Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
PI3-kinase mutation linked to insulin and growth factor resistance in vivo
Jonathon N. Winnay, … , C. Ronald Kahn, Pål R. Njølstad
Jonathon N. Winnay, … , C. Ronald Kahn, Pål R. Njølstad
Published March 14, 2016
Citation Information: J Clin Invest. 2016;126(4):1401-1412. https://doi.org/10.1172/JCI84005.
View: Text | PDF
Research Article Metabolism

PI3-kinase mutation linked to insulin and growth factor resistance in vivo

  • Text
  • PDF
Abstract

The phosphatidylinositol 3-kinase (PI3K) signaling pathway is central to the action of insulin and many growth factors. Heterozygous mutations in the gene encoding the p85α regulatory subunit of PI3K (PIK3R1) have been identified in patients with SHORT syndrome — a disorder characterized by short stature, partial lipodystrophy, and insulin resistance. Here, we evaluated whether SHORT syndrome–associated PIK3R1 mutations account for the pathophysiology that underlies the abnormalities by generating knockin mice that are heterozygous for the Pik3r1Arg649Trp mutation, which is homologous to the mutation found in the majority of affected individuals. Similar to the patients, mutant mice exhibited a reduction in body weight and length, partial lipodystrophy, and systemic insulin resistance. These derangements were associated with a reduced capacity of insulin and other growth factors to activate PI3K in liver, muscle, and fat; marked insulin resistance in liver and fat of mutation-harboring animals; and insulin resistance in vitro in cells derived from these mice. In addition, mutant mice displayed defective insulin secretion and GLP-1 action on islets in vivo and in vitro. These data demonstrate the ability of this heterozygous mutation to alter PI3K activity in vivo and the central role of PI3K in insulin/growth factor action, adipocyte function, and glucose metabolism.

Authors

Jonathon N. Winnay, Marie H. Solheim, Ercument Dirice, Masaji Sakaguchi, Hye-Lim Noh, Hee Joon Kang, Hirokazu Takahashi, Kishan K. Chudasama, Jason K. Kim, Anders Molven, C. Ronald Kahn, Pål R. Njølstad

×

Figure 7

The R649W mutant confers resistance to several growth factors.

Options: View larger image (or click on image) Download as PowerPoint
The R649W mutant confers resistance to several growth factors.
(A) AKT p...
(A) AKT phosphorylation assessed in reconstituted WT and R649W mutant immortalized mouse embryonic fibroblasts treated with insulin, PDGF, and EGF for the indicated time course (n = 2). pBabe was used as a control. (B) Analysis AKT phosphorylation in livers of p85WT/WT and p85WT/R649W mice after administration of EGF (1 μg/g body weight) or vehicle for 5 minutes (n = 4–5). (C) Signaling in isolated primary hepatocytes following stimulation with insulin, IGF-1, and EGF for 10 minutes (n = 3). Immunoblotting was performed with the indicated antibodies.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts