an “alternatively 
activated” (M2) phenotype, which suppresses host defenses and 
facilitates wound healing and tissue remodeling to resolve inflam-
mation and restore homeostasis at the inflamed site (52–55). This 
oversimplified segregation of macrophage phenotypes was origi-
nally applied to in vitro systems and has been widely used to pro-
vide a conceptual framework for subsequent research. However, 
given the complexity of in vivo microenvironments, macrophages 
exhibit phenotypes across a broad spectrum of activation states, 
and the simple M1/M2 dichotomy is unlikely to reflect physiolog-
ical macrophage phenotypes (56–58).

Macrophages are crucial components in the pathogenesis of 
many inflammatory diseases, including atherosclerosis (59–61), 
IBDs (62–64), RA (65–68), and airway inflammation/asthma (49, 
69–72). Lipid-laden macrophages are typically observed at athero-
sclerotic plaques. These maladaptive macrophages can induce a 
nonresolving inflammatory response leading to robust accumula-
tion of cells, lipid, and matrix at the plaque. Defective macrophage 
efferocytosis (engulfment of dead cells) and enhanced apopto-
sis contribute to formation of a necrotic plaque core that might 
eventually rupture, causing platelet aggregation and thrombus 
formation (59, 60). The functional importance of myeloid cells 
in atherosclerosis is supported by experimental evidence that 
interventions to alter monocyte recruitment and/or survival can 
markedly affect disease progression (73–75). Airway inflammation 
typically accompanies airway allergic asthma, another disease 
involving macrophages. The microenvironment in asthma is dom-
inated by type 2–associated cytokines (e.g., IL-4 and IL-13), which 
preferentially polarize macrophages into the M2 state (49). Elevat-
ed numbers of IL-4R+ macrophages have been reported in asth-
matic patients with defective lung function (76). Moreover, the 
presence of IL-4R+ macrophages exacerbates allergen-induced 
airway inflammation, whereas reduction of IL-4R+ macrophages 
alleviates this disease (77, 78).

Neutrophils, another major component of the innate immune 
response, are among the first cells recruited to inflammatory 
sites. These cells possess multiple means of eliminating invading 
pathogens, i.e., phagocytosis of microorganisms, degranulation 
to release antibacterial proteins, and emanation of neutrophil 
extracellular traps (NETs) (79, 80). Recently, many properties of 
neutrophils favoring the resolution of inflammation have been 
revealed (81), including production of annexin A1 (82) and lipid 
(e.g., LXA4 and 13-series resolvins) proresolution mediators (83, 
84), chemokine/cytokine scavenging (e.g., CCL3 and CCL5) (85), 
and apoptosis-induced macrophage efferocytosis (86, 87). Sim-
ilarly to macrophages, neutrophils are associated with multiple 
inflammatory syndromes, such as RA (88–90), chronic obstruc-
tive pulmonary disease (91, 92), and IBDs (51, 93). In IBDs, for 
example, neutrophils contribute to elimination of pathogens and 
immune cell (e.g., macrophages) recruitment and activation, as 
well as mucosal wound healing and resolution of inflammation. 
Of note, precise roles of neutrophils during intestinal inflamma-
tion are currently under investigation and are highly debated (51, 

turally distinct from HIF-1α and HIF-2α, as they lack a C-termi-
nal transactivation domain. Divergence in structure and variant 
diversity allow HIF-3α to have numerous modes of action, regu-
lating a transcriptional program that is distinct from that of HIF-1α  
(24). In this review, we will focus on HIF-1α and HIF-2α, but 
additional details about HIF-3α are reviewed elsewhere (23–25). 
Under normoxia, the O2-sensitive α subunit is hydroxylated on two 
conserved proline residues (P402/P405 and P564/P531 for HIF-
1α/HIF-2α, respectively) within the O2-dependent degradation 
domain (ODD) by prolyl hydroxylase domain–containing proteins 
(PHDs) (22, 26). Hydroxylated HIF-α subunits are then polyubiq-
uitinated by the von Hippel-Lindau (VHL) tumor suppressor E3 
ubiquitin ligase complex and subsequently degraded via the 26S 
proteasome (27–29). Under hypoxia, PHDs cannot hydroxylate 
key HIF-α proline residues due to limited access to their substrate 
(O2) or redox imbalance (21, 30–32), resulting in HIF-α stabiliza-
tion. Stabilized HIF-αs translocate into the nucleus, dimerize with 
their obligate binding partner ARNT, recruit additional coactiva-
tors, and bind to hypoxia-response elements (HREs) to enhance 
transcription of hundreds of genes whose products mediate cel-
lular adaptation to hypoxia. Such pathways include metabolism, 
angiogenesis, and inflammatory responses.

Other than O2-dependent HIF posttranslational modifica-
tions, HIF-α stabilization can be induced by inflammatory stimuli 
independently of hypoxia. The proinflammatory cytokines TNF-α 
and IL-1β promote HIF-1α accumulation in an NF-κB–dependent 
manner (33–35). Bacterial products, such as LPS, can also stabilize 
HIF-1α under normoxia through multiple pathways, such as NF-κB 
(36, 37), ROS (38), PHDs (39), and MAPKs (40). On the other hand, 
hypoxic responses can also be HIF independent. For example, 
hypoxia suppresses mTOR activity independently of HIF signaling 
(41), via the mTOR inhibitor REDD1 and the TSC1/TSC2 complex 
(42). Other hypoxia-responsive pathways include endoplasmic 
reticulum (ER) stress (43) and NF-κB (37, 44, 45) pathways. One 
myeloid-specific example is mentioned later in this review (46).

Myeloid cells in inflammation
Macrophages are key cellular components of innate immunity 
and encompass a highly heterogeneous population of cells with 
a broad array of phenotypes and functions. Some of these cells 
are distributed over most of the body, residing in many tissues 
(e.g., Kupffer cells in the liver, osteoclasts in the bone, and micro
glia in the brain), while others are differentiated monocytes that 
infiltrate sites of inflammation to promote adaptive responses or 
facilitate restoration of tissue homeostasis (47, 48). Upon patho-
gen invasion or injury, tissue-resident macrophages represent the 
first responders, recruiting neutrophils via secretion of chemo-
kines (e.g., IL-8 in humans and CXCL1 in mice). Once neutro-
phils arrive at the compromised site, they release monocyte che-
moattractants (e.g., MCP-1) so that large numbers of recruited 
monocytes/macrophages extend the inflammatory response 
(49–51). These macrophages normally adopt a proinflammatory 
or “classically activated” (M1) phenotype, which is often induced 
by IFN-γ and Toll-like receptor ligands. M1 macrophages elevate 
their secretion of reactive oxygen and nitrogen species (ROS and 
NOS) and proinflammatory cytokines, to eliminate pathogens 
and damaged tissues while recruiting additional immune effector 
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first to demonstrate the importance of HIF-1α in macrophage and 
neutrophil function in the setting of inflammation (105). HIF-1α 
was ablated in myeloid cells using lysozyme M (LysM) promoter–
driven Cre recombinase, which is specific for the myeloid lineages, 
i.e., monocytes, macrophages, neutrophils, etc. Myeloid-specific 
Hif1a deletion results in defective glycolysis and ATP generation, 
leading to impairment of myeloid cell motility, invasiveness, aggre-
gation, and bacterial killing. Moreover, mice with myeloid-specific 
HIF-1α deficiency are protected against acute and chronic cutane-
ous inflammation and arthritis. Subsequent studies investigating 
HIF-1α specifically in neutrophils demonstrated that hypoxia-in-
duced inhibition of neutrophil apoptosis is dependent on HIF-1α 
(106), and that HIF-1α is required for phagocytes to fully exert 
their bactericidal activity (107). More recent attention has focused 
on myeloid cell immunometabolism (108, 109). Myeloid cells can 
undergo metabolic reprogramming to adapt to critical changes 
in the microenvironment. Tannahill and colleagues demonstrat-
ed that LPS exposure can alter glutamine-dependent anaplerosis 
(replenishment of TCA cycle intermediates) to elevate succinate 
levels, which further stabilize HIF-1α in macrophages, resulting 
in increased production of IL-1β (110). These findings serve as an 
excellent example of how HIF-1α–dependent immunometabolism 
can directly affect cytokine production by macrophages.

The role of HIF-2α in myeloid cells has also been investigated 
using the LysM-Cre–mediated deletion strategy. Macrophages lack-
ing HIF-2α exhibit defects in the production of inflammatory cyto-
kines/chemokines in response to hypoxia, migration, and invasion. 
Myeloid HIF-2α deficiency also protects mice in models of sepsis, 
cutaneous inflammation, peritonitis, hepatocellular carcinoma, 
and colitis-associated colorectal cancer (CAC) (111). Like HIF-1α, 
neutrophil HIF-2α contributes to hypoxia-induced inhibition of 
apoptosis. HIF-2α deficiency increases neutrophil apoptosis in vivo 
and ex vivo, leading to suppression of neutrophilic inflammation 
and inflammatory responses during acute lung injury (112).

One interesting observation from the work of Imtiyaz and 
colleagues (111) is that, unlike myeloid HIF-1α, HIF-2α deficien-

94). Some studies using colitis models, either chemically induced 
(dextran sulfate sodium [DSS] or dinitrobenzene sulfonic acid/
trinitrobenzene sulfonic acid [DNBS/TNBS]) or immune system 
dysregulation–induced (CD4+CD45RBhi T cell transfer), showed 
that neutrophil depletion exacerbates colitis, suggesting a ben-
eficial role of neutrophils in this setting (95, 96); however, other 
studies showed a completely opposite phenotype in which neu-
trophil depletion ameliorates colitis (97, 98). Additionally, the role 
of neutrophils could also depend on the concomitant presence of 
monocytes and macrophages (99). Therefore, while neutrophils 
are clearly associated with intestinal inflammation, whether they 
exert beneficial or detrimental effects appears to be model depen-
dent and condition dependent.

HIFs in myeloid cells
It is noteworthy that myeloid cells localize predominantly with-
in hypoxic subdomains of tumors and sites of inflammation, and 
multiple mechanisms have been proposed to explain how hypoxia 
promotes recruitment and retention of myeloid cells (100). Both 
HIF-1α and HIF-2α regulate myeloid migratory activity: HIF-1α is 
recruited to the CXCR4 promoter, stimulating CXCR4 transcrip-
tion in human monocytes experiencing hypoxia (101). Moreover, 
CXCR4 is a key chemokine receptor mediating chemotactic 
responses to CXCL12 ligand, which is upregulated in ischemic tis-
sues such as arthritic joints (102). The HIF-1α/PDK1 axis has been 
recently shown to contribute to macrophage migratory activity via 
induction of active glycolysis (103). For HIF-2α, Casazza and col-
leagues demonstrated a semaphorin 3A/neuropilin1–dependent 
(SEMA3A/NRP1-dependent) means of macrophage positioning 
within the tumor. Here, NRP1 repression, which triggers macro-
phage retention in hypoxic regions, is mediated by HIF-2α–depen-
dent NF-κB activity (104).

Given the preferential localization of myeloid cells in hypoxic 
regions, significant efforts have defined how HIF-1α and/or HIF-
2α promote myeloid cell adaptation to hypoxic environments and 
mediate inflammation (Figure 1). Cramer and colleagues were the 

Figure 1. Overview of the roles of HIF-1α and HIF-2α in myeloid cells. 
Both HIF-1α and HIF-2α are required for key macrophage functions, such 
as cytokine production and the ability to migrate and invade. However, 
macrophage glycolysis, ATP generation, and bactericidal activity have 
been related to HIF-1α exclusively. Nevertheless, both isoforms contribute 
to pathogenesis of various acute inflammatory syndromes. Additionally, 
the roles of myeloid HIF-αs in the setting of tumor inflammation are cur-
rently being investigated. As compared with macrophages, less is known 
about HIF-αs in neutrophils. However, it is very clear that both isoforms 
are required to inhibit neutrophil apoptosis and elongate their lifespan. 
While HIF-1α facilitates bacterial killing by neutrophils, many neutrophil 
functions seem less dependent on HIF-2α, including respiratory burst, 
chemotaxis, and phagocytosis. Nevertheless, increased neutrophil HIF-2α 
accumulation correlates with increased neutrophilic inflammation and 
lung injury in an LPS-induced acute lung injury murine model.
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ar phagocytes and ingest lipoproteins; however, lipid buildup in 
these cells transforms them into foam cells that exhibit dysreg-
ulated lipid metabolism and elevated secretion of proinflamma-
tory cytokines (e.g., IL-6 and TNF-α) and macrophage retention 
factors (i.e., netrin 1 and semaphorin 3E). Foam cells promote the 
further progression of atherosclerosis (59, 60).

Elevated levels of HIF-1α and HIF-2α are detected in human 
atherosclerotic carotid plaques compared with normal arteries, 
where HIF-1α colocalizes with CD68, a macrophage marker (116). 
Hypoxia has been implicated as a pathogenic factor in atheroscle-
rosis and contributes to the proatherosclerotic functions of macro-
phages (Figure 2A) (117). Several reports showed that lipid uptake 
and foam cell formation are dependent on hypoxia and HIF-1α 
(118–120). Both murine and human macrophage cell lines increase 
cellular neutral lipid content when cultured under hypoxic con-
ditions; however, this effect is reversed upon HIF-1α depletion. 
Multiple HIF-1α–dependent mechanisms have been proposed 
for this phenotype. For example, hypoxia enhances expression of 
lectin-like oxidized low-density lipoprotein (oxLDL) receptor-1 
(LOX-1), which promotes oxLDL uptake in the murine macro-
phage cell line RAW264.7; silencing of HIF-1α diminishes the 

cy does not alter cellular ATP production. The notion that HIF-1α 
and HIF-2α exert nonredundant or even opposing functions in 
macrophages is further supported by a study showing that HIF-1α 
and HIF-2α differentially regulate NO production by controlling 
expression of iNOS and arginase 1, respectively (113). Given the 
complex roles of HIF-1α and HIF-2α in macrophages, pan-HIF 
inhibition via pharmacological or genetic methods (i.e., Arnt dele-
tion) is warranted. In a murine CAC model, treatment with the 
HIF inhibitor acriflavine reduces both tumor burden and macro-
phage infiltration (114). Additionally, myeloid cell–specific ARNT 
deficiency reduces macrophage proinflammatory cytokine pro-
duction, and mice lacking myeloid ARNT are protected from cuta-
neous inflammation and exhibit delayed wound healing (115).

In the following sections, we will discuss the roles of myeloid 
HIF-αs in the settings of specific inflammatory diseases, as sum-
marized in Table 1.

Atherosclerosis. Atherosclerosis is a chronic inflammatory 
disease of the arterial vasculature. Retention of apolipoprotein 
B–containing lipoproteins and accumulation of cholesterol- 
laden macrophages in the artery wall contribute to this syndrome. 
Monocytes are first recruited to differentiate into mononucle-

Table 1. Summary of myeloid HIF’s role in various inflammatory scenarios

Inflammatory disease HIF subunit Overall effect Proposed mechanisms Reference

Atherosclerosis HIF-1α Promotes inflammation Enhances lipid uptake
Induces sterol synthesis

Suppresses cholesterol efflux
Elevates proteoglycan secretion

Promotes angiogenesis
Increases glycolytic flux

Sustains viability
Upregulates proinflammatory cytokine gene expression

118–122, 124

HIF-2α Promotes inflammation Elevates proteoglycan secretion 122

Adipose tissue inflammation/obesity HIF-1α Promotes inflammation Enhances macrophage M1 polarization 138

HIF-2α Suppresses inflammation Represses NO and proinflammatory cytokines production from macrophages
Improves insulin resistance in adipocytes

139

No effect 46

Sepsis HIF-1α Promotes inflammation  Proinflammatory cytokine production 39, 144

HIF-2α Promotes inflammation Maintains serum levels of proinflammatory cytokines
Lowers IL-10 level

111

Airway allergy and asthma HIF-1α Promotes inflammation Promotes VEGF and CXCL1 expression
Enhances eosinophil infiltration

149, 150

Suppresses inflammation Elevates IL-10 level to block dendritic cell and T helper cell response
Inhibits neutrophil apoptosis

147, 148

Gastritis HIF-1α Suppresses inflammation ? 153

Renal fibrosis and inflammation HIF-1α Suppresses inflammation Represses CCR2 and CCL2 expression to inhibit macrophage infiltration
Suppresses CTGF production from renal cells

157, 158

HIF-2α Suppresses inflammation Represses CCR2 and CCL2 expression to inhibit macrophage infiltration 157

Arthritis HIF-1α Promotes inflammation ? 105

Cutaneous inflammation HIF-1α Promotes inflammation ? 105

HIF-2α Promotes inflammation Increases neutrophil infiltration 111
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versican is coregulated by HIF-1α and HIF-2α, while perlecan is 
only dependent on HIF-1α (122). Myeloid HIF-1α is also a critical 
regulator of both glycolytic metabolism and proinflammatory acti-
vation of macrophages, and is stabilized by cues in the atheroscle-
rotic microenvironment, such as hypoxia and cytokines. HIF-1α 
increases transcription of the gene encoding 6-phosphofructo-
2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a key enzyme 
in the glycolytic pathway, leading to (a) increased glycolytic flux, 
(b) increased proinflammatory cytokine production (e.g., TNF-α), 
and (c) maintenance of macrophage viability (124). Together, 
these studies reveal that HIF-αs are crucial components in deter-
mining macrophage proatherosclerotic functions.

Unfortunately, in vivo studies do not always provide consis-
tent findings. In a wire-induced vascular injury model, myeloid 
HIF-1α promotes vascular inflammation and remodeling mani-
fested by increases in TNF-α and IL-6 levels proximal to the injury 
site and neointimal thickening of injured arteries (125). However, 
a recent in vivo genetic and drug-based approach suggested the 
opposite effect in a different mouse model, indicating that HIF-1α 
and HIF-2α accumulation correlates with reduced atherosclero-
sis development. The authors inhibited PHD2, resulting in HIF-
1α and HIF-2α stabilization, by administering a pharmacological 
inhibitor (FG-4497) in an LDL receptor–deficient model of ath-
erosclerosis or by crossing Hif-p4h-2 hypomorphic (Hif-p4h-2gt/gt) 
mice with LDL receptor–deficient mice. PHD2 inhibition led to 

upregulation of LOX-1 (119). Hypoxic J774 murine macrophages 
exhibit elevated sterol accumulation due to (a) enhanced sterol 
synthesis via increased 3-hydroxy-3-methyl-glutaryl-CoA (HMG-
CoA) reductase activity and (b) suppressed cholesterol efflux due 
to altered subcellular localization of ATP-binding cassette sub-
family A member 1 (ABCA1) (120). These phenotypic changes are 
also HIF-1α dependent. In U937 human monocytes, oxLDL treat-
ment increases the expression of 70 out of 96 key genes that are 
known to be involved in atherosclerosis, while 57 of these genes 
(e.g., cyclooxygenase-2 [COX-2], vascular cell adhesion mole-
cule [VCAM-1], and IL-1β) are downregulated with HIF-1α siRNA 
pretreatment (118). Other proatherosclerotic functions of mac-
rophages, such as promotion of angiogenesis and proteoglycan 
synthesis, are also dependent on HIF-αs (121, 122). In a coculture 
system of human monocytes/macrophages and endothelial cells, 
oxLDL strongly induces HIF1A and VEGFA expression in macro-
phages, while increasing endothelial cell tube formation. Of note, 
oxLDL proangiogenic effects are partially lost upon HIF-1α inhibi-
tion (121). The notion that myeloid HIF-1α can promote angiogen-
esis through VEGF upregulation is demonstrated in other studies 
as well (123). Macrophages can also contribute to pathogenesis by 
secreting proteoglycans such as versican, which modulate lipopro-
tein retention and the activity of enzymes, cytokines, and other 
growth factors in atherosclerotic lesions. Increased versican and 
perlecan expression is detected in macrophages under hypoxia; 

Figure 2. Context-dependent myeloid HIF-α 
effector functions. Myeloid HIF-1α and HIF-2α 
exhibit diverse functions that differ in dis-
tinct pathological settings. The two isoforms 
sometimes work in a similar fashion, but can 
also oppose each other. (A) In the setting of 
atherosclerosis, both myeloid HIF-1α and HIF-2α 
contribute to pathogenesis. HIF-1α promotes 
lipid uptake in macrophages through induction of 
LOX-1. Elevation in HMG-CoA reductase activity 
and surface ABCA1 perinuclear relocation down-
stream of HIF-1α increases cholesterol synthesis 
while simultaneously blocking cholesterol efflux. 
Through VEGF production, myeloid HIF-1α also 
facilitates oxLDL’s proangiogenic effects. Regula-
tion of PFKFB3 by HIF-1α enhances glycolytic flux 
and is crucial for both viability and proinflamma-
tory activation of macrophages. Both isoforms 
contribute to proteoglycan secretion. (B) In 
adipose tissue of obese subjects, ATM HIF-1α 
enhances inflammation via induction of hypoxic 
and proinflammatory genes, while ATM HIF-2α 
alleviates insulin resistance and adipose tissue 
inflammation. ATM HIF-2α not only suppresses 
proinflammatory responses in ATM via induc-
tion of arginase 1 (ARG1) expression, but also 
sensitizes adipocytes to insulin signaling while 
inhibiting proinflammatory gene transcription. 
Abbreviations: oxLDL, oxidized low-density 
lipoprotein; LOX-1, lectin-like oxLDL receptor-1; 
ABCA1, ATP-binding cassette subfamily A 
member 1; PFKFPB3, 6-phosphofructo-2-kinase/
fructose-2,6-biphosphatase 3; Glut1, glucose 
transporter 1; Saa, serum amyloid A.
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reductions in levels of atherosclerotic plaque formation, weight 
gain, insulin resistance, liver and white adipose tissue (WAT) 
mass, adipocyte size, number of inflammation-associated WAT 
macrophage aggregates, and high-fat diet–induced increases in 
serum cholesterol levels (126). The discrepancy with previous 
findings could be due to non–myeloid-specific inhibition of PHD2 
in vivo. As such, the in vivo role of myeloid HIF signaling in athero-
sclerosis requires further investigation.

Adipose tissue inflammation and obesity. Adipose tissue 
hypoxia, chronic inflammation, and macrophage infiltration are 
key characteristics of obesity (127–130). In lean mice, a majori-
ty of the adipose tissue macrophages (ATMs) are alternatively 
activated M2 macrophages, which suppress proinflammatory 
responses and maintain adipocyte insulin sensitivity by elevated 
expression of arginase 1 and IL-10, among other factors. In the 
setting of obesity, the number of macrophages is increased and 
their phenotype altered. Many macrophages are in a classically 
activated (M1) state, which produces NO and secretes proinflam-
matory cytokines, such as IL-1β, TNF-α, and IL-6. These cyto-
kines potentiate inflammatory responses in adipose tissue that 
eventually result in insulin resistance (129, 131–133). However, a 
shift in macrophage polarization in lean versus obese humans is 
debated. Aron-Wisnewsky and colleagues reported a more M1 
than M2 polarization of macrophages (defined by CD40 and 
CD206 expression, respectively) in obese patients, which shifts 
to a less proinflammatory profile after weight loss (134). A more 
recent study, however, demonstrated that even though macro-
phage numbers increase in adipose tissue of obese patients, most 
of these ATMs are predominantly M2 macrophages (defined by 
CD163 and IL-10 expression) (135). These contrasting observa-
tions may be a consequence of the oversimplified dichotomy of 
macrophage polarization (see above). In the work of Wentworth 
and colleagues, ATMs were found to be positive for both M1 
(CD11c) and M2 (CD206) markers, exhibiting a proinflammatory 
status associated with insulin resistance in obese humans (136).

In obese patients, higher HIF-1α levels are evident in adipose 
tissue (137), and hypoxia and HIF signaling regulate ATM func-
tions in the setting of obesity (Figure 2B). Fujisaka and colleagues 
showed that adipose tissue hypoxia induces proinflammatory phe-
notypes of M1 ATMs, with elevated expression levels of proinflam-
matory cytokines and hypoxia-related genes (138). In contrast with 
HIF-1α’s proinflammatory roles in ATMs, macrophage HIF-2α has 
been suggested to ameliorate adipose tissue inflammation and 
insulin resistance (139). Choe and colleagues demonstrated that 
HIF-2α overexpression in macrophages represses NO production 
and expression of proinflammatory cytokine genes. On the other 
hand, silencing HIF-2α in palmitate-treated macrophages increas-
es NO production, indicating that HIF-2α is required to downreg-
ulate palmitate-induced NO production. Macrophage HIF-2α also 
regulates the crosstalk between macrophages and adipocytes. 
Adipocytes cocultured with wild-type macrophages exhibit 
decreased insulin signaling, while coculture with HIF-2α–defi-
cient macrophages not only reverses the decrease in insulin sig-
naling, but also stimulates adipocyte proinflammatory responses. 
In a murine model of high-fat diet–induced obesity, HIF-2α haplo-
deficient (Epas1+/–, “Hif2a+/–” herein) mice were more suscepti-
ble to adipose tissue inflammation and became insulin resistant. 

Upon macrophage depletion, both insulin resistance and adipose 
tissue inflammation improved in this model (139). In summary, 
myeloid HIF-1α promotes adipose tissue inflammation by aiding 
macrophage M1 polarization, while myeloid HIF-2α constrains 
the inflammatory response and insulin resistance in adipose tis-
sue. These conclusions are consistent with the understanding that 
different polarization states of macrophages exert opposite effects 
on adipose tissue inflammation, and are also consistent with the 
notion that HIF-1α is required for M1 polarization of macrophages, 
and HIF-2α for M2 polarization (113). However, another study sug-
gests that hypoxia potentiates palmitate-induced expression of the 
proinflammatory genes IL-6 and IL-1β independently of HIF-1α  
and HIF-2α in human macrophages. Instead, their induction 
occurs via activation of JNK and p38 MAPK signaling (46). Anoth-
er group proposed that insulin resistance and metabolic dysregu-
lation in obese mice are mainly regulated by adipocyte HIF-2α, but 
not myeloid HIF-2α (140). Clearly, additional effort is needed to 
determine the extent of HIF-α–mediated regulation of ATM phe-
notypes and whether HIF-α–dependent ATM phenotypic changes 
are sufficient to alter adipose tissue inflammation and obesity.

Sepsis. Sepsis is a life-threatening systemic illness that is nor-
mally induced by microbial infection and may result in fatal multi- 
organ failure in patients. Hyperactivation of the innate immune 
system is believed to be a key component of this pathophysiology. 
Macrophages and neutrophils release cytokines, chemokines, and 
complement-activation mediators soon after the initial microbial 
stimuli (141–143). LPS, a lipoglycan found in the outer membrane 
of gram-negative bacteria and often used to induce murine sepsis 
or endotoxemia, has been shown to stabilize macrophage HIF-1α  
via p42/44 MAPK and NF-κB signaling pathways (40). HIF-1α 
subsequently promotes macrophage in vitro production of proin-
flammatory cytokines such as TNF-α, IL-6, IL-1β, IL-1α, IL-4, and 
IL-12. When mice with conditional Hif1a deletion in the myeloid 
lineage are challenged with LPS, they exhibit reduced hypother-
mia and hypotension, along with enhanced survival compared with 
mice that express myeloid HIF-1α (39). Myeloid HIF-1α deficiency 
is also protective in a gram-positive endotoxin-induced murine 
sepsis model (144). Similar to HIF-1α, deletion of myeloid HIF-2α 
is also protective against sepsis. Cultured bone marrow–derived 
macrophages (BMDMs) isolated from mice with myeloid HIF-2α 
deficiency also exhibit decreased proinflammatory cytokine and 
increased antiinflammatory cytokine production in response to 
LPS stimulation. Additionally, myeloid-specific HIF-2α deficiency 
promotes survival in LPS-challenged mice (111). Collectively, these 
data show that both HIF-1α and HIF-2α contribute to macrophages’ 
pathogenic roles in septic pathology. This conclusion is further 
supported by a more recent study in which 2-methoxyestradiol 
(2-ME2), a HIF-1α inhibitor (145), protected mice from both LPS- 
and cecal ligation and puncture–induced (CLP-induced) sepsis. 
Suppression of cytokines by 2-ME2 was observed in LPS-stimu-
lated peritoneal macrophages, indicating that macrophage pheno-
typic alterations also contributed to the survival phenotype (146).

Airway allergy and asthma. Although airway allergy is a chron-
ic inflammatory disease primarily driven by DCs and Th2 T lym-
phocytes, lung macrophages have also been implicated in airway 
inflammation and asthma (69–71). In a house dust mite (HDM) 
antigen–induced experimental model of airway allergy, myeloid 
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HIF-1α deficiency renders mice more susceptible to these stim-
uli (147). Toussaint and colleagues found that lung macrophage 
HIF-1α drives expression of immunosuppressive IL-10 to impair 
DC activation and Th responses (147). A similar protective effect 
of myeloid HIF-1α is also evident in the setting of pulmonary 
fungal infections. Shepardson and colleagues found that mice 
with myeloid HIF-1α deficiency are more susceptible to pulmo-
nary challenge with Aspergillus fumigatus, are defective in fungal 
clearance, and exhibit decreased lung neutrophil numbers. These 
phenotypes can be partly attributed to decreased production of 
CXCL1 and increased neutrophil apoptosis (148). Contradictory 
to the finding that macrophage HIF-1α prevents airway allergy, a 
study by Byrne and colleagues suggests that development of air-
way allergy is dependent on macrophage HIF-1α. They demon-
strated that HDM increases HIF-1α abundance in the lung, induc-
ing VEGF and CXCL1 production in primary lung macrophages in 
a HIF-1α–dependent manner. Pharmacological HIF-1α inhibition 
in this model suppresses pulmonary allergic inflammation and 
VEGF and CXCL1 secretion (149). Using an ovalbumin-induced 
(OVA-induced) asthma model, others have shown that myeloid 
HIF-1α deficiency reduces airway hyperresponsiveness and eosin-
ophil infiltration. Furthermore, HIF-1α and HIF-2α directly regu-
late eosinophil chemotaxis in opposing ways (150). Therefore, the 
role of myeloid HIF-1α in airway diseases remains very complex, 
and varies in different experimental models.

Gastritis. Inflammation in the gastric mucosa is most com-
monly induced by Helicobacter pylori infection in humans. Chronic 
gastritis may progress to gastrointestinal ulcers or gastric cancer 
(151). Like other inflammatory diseases, recruitment of immune 
cells is also evident during gastric inflammation, and macrophage 
depletion using drug-loaded liposomes has been shown to ame-
liorate the pathology of H. pylori–induced gastritis (152). A recent 
report (153) specifically examined the role of myeloid HIF-1α 
in gastritis. The authors found that HIF-1α levels are positively 
correlated with the severity of gastritis in patients with H. pylori 
infections, and HIF-1α is readily observed in macrophages from 
patient biopsies. In vitro, H. pylori preferentially upregulates Hif1a 
and downregulates Hif2a transcription in BMDMs, while expres-
sion of proinflammatory cytokines is dependent on HIF-1α. Ele-
vated HIF-1α levels also contribute to bactericidal activity of both 
neutrophils and macrophages. Interestingly, in a murine model of  
H. pylori–induced gastritis, mice with myeloid-specific HIF-1α 
deletion failed to exhibit changes in bacterial loads as compared 
with wild-type animals. Even though myeloid-specific HIF-1α 
deficiency blocks the induction of proinflammatory gene expres-
sion upon H. pylori infection, more severe gastritis is observed in 
these animals, characterized by worsened histopathological grad-
ing, greater immune cell infiltration, and a higher cellular prolifer-
ation index compared with infected wild-type animals (153). Over-
all, myeloid HIF-1α appears to be protective in H. pylori–mediated 
gastritis; however, additional work is needed to fully explain these 
counterintuitive phenotypes.

Renal fibrosis and inflammation. Macrophages represent the 
dominant infiltrating cell type during progression of chronic kid-
ney disease (CKD), driven partially by low O2 availability in the 
kidney (154–156). Kobayashi and colleagues addressed the role 
of myeloid HIF-αs using the typical LysM-Cre strategy in a murine 

unilateral ureteral obstruction–induced (UUO-induced) kidney 
injury model. Activation of myeloid HIF via LysM-Cre–driven Vhl 
deletion attenuates renal inflammation, while deletion of both 
myeloid Hif1a and Hif2a enhances inflammation, as indicated by 
increased F4/80+ cell numbers in the kidney. However, the pres-
ence of myeloid HIF-αs does not alter renal fibrosis. The authors 
suggest that hypoxia and/or myeloid HIF-α activation alleviates 
renal inflammation via suppression of Ccr2 and Ccl2, which are 
crucial for monocyte recruitment (157). The notion that myeloid 
HIF-1α regulates UUO-induced nephropathy is further support-
ed by another study using the same LysM-Cre model; however, 
Tateishi and colleagues reported that myeloid HIF-1α deletion 
promoted renal fibrosis but did not alter macrophage accumula-
tion in the UUO model. They suggested a different mechanism for 
the protective role of myeloid HIF-1α in renal fibrosis: suppression 
of renal connective tissue growth factor (CTGF) within renal cells 
(158). The discrepancy between the two reports could be due to 
deletion of two isoforms of HIF-α versus deletion of HIF-1α alone. 
Nevertheless, both studies suggest a protective role for myeloid 
HIF-αs in CKD, which partly supports the observation in patients 
with CDK that elevated renal HIF-1α expression correlates with 
less severe disease (159).

Cancer-associated inflammation. A strong link between chronic 
inflammation and tumor progression has been clearly evident for 
some time. For example, patients with IBDs are at increased risk of 
developing colorectal cancer (160–162). Similar to sites of inflam-
mation, the tumor microenvironment is also highly hypoxic. Mac-
rophages predominantly accumulate in hypoxic regions, change 
their gene expression profiles in response to low O2, and function 
in response to limited O2 availability (100). Significant effort has 
delineated the respective roles of myeloid HIF-1α and HIF-2α in 
the tumor setting, beyond the two examples we will summarize 
here. In a PyMT model of breast cancer, loss of myeloid HIF-1α 
significantly decreases tumor mass and inhibits tumor progres-
sion, likely through suppression of cytotoxic T cell response to 
the tumors (163). As for HIF-2α, Imtiyaz and colleagues demon-
strated that myeloid HIF-2α deficiency leads to reduced tumor 
burden and progression in a murine CAC model, while ablating 
macrophage infiltration of murine hepatocellular carcinoma. The 
authors suggest that these results could partly be due to defective 
migration and invasion of macrophages with HIF-2α loss (111). For 
a more comprehensive discussion of myeloid HIF-αs in cancer, 
please refer to other reviews within this series (164, 165).

Summary
Overall, hypoxia and inflammation are clearly inextricably linked. 
Hypoxia can be a strong contributory factor in certain inflamma-
tory diseases; in turn, inflammation sites often exhibit low O2 
tension. Myeloid cells are major components of innate immunity 
that are tightly associated with inflammation in different tissues 
and found predominantly localized within the hypoxic regions 
of inflamed tissues. Myeloid cell infiltration on its own can con-
tribute to O2 deprivation at these sites. In response to hypoxia, 
myeloid cells stabilize HIF-αs, which facilitates their metabolic 
reprogramming and other adaptations, allowing myeloid cells 
to take on transient roles in different stages of disease progres-
sion. In many types of inflammation described in this review, 
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pathways in myeloid cells are clearly key determinants of their 
physiological and pathological functions and these pathways 
remain attractive therapeutic targets. 
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the roles of myeloid HIF-αs remain incompletely described. In 
many cases, myeloid HIF-1α and HIF-2α have nonredundant or 
even opposing effects on myeloid cell functions (20). Therefore, 
many questions concerning the role of HIF-αs in myeloid cells 
require further investigation. For example, in specific inflamma-
tory diseases, it is unclear if it would be beneficial or detrimental 
to target HIF-αs. If targeting of HIF-αs is beneficial, then should 
a specific HIF-α isoform or both isoforms be targeted? Even if all 
mechanisms mediated by HIF in inflammatory myeloid cells are 
elucidated, clinical translation will still be challenging. For exam-
ple, how can HIF be specifically targeted in myeloid cells? How 
efficient will these therapies be? Nevertheless, oxygen-sensing 
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