Adoptive immunotherapy with regulatory T cells (Tregs) is a promising treatment for allograft rejection and graft-versus-host disease (GVHD). Emerging data indicate that, compared with polyclonal Tregs, disease-relevant antigen-specific Tregs may have numerous advantages, such as a need for fewer cells and reduced risk of nonspecific immune suppression. Current methods to generate alloantigen-specific Tregs rely on expansion with allogeneic antigen-presenting cells, which requires access to donor and recipient cells and multiple MHC mismatches. The successful use of chimeric antigen receptors (CARs) for the generation of antigen-specific effector T cells suggests that a similar approach could be used to generate alloantigen-specific Tregs. Here, we have described the creation of an HLA-A2–specific CAR (A2-CAR) and its application in the generation of alloantigen-specific human Tregs. In vitro, A2-CAR–expressing Tregs maintained their expected phenotype and suppressive function before, during, and after A2-CAR–mediated stimulation. In mouse models, human A2-CAR–expressing Tregs were superior to Tregs expressing an irrelevant CAR at preventing xenogeneic GVHD caused by HLA-A2+ T cells. Together, our results demonstrate that use of CAR technology to generate potent, functional, and stable alloantigen-specific human Tregs markedly enhances their therapeutic potential in transplantation and sets the stage for using this approach for making antigen-specific Tregs for therapy of multiple diseases.

Introduction

The essential role of regulatory T cells (Tregs) in preventing autoimmunity and controlling responses to alloantigens is well established. Multiple Treg-based cell therapy approaches are now being tested in the clinic, with early promising results reported in prevention of graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (HSCT) (1-3) and maintenance of C-peptide levels in type 1 diabetes (4, 5). The results of these phase I trials indicate that Treg therapy seems to be well tolerated and possibly efficacious, but that there may be a transient risk of generalized immunosuppression (6).

Data from animal studies indicate that the potency and specificity of Treg therapy can be markedly enhanced by the use of antigen-specific cells. For example, in models of autoimmunity, antigen-specific Tregs are superior to polyclonal Tregs in reducing disease: Tregs isolated from pancreatic lymph nodes or pulsed with islet antigen are significantly better at preventing or curing type 1 diabetes than are polyclonal Tregs (7-11), and Tregs expressing an autoantigen-specific transgenic T cell receptor (TCR) are superior to polyclonal Tregs at suppressing central nervous system inflammation in a model of experimental autoimmune encephalomyelitis (EAE) (12). Similarly, alloantigen-specific Tregs, enriched by alloantigen-stimulated expansion in vitro or engineered to express a TCR transgene, are more effective than polyclonal Tregs at preventing rejection of organ and tissue grafts (13-17). Although limited, there is some evidence that Tregs expanded with alloantigens also effectively prevent GVHD (18) and that in vivo induction of antigen-specific Tregs promotes acceptance of hematopoietic allografts without GVHD (19). Humanized mouse models have shown similar results: alloantigen-expanded human Tregs are more potent suppressors of skin graft rejection than are polyclonal Tregs (20, 21).

An alternate approach to overexpressing transgenic TCRs or antigen-stimulated expansion to enrich for antigen-specific T cells is the use of chimeric antigen receptors (CARs), in which T cells are genetically engineered to express extracellular single-chain Ab (scFv) antigen-binding domains fused to intracellular signaling domains (22, 23). Tregs expressing CARs specific for model antigens have been tested (24-28), leading us to hypothesize that this approach could be used in the context of transplantation. Here, we describe what we believe is a new approach to generating potent alloantigen-specific Tregs, using a CAR targeting HLA-A2.

Results

Construction and validation of an A2-CAR. We aimed to generate a new CAR specific for HLA-A2, as this is a commonly mismatched antigen in transplantation, with a prevalence of approximately 50% in those of mixed European descent (29), and HLA-A-mismatching is associated with poor outcomes after transplantation (30). As detailed in Methods, we generated lentiviral vectors encoding an HLA-A2–specific CAR by cloning and sequencing the resulting scFv to portions of CD8, CD28, and CD3ζ in a second-generation CAR structure (ref. 31 and Figure 1, A and B). A...
in Tregs, we sorted CD25 hiCD45RA+ cells from peripheral blood, A2 tetramers, but not to control HLA-A24 tetramers. As shown in Figure 1D, cells expressing the A2-CAR bound to HLA-A2, confirming that the specificity of binding to HLA-A2 was retained. As this population is known to have homogeneous expression of FOXP3 and to have the highest expansion potential (Figure 2A and ref. 36). CD25loCD45RA+ cells were sorted in parallel as the control Tconv population. A lentivector encoding a second-generation CAR containing CD28 was chosen because of the well-characterized importance of this costimulatory molecule in Treg development and function (32). A2-CAR (A2-CAR) was confirmed by transient transfection of 293T cells and flow cytometric staining for the extracellular Myc epitope (Figure 1C). mAbs reformatted to scFv may have reduced antigen binding or specificity depending on their components (34, 35). Generation of A2-CAR Tregs. To test the function of the A2-CAR in Tregs, we sorted CD25loCD45RA+ cells from peripheral blood, as this population is known to have homogeneous expression of FOXP3 and to have the highest expansion potential (Figure 2A and ref. 36). CD25loCD45RA+ cells were sorted in parallel as the conventional T cell (Tconv) control. As outlined in Figure 2B, Tregs (or control Tcons) were stimulated, transduced, and purified as A2-CAR–expressing cells, then expanded for an additional 6 days. At the end of 13 to 14 days of culture, cell-surface expression of A2-CAR or HER2-CAR on both Tregs and Tcons was confirmed with flow cytometry (Figure 2C). Interestingly, while similar proportions of Tregs and Tcons populations were positive for CAR expression, on a per-cell basis, A2-CAR expression appeared to be higher in both cell types than expression of the HER2-CAR. Even when CAR expression intensity was normalized to the expression of A2-CAR, A2-CAR–expressing cells showed significantly higher levels of CAR expression than cells expressing HER2-CAR.

The effect of CAR expression on the phenotype and function of human Tregs is unknown, and since high expression of CARs has been linked to undesired antigen-independent CAR activation (37), it was important to exclude the possibility that high expression of a CAR in Tregs might result in loss of the expected Treg phenotype. A2-CAR–expressing Tregs maintained significantly higher expression of FOXP3 than Tcons and preserved a high degree of demethylation of the Treg-specific demethylated region (TSDR) of the FOXP3 locus (Figure 2, D and E), consistent with other reports of demethylation observed in naïve Tregs sorted by flow cytometry (38). High expression of other canonical Treg markers, including CD25, Helios, and CTLA-4, was also preserved in A2-CAR–expressing Tregs (Supplemental Figure 1A; supplemental material available online with this article). To determine whether A2-CAR Tregs preserved their in vitro suppressive function when activated via their endogenous TCR (i.e., not via the A2-CAR), αCD3/CD28 mAbs were used to stimulate HLA-A2 peripheral blood mononuclear cells (PBMCs) alone or in the presence of decreasing ratios of A2-CAR Tregs. As shown in Supplemental Figure 1C, A2-CAR Tregs suppressed the proliferation of CD8+ T cells in a dose-dependent manner. Finally, cultures of Tregs expressing either CAR had high viability, ranging from 86% to 96% (Supplemental Figure 1D). Thus, expression of a second-generation CAR comprising domains from scFv, CD8α, CD28, and CD3ζ does not alter the phenotype, stability, or in vitro function of human Tregs.

A2-CAR–mediated stimulation activates Tregs. We next investigated how A2-CAR stimulation compares with traditional TCR activation of Tregs. We first tested the ability of TCR versus CAR activation to stimulate intracellular signaling pathways. A2-CAR Tregs or Tcons were TCR stimulated with anti-CD3 mAbs or CAR stimulated by crosslinking the extracellular Myc-tag, and relative levels of phospho-ZAP70 were determined by flow cytometry. TCR and CAR stimulation activated ZAP70 equally, without any statistically significant differences between Tregs and Tcons (Figure 3A).

A2-CAR–expressing Tregs or Tcons were next left unstimulated or stimulated via the CAR, with K562 cells expressing HLA-A2, or via the TCR, with K562 cells loaded with αCD3/CD28 mAbs, for 24 hours. CAR stimulation resulted in upregulation of the canonical activation marker CD69 in both Tregs and Tcons to levels that tended to be higher than those of TCR-stimulated cells (Figure 3B). In contrast, in comparison with Tcons, Tregs had significantly lower expression of CD154 (CD40L) upon activation.

DOI:10.1172/JCI82771

Figure 1. Construction, expression, and antigen specificity of an HLA-A2–specific CAR. (A) Schematic of domains in the A2-CAR. Gly, glycine serine linker; Myc, Myc-tag; TM, transmembrane. (B) Schematic of bidirectional lentiviral vectors encoding the truncated nerve growth factor receptor (ΔNGFR) as a selectable marker under a minimal CMV promoter and CARs specific for HLA-A2 or HER2 under the EF1α promoter. (C) 293T cells transfected with an empty vector (ΔNGFR), or a vector encoding a HER2-CAR, or the A2-CAR. Surface expression was measured by detection of the Myc-epitope tag by flow cytometry. UT, untransfected. (D) 293T cells expressing the HER2-CAR or A2-CAR were stained with HLA-A2 or HLA-A24 tetramers (tet). Data are representative of 2 independent experiments.

Supplemental Figure 1.
Both TCR- and CAR-stimulated Tregs maintained the expected expression pattern of Treg lineage markers, with high expression of FOXP3 (both percentage and MFI) and CD25 and low expression of CD127 (Figure 4A).

After 2 weeks, CAR stimulation resulted in a significantly higher fold expansion and increased viability of Tregs compared with TCR-expanded cells (Figure 4B) and retained the Tregs’ suppressive activity (Figure 4C). TCR- and CAR-stimulated Tregs remained more than 85% FOXP3+ and had similar levels of FOXP3 on a per-cell basis, with percentage of both FOXP3+ and MFI significantly higher than in Tconvs (Figure 4D). However, there was a slight downregulation of the A2-CAR MFI in CAR-expanded cells, possibly due to receptor internalization, since the overall proportion of CAR+ cells was similar after TCR or CAR expansion. Tregs expanded through their CAR also maintained high expression of CD25 and CTLA-4 (Figure 4E).

Figure 2. Generation of HLA-A2–CAR Tregs. (A) Sorting strategy to isolate naive Tregs and Tconvs from CD25-enriched and CD25-depleted CD4+ cells, respectively. (B) Schematic diagram outlining the protocol to transduce naive human T cells with lentiviral vectors encoding CARs. (C) Extracellular expression of CARs was assessed by staining for the Myc-epitope tag. The average proportion of CAR+ cells in ΔNGFR-selected cells is summarized. The average CAR MFI was determined relative to ΔNGFR MFI on the same cell (n = 3). (D) Expression of FOXP3 was assessed at day 14; representative data are on the left and averaged data are on the right (n = 3). (E) TSDR methylation was determined by pyrosequencing of cells from males at day 14 (n = 4). Left panel shows data from each CpG residue, with averaged data combing all CpGs to the right. Significance determined by 2-way ANOVA. Data represent mean ± SEM. *P < 0.05.
To further confirm the antigen specificity of the A2-CAR Tregs, we used an autologous system consisting of an EBV-transformed B cell line (with and without ectopic HLA-A2 expression), a tetanus toxoid–specific (TT-specific) T cell clone, and A2-CAR Tregs from an HLA-A2–individual (Supplemental Figure 2A). This system enabled the Tregs and responding T cell clone to be activated individually, without polyclonal anti-CD3 stimulation (i.e., TCR), allowing precise testing of antigen specificity. In the absence of HLA-A2, A2-CAR Tregs did not suppress TT-stimulated proliferation. In the presence of HLA-A2, only the A2-CAR, and not the HER2-CAR, Tregs suppressed proliferation. Finally, the presence of stimulated A2-CAR-expressing Tconv enhanced proliferation.

HER2-CAR Tregs and HLA-A2+ PBMCs. These data suggest that expression of A2-CAR enables Tregs to interact more specifically with HLA-A2-expressing cells.

To test the relative ability of A2-CAR Tregs to suppress T cell proliferation in response to allogeneic antigens, we set up mixed lymphocyte reactions (MLRs) in which either the responding T cells or the stimulating antigen-presenting cells (APCs) expressed HLA-A2. As shown in Figure 5, B and C, compared with HER2-CAR Tregs, A2-CAR Tregs were significantly better able to suppress alloantigen-stimulated proliferation of CD8+ T cells regardless of whether HLA-A2 was expressed on the responder or the stimulator cells. These data show that expression of A2-CAR on Tregs results in antigen-specific suppression.

To further confirm the antigen specificity of the A2-CAR Tregs, we used an autologous system consisting of an EBV-transformed B cell line (with and without ectopic HLA-A2 expression), a tetanus toxoid–specific (TT-specific) T cell clone, and A2-CAR Tregs from an HLA-A2–individual (Supplemental Figure 2A). This system enabled the Tregs and responding T cell clone to be activated individually, without polyclonal anti-CD3 stimulation (i.e., TCR), allowing precise testing of antigen specificity. In the absence of HLA-A2, A2-CAR Tregs did not suppress TT-stimulated proliferation. In the presence of HLA-A2, only the A2-CAR, and not the HER2-CAR, Tregs suppressed proliferation. Finally, the presence of stimulated A2-CAR-expressing Tconvs enhanced proliferation.

Figure 3. A2-CAR–mediated stimulation activates Tregs. (A) Signaling downstream of TCR or CAR stimulation was assessed in A2-CAR Tregs and Tconvs loaded with αCD3 (TCR) or αMyc (CAR) mAbs, which were then crosslinked by addition of αIgG. Cells were fixed at 0, 5, 10, and 20 minutes and stained for phosphorylated ZAP70 (n = 4). (B–D) A2-CAR Tregs or Tconvs were stimulated with K562.64 cells loaded with αCD3/28 mAbs (TCR stim) or expressing HLA-A2 (CAR stim) (n = 4). After 1 day, T cells were assayed for expression of (B) CD69 and CD154, (C) CTLA-4, and (D) membrane-bound TGF-β (LAP) and GARP. Gates were set based on unstimulated controls. (E) After 48 hours, cytokine production upon A2-CAR stimulation was measured by cytometric bead array (n = 2). Averaged data represent mean ± SEM. Significance determined by 2-way ANOVA. *P < 0.05; **P < 0.01; ***P < 0.001.
In vivo, A2-CAR Tregs would have the potential to receive simultaneous signals through both their endogenous TCRs and the ectopically expressed CAR. To mimic this possibility, HLA-A2+ PBMCs were stimulated with αCD3/28-coated beads in the absence or presence of A2-CAR– or HER2-CAR–expressing Tregs. A2-CAR Tregs, which received stimulation from both the CAR and the TCR (via αCD3/28 beads), were as suppressive as HER2-CAR Tregs (which only received TCR stimulation), demonstrating that combined CAR and TCR stimulation does not negatively affect suppressive function (Supplemental Figure 2B). A2-CAR–mediated suppressive activity was also found to require contact, as A2-CAR–stimulated Tregs were not suppressive in a Transwell suppression assay (Supplemental Figure 2C).

CAR-stimulated Tregs have minimal cytotoxic activity. CARs were originally developed in the context of cytolytic T cells, and there are some reports that human Tregs may also employ cytotoxicity as one of their mechanisms of suppression (40), so we next determined whether CAR stimulation might induce Tregs to kill their targets. HLA-A2+ or HLA-A2– K562 cells were cocultured with increasing numbers of A2-CAR Tregs or Tconvs, and after 24 hours, the proportion of K562 cells expressing active caspase 3 was measured as an indicator of cell death (Figure 6A). A2-CAR Tconvs robustly induced cell death in HLA-A2+ K562 cells (but not HLA-A2– K562 cells, data not shown). Although a small proportion (<15%) of HLA-A2+ K562 cells were positive for active caspase 3 when cocultured with high ratios of A2-CAR Tregs, A2-CAR Tregs mediated substantially less killing than Tconvs at all ratios tested (Figure 6B).

Possible Treg-mediated cytolytic activity was further tested using PBMCs as targets. Similar to data with K562 cells, coculture with A2-CAR– or HER2-CAR–expressing Tregs resulted in the presence of active caspase 3 when cocultured with high ratios of A2-CAR Tregs, A2-CAR Tregs mediated substantially less killing than Tconvs at all ratios tested (Figure 6B).

CAR-stimulated Tregs have minimal cytotoxic activity. CARs were originally developed in the context of cytolytic T cells, and there are some reports that human Tregs may also employ cytotoxicity as one of their mechanisms of suppression (40), so we next determined whether CAR stimulation might induce Tregs to kill their targets. HLA-A2+ or HLA-A2– K562 cells were cocultured with increasing numbers of A2-CAR Tregs or Tconvs, and after 24 hours, the proportion of K562 cells expressing active caspase 3 was measured as an indicator of cell death (Figure 6A). A2-CAR Tconvs robustly induced cell death in HLA-A2+ K562 cells (but not HLA-A2– K562 cells, data not shown). Although a small proportion (<15%) of HLA-A2+ K562 cells were positive for active caspase 3 when cocultured with high ratios of A2-CAR Tregs, A2-CAR Tregs mediated substantially less killing than Tconvs at all ratios tested (Figure 6B).

Possible Treg-mediated cytolytic activity was further tested using PBMCs as targets. Similar to data with K562 cells, coculture with A2-CAR– or HER2-CAR–expressing Tregs resulted in the presence of active caspase 3 when cocultured with high ratios of A2-CAR Tregs, A2-CAR Tregs mediated substantially less killing than Tconvs at all ratios tested (Figure 6B).

A2-CAR Tregs are superior to polyclonal Tregs at preventing xenogeneic GVHD mediated by HLA-A2+ T cells. In order to test the functional capacity of A2-CAR Tregs in vivo, we used a mouse model in which human PBMCs engrafted into immunodeficient NOD/SCID IL-2Rγnull (NSG) mice cause xenogeneic GVHD (41). In these experiments, 1 × 10⁷ PBMCs from an HLA-A2+ donor were inject-
ed into irradiated NSG mice with or without the indicated type of Treg at a 1:1 or 2:1 ratio (i.e., 1 × 10⁷ Tregs or 5 × 10⁶ Tregs). Mice were monitored for up to 7 weeks by clinical score as described in Methods. Consistent with previous reports, control Tregs expressing the HER2-CAR, which would be stimulated via their endogenous TCR by xenogeneic antigens (but not through the CAR), significantly improved survival of mice when infused at a 1:1 ratio (Figure 7A). Importantly, mice receiving A2-CAR Tregs at either a 1:1 or 1:2 ratio were significantly better protected. A2-CAR Tregs improved survival (Figure 7A) and delayed onset of xenogeneic GVHD (Figure 7B) in comparison with results in mice receiving HER2-CAR–expressing Tregs. Even when xenogeneic GVHD developed in mice that received A2-CAR Tregs, weight loss was less (Figure 7C) and disease progression was slower (Figure 7D).

Engraftment of human T cells and survival of the infused Tregs was monitored by weekly blood draws. As shown in Figure 7E, in comparison with mice receiving HER2-CAR–expressing Tregs, mice injected with A2-CAR Tregs had a lower absolute number of human HLA-A2⁺CD45⁺ cells per μl of blood. Lower absolute numbers of circulating HLA-A2⁺CD45⁺ cells likely reflect the...
failure of these cells to expand (as observed for mice coinjected with HER-2 Tregs), since the proportion of HLA-A2+CD45+ cells was the same at days 7 and 14 and corresponded to expansion and persistence of A2-CAR Tregs in mouse blood (Figure 7E and F). Notably, A2-CAR Tregs remained FOXP3+ and were detectable in circulation for twice as long as HER-2 CAR T cells. Similar to findings from in vitro data (Figure 4C), cells that received CAR stimulation in vivo had a lower MFI of CAR expression, but also had a significantly higher FOXP3 MFI (Figure 7G), likely reflecting in vivo activation.

In the xenogeneic GVHD model discussed above, HLA-A2 is expressed on the responding T cells, but in human HLA-A2+ recipients of hematopoietic stem cells or recipients of HLA-A2+ organs, HLA-A2 would be expressed ubiquitously on tissues. It was therefore important to exclude the possibility that the A2-CAR Tregs might cause tissue destruction. To test this possibility, HLA-A2 transgenic NSG mice were engrafted with HLA-A2 PBMCs in the absence or presence of A2-CAR Tregs or A2-CAR Tconvs. Mice were sacrificed at 2 different time points (2 and 4 weeks after cell infusion), and histological analysis was performed to measure immune cell infiltration and tissue integrity (Supplemental Figure 3). We found that mice injected with PBMCs, with or without A2-CAR Tconvs, had substantial immune cell infiltration and tissue destruction. In contrast, mice receiving PBMCs and A2-CAR Tregs had less infiltration and most closely resembled the PBS control mice. Thus, injection of A2-CAR Tregs into mice that systemically express HLA-A2 does not result in tissue cytotoxicity, but rather activates their suppressive effect and limits PBMC-mediated tissue toxicity.

A2-CAR-stimulated Tregs require exogenous IL-2 for survival. A defining characteristic of human and mouse Tregs is in vitro anergy, i.e., their inability to proliferate in the absence of exogenous IL-2 (39, 42). We therefore asked whether CAR stimulation affected this phenotype, possibly overcoming a requirement for exogenous IL-2. We found that, in contrast with TCR, CAR could indeed stimulate IL-2-independent proliferation in short-term (3 day) assays, but addition of exogenous IL-2 significantly enhanced CAR- and TCR-stimulated cell division (Figure 8A). Beyond 3 days, however, in the absence of exogenous IL-2, CAR- and TCR-stimulated Tregs had a significant decrease in viability (Figure 8B). The inability of CAR stimulation to maintain long-term cell viability is consistent with the inability of the CAR to stimulate STAT5 phosphorylation (Figure 8C). Thus, although CAR stimulation results in potent Treg activation, such as that in unmodified Tregs, CAR-Tregs require exogenous IL-2 for long-term survival.

Discussion
In this study, we show that the specificity of human Tregs can be redirected toward a transplant-relevant antigen using a CAR. Expression of an A2-CAR in Tregs enables antigen-specific activation and proliferation that is stronger than that stimulated by the endogenous TCR. Despite this relatively strong CAR-mediated activation and/or expansion, A2-CAR Tregs retained high proliferative and/or suppressive potential and limits PBMC-mediated tissue toxicity. Thus, injection of A2-CAR Tregs into mice that systemically express HLA-A2 does not result in tissue cytotoxicity, but rather activates their suppressive effect and limits PBMC-mediated tissue toxicity.

A2-CAR-stimulated Tregs require exogenous IL-2 for survival. A defining characteristic of human and mouse Tregs is in vitro anergy, i.e., their inability to proliferate in the absence of exogenous IL-2 (39, 42). We therefore asked whether CAR stimulation affected this phenotype, possibly overcoming a requirement for exogenous IL-2. We found that, in contrast with TCR, CAR could indeed stimulate IL-2-independent proliferation in short-term (3 day) assays, but addition of exogenous IL-2 significantly enhanced CAR- and TCR-stimulated cell division (Figure 8A).

Beyond 3 days, however, in the absence of exogenous IL-2, CAR- and TCR-stimulated Tregs had a significant decrease in viability (Figure 8B). The inability of CAR stimulation to maintain long-term cell viability is consistent with the inability of the CAR to stimulate STAT5 phosphorylation (Figure 8C). Thus, although CAR stimulation results in potent Treg activation, such as that in unmodified Tregs, CAR-Tregs require exogenous IL-2 for long-term survival.

In the xenogeneic GVHD model discussed above, HLA-A2 is expressed on the responding T cells, but in human HLA-A2+ recipients of hematopoietic stem cells or recipients of HLA-A2+ organs, HLA-A2 would be expressed ubiquitously on tissues. It was therefore important to exclude the possibility that the A2-CAR Tregs might cause tissue destruction. To test this possibility, HLA-A2 transgenic NSG mice were engrafted with HLA-A2 PBMCs in the absence or presence of A2-CAR Tregs or A2-CAR Tconvs. Mice were sacrificed at 2 different time points (2 and 4 weeks after cell infusion), and histological analysis was performed to measure immune cell infiltration and tissue integrity (Supplemental Figure 3). We found that mice injected with PBMCs, with or without
fer from limitations of cell numbers, as the frequency of alloantigen-specific cells decreases with increasing MHC matching. Indeed, such approaches may not be feasible at all in the context of HSCT, since most or all of the HLA alleles are matched and in vitro expansion of alloantigen-specific cells decreases with increasing HLA matching (21, 43). Moreover, this method requires sufficient APCs from the donor, or recipient in the case of HSCT, which are not always available. An additional consideration is that expansion of alloantigen-specific Tregs by APC stimulation requires extensive in vitro expansion, which could lead to loss of FOXP3 (44) and, based on data from CD8 T cells, decreased telomere length and, hence, in vivo survival (45). The use of CAR technology overcomes all of these limitations.

A2-CAR–expressing Tregs can be robustly activated by a single HLA mismatch. Targeting of Tregs with a CAR toward MHC class I, and specifically HLA-A2, provides several advantages: it bypasses the need for direct or indirect antigen presentation by MHC class II; MHC class I is broadly expressed on all tissues, so stimulation would not be dependent on the presence of professional APCs; and HLA-A2 is expressed by a substantial proportion of the population, leading to many HLA-A2–mismatched transplants. In the context of solid organ transplantation, expression of HLA-A2 on the organ would likely stimulate localization of A2-CAR Tregs to the transplant, a possibility supported by our observed preferential colocalization of A2-CAR Tregs with HLA-A2+ cells. In the context of GVHD, our experiments in HLA-A2–expressing NSG mice suggest that systemic expression of HLA-A2 may result in systemic activation of Treg suppression without consequent tissue damage.

Proof-of-concept work in mouse models has demonstrated the feasibility of redirecting the specificity of Tregs using CARs specific for model antigens. Expression of a trinitrophenol–specific CAR with a CD28 transmembrane domain and FCγR signaling domains enabled mouse Tregs to home to the site of disease and protect from trinitrobenzene sulfonic acid–induced colitis (24, 25). Antigen-driven homing and protection from EAE was also observed in mouse T cells that were transduced with FOXP3 and a myelin oligodendrocyte glycoprotein–specific CAR containing domains from CD3γ and CD28 (26).

There is also a previous report of expression of a CAR specific for carcinoembryonic antigen in human Tregs (27), but the low expression of FOXP3 and coproduction of IFN-γ and IL-10 in these cells makes it difficult to draw any conclusions about the impact of CAR expression on Treg biology. Our study represents what we believe is a marked advance over these previous findings, as we report the creation of a human disease–relevant CAR and detailed data on the functionality of this protein in human Tregs.

An important consideration is how the presence of the CAR might affect the function of the endogenous TCR. We found that CAR expression does not abrogate the normal suppressive function of Tregs whether they...
are stimulated via the TCR or the CAR. This finding provides assurance that the “off-target” effects of CAR-expressing Tregs are not likely to be different from those of polyclonal Tregs and indeed should be minimized because the “on-target” effects can be obtained with smaller cell numbers.

Tregs are known to have intracellular signaling pathways distinct from those of Tconvs, with a specific requirement for low levels of PI3K activity to retain high FOXP3 expression (46). The second-generation format A2-CAR used here includes domains from CD28 and CD3ζ generation format A2-CAR used here includes domains from CD28 of PI3K activity to retain high FOXP3 expression (46). The second-

tinct from those of Tconvs, with a specific requirement for low levels of PI3K activity to retain high FOXP3 expression (46). The second-generation format A2-CAR used here includes domains from CD28 and CD3ζ, both of which are necessary for Treg activation (47), suppressive capacity (48, 49), and homeostasis (50, 51). Although stimulation through the CAR did not cause abnormal signaling via ZAP70 or stimulate phosphorylation of STAT5, in short-term (2 to 3 days) assays, it did partially break the canonical anergy of Tregs in the absence of exogenous IL-2. Reversal of anergy, however, did not compromise lineage stability, as evidenced by stable expression of the absence of exogenous IL-2. Reversal of anergy, however, did not compromise lineage stability, as evidenced by stable expression of the absence of exogenous IL-2. Reversal of anergy, however, did not compromise lineage stability, as evidenced by stable expression of the absence of exogenous IL-2. Reversal of anergy, however, did not compromise lineage stability, as evidenced by stable expression of the absence of exogenous IL-2. Reversal of anergy, however, did not compromise lineage stability, as evidenced by stable expression of the absence of exogenous IL-2. Reversal of anergy, however, did not compromise lineage stability, as evidenced by stable expression of the absence of exogenous IL-2. Reversal of anergy, however, did not compromise lineage stability, as evidenced by stable expression of the absence of exogenous IL-2. Reversal of anergy, however, did not compromise lineage stability, as evidenced by stable expression of the absence of exogenous IL-2. Reversal of anergy, however, did not compromise lineage stability, as evidenced by stable expression of the absence of exogenous IL-2. Reversal of anergy, however, did not compromise lineage stability, as evidenced by stable expression of the absence of exogenous IL-2. Reversal of anergy, however, did not compromise lineage stability, as evidenced by stable expression of the absence of exogenous IL-2. Reversal of anergy, however, did not compromise lineage stability, as evidenced by stable expression of

Since depletion of Tregs results in a return of inflammation in tolerized mice (53), long-term persistence may be essential for Treg therapy. In humans, infused Tregs have been observed in circulation for up to 14 days (3, 4), and in CAR T cell therapies, transferred cells are detectable in the blood for several weeks (54, 55). Although we observed A2-CAR Tregs in vivo for twice as long as polyclonal Tregs, they were not detectable in circulation after transferred cells are detectable in the blood for several weeks (54, 55). Although we observed A2-CAR Tregs in vivo for twice as long as polyclonal Tregs, they were not detectable in circulation after transferred cells are detectable in the blood for several weeks (54, 55). Although we observed A2-CAR Tregs in vivo for twice as long as polyclonal Tregs, they were not detectable in circulation after transferred cells are detectable in the blood for several weeks (54, 55). Although we observed A2-CAR Tregs in vivo for twice as long as polyclonal Tregs, they were not detectable in circulation after transferred cells are detectable in the blood for several weeks (54, 55). Although we observed A2-CAR Tregs in vivo for twice as long as polyclonal Tregs, they were not detectable in circulation after.

In conclusion, here we have demonstrated the feasibility of redirecting Tregs to a transplant-relevant antigen with a CAR and shown that CAR Tregs remain functionally and phenotypically stable in vitro and in vivo. This work provides what we believe is the first proof-of-concept that CAR Tregs have the potential to be used therapeutically. In the setting of transplantation, a bank of HLA-specific CARs could be used to overcome all of the limitations of current strategies to generate alloantigen-specific Tregs. These findings also set the stage for using CARs to redirect the antigen specificity of Tregs toward auto- and/or tissue-specific antigens for therapeutic use in autoimmunity.

Methods

A2-CAR generation. Variable regions of the Ig heavy and light chains were cloned from the anti–HLA-A2 BB7.2 hybridoma (ATCC) using published methods (56) and converted into a single-chain Ab (scFv). The scFv was fused to a Myc epitope tag in the extracellular region to enable cell-surface detection by flow cytometry, a stalk region from human CD8α, the transmembrane and intracellular domains of human CD28, and human CD3ζ as described (33). The HER2-CAR and the A2-CAR were cloned into a lentiviral vector that encodes cell-surface expression of a truncated nerve-growth-factor (TrkA) receptor (ΔNGFR) as a marker. Surface expression was determined by flow cytometry with transiently transduced HEK 293T cells (Lipofectamine 2000, Life Technologies). Viral particles were produced as described (57).

Treg sorting, transduction, and expansion. CD4+ T cells were isolated from HLA-A2+ donors via RosetteSep (STEMCELL Technologies) and enriched for CD25+ cells (Miltenyi Biotec) prior to sorting into live CD4⁺CD45RO⁺CD45RA⁺CD25⁺ Tregs and CD4⁺CD45RO⁺CD45RA⁺CD25⁺ Tconvs, using a FACSria II (BD Biosciences). Sorted T cells were stimulated with artificial APCs (aAPCs) loaded with αCD3 mAbs as described (58) in 1,000 U/ml or 100 U/ml of IL-2, for Tregs or Tconvs, respectively. One day later, cells

Figure 8. A2-CAR-stimulated Tregs require exogenous IL-2 for long-term survival. (A) A2-CAR Tregs or Tconvs were labeled with CPD, then stimulated with K562.64 cells loaded with αCD3/28 mAbs or expressing HLA-A2 in the absence or presence of 100 U/ml IL-2 for 5 days. Representative plots of FVD⁺CD4⁺ cells (left) and percentage of proliferated compared with unstimulated controls are summarized (right, n = 4). (B) The proportion of viable CD4⁺ T cells at day 5 was determined as the proportion of cells in the lymphocyte gate that were FVD⁺ (n = 4). (C) STAT5 phosphorylation was assessed in A2-CAR Tregs stimulated via the TCR (with αCD3), CAR (αMyc), or IL-2. Cells were fixed at 0, 5, 10, and 20 minutes, and the proportion of phospho-STAT5 positive cells was assessed (n = 3). Data represent mean ± SEM. Significance determined by 1-way ANOVA (B) or 2-way ANOVA (A). **P < 0.01; ***P < 0.001.
were transduced with lentivirus at an MOI of 10 virus particles/cell. At day 7, ANGFR+ cells were purified with magnetic selection (Miltenyi Biotec), then restimulated with aAPCs as above and expanded for 6 to 7 days. To test effects of A2-mediated stimulation, Tregs were restimulated with irradiated (10 Gy) K562.64 cells (59), K562.64.HLA-A2 cells, or K562.64.HER2 cells (derived from K562.64 cells transduced with a lentivirus encoding HER2 and GFP) at a 1:2 (K562/T cell) ratio for 2 weeks in the presence of 1,000 U/ml IL-2.

Flow cytometry. For phenotypic analysis, cells were stained with fixable viability dye (FVD) (65-0865-14 and 65-0866-14, ebioscience) and for surface markers before fix/perm with FOXP3/Transcription Factor Staining Buffer Set (ebioscience), followed by staining for intracellular proteins. For analysis of cytokine production, cells were stimulated with 10 ng/ml PMA and 500 ng/ml ionomycin, in the presence of brefeldin A (10 μg/ml) (all Sigma-Aldrich) for 4 hours. Samples were read on an LSRII or Fortessa (BD Biosciences) and results analyzed using Flowjo Software versions 8.7 and 10.0.6 (Tree Star).

Surface staining was performed for ANGFR (130-091-917, Milleniy Biotec), HLA-A2 (551285, BD Biosciences), Myc (22335, Cell Signalling), CD4 (46-0047-42, ebioscience), CD8 (48-0087-41, ebioscience or 556535, BD Biosciences), CD45RA (11-0458-73, ebioscience), CD45RO (48-0457-42, ebioscience), hCD45 (560777, BD Biosciences) mCD45 (25-0451-82, ebioscience), CD25 (120-001-311, Miltenyi Biotec and 25-0259-42, ebioscience), LAP (25-9829-42, ebioscience), GARP (563958, BD Bioscience), CD69 (LMHCD6901, Caltag), CD154 (555702 BD Biosciences), and CD127 (48-1278-42, ebioscience). HLA-A2 and HLA-A24 tetramers were a gift from Ru Tan (University of British Columbia).

Intracellular staining was performed for FOXP3 (12–4777-42, ebioscience), Helios (137223, Biologent), CTLA-4 (555855 and 562743, BD Biosciences), IL-2 (559334, BD Biosciences) IFN-γ (557844, BD Biosciences), Helios (137223, Biolegend), CD154 (555702, BD Biosciences), and CD127 (48-1278-42, ebioscience). HLA-A2+ or HLA-A2– PBMCs from healthy donors were differentiated into monocyte-derived DCs as described (61). For MLRs, HLA-A2+ or HLA-A2– PBMCs were labeled with PKH26 (Sigma-Aldrich, PKH26GL-1KT) and cocultured with A2-CAR-expressing cells at the indicated ratios for 24 hours. Activation of caspase 3 in PKH26+ cells was determined by flow cytometry and percentage-specific cell death was calculated by subtracting the percentage of cells with active caspase 3 in cultures with no CAR Tregs/Tconvs as described (60).

Suppression of MLRs and TT-specific T cells. Adherent cells from HLA-A2+ or HLA-A2– PBMCs from healthy donors were differentiated into monocyte-derived DCs as described (61). For MLRs, HLA-A2+ or HLA-A2– CD3 responder T cells were labeled with CPD eFluor450 (ebioscience, 65-0842-85); then 1 × 10^6 responder T cells were stimulated with 5 × 10^4 HLA-A2–mismatched DCs, with increasing ratios of A2-CAR or HER2-CAR Tregs. After 4 days, division of CD8 T cells was measured by flow cytometry.

For suppression of TT-specific proliferation, TT-specific CD4+ T clones were isolated from an HLA-A2– individual as described (62). An EBV cell line from the same donor was transduced with HLA-A2 using lentivirus. EBV cell lines were pulsed overnight with 50 μg/ml of TT (5 μg/ml, Enzo Life Science, ALX-630-108), irradiated at 150 Gy, and cocultured with CPD-labeled TT-specific CD4+ T clones in the absence of presence of CAR-expressing Tregs or Tconvs. Proliferation was determined after 4 days, and percentage of suppression of TT-specific clones was calculated using percentage of proliferation as follows: (100 − [(% proliferated TT + test) / (% proliferated TT alone)] × 100).

In vivo experiments. The 8- to 12-week-old female NSG mice (The Jackson Laboratory, bred in house) received whole-body irradiation (150 cGy, RS-2000 Pro Biological System) 1 day before injection of 1 × 10^7 HLA-A2– PBMCs with or without 1 × 10^4 or 0.5 × 10^4 of the indicated type of Tregs. Saline-injected mice served as controls. GVHD was scored based on weight, fur texture, posture, activity level, and skin integrity, with 0 to 2 points per category as described (63, 64). GVHD scoring was performed by 2 blinded investigators. Peripheral blood from the saphenous vein was centrifuged; then erythrocytes were lysed and leukocytes were measured by flow cytometry, and plasma was aspirated and frozen at −80°C until use.
For experiments with A2-NSG mice, 8- to 12-week-old female NOD.Cg-Pkbcre-1Il2rgm2Wjl Tg(HLA-A/H2-D/B2M)1Dvs/SzJ mice (The Jackson Laboratory) were engrafted with HLA-A2 PBMCs and T cell populations as indicated. Mice were sacrificed at indicated time points, and tissue samples for histology were fixed in 10% formalin and embedded in paraffin. Sections were stained with H&E, and pictures were acquired on an Olympus-BX61 using Image-Pro 6.2.

Statistics. Analysis was performed using Prism 6 software (GraphPad). *P* < 0.05 was considered significant. Significance of fold expansion was determined by a 2-tailed, paired t test. Significance of survival was determined by log-rank (Mantel-Cox) test. Significance of GVHD onset was determined by ordinary 1-way ANOVA with Turkey’s multiple comparisons test. All other significance was determined by 2-way ANOVA with Sidak’s multiple comparisons test or multiple t tests with Holm–Šidak comparison.

Study approval. For human cells, healthy volunteers gave written informed consent according to protocols approved by the University of British Columbia Clinical Research Ethics Board and Canadian Blood Services. Animal protocols were approved by the University of British Columbia Animal Care Committee.

Author contributions

KGM, REH, QH, JG, and DSL designed and performed experiments and analyzed data. PCO contributed essential reagents and also contributed to experimental design and data interpretation. KGM and MKL wrote the manuscript, which was critically reviewed by PCO and RB. RB and MKL secured funding. MKL conceived of and directed the research, analyzed data, and had overall oversight over the manuscript.

Acknowledgments

This work was supported by the Canadian Cancer Society Research Institute (to R. Broady and M.K. Levings) and the BC Transplant Research Foundation (to M.K. Levings). M.K. Levings, K.G. MacDonald, and R.E. Hoeppli receive salary awards from the Child & Family Research Institute. In addition, K.G. MacDonald and R.E. Hoeppli were supported by a graduate studentship from the Canadian Institute for Health Research Training Program in Transplantation. We thank Jonathan Bramson for ongoing support and discussions and John Schrader and Welson Wang for technical support in cloning the scFv. We also thank Lisa Xu for excellent flow cytometry support and Scott Patterson for assisting with in vivo experiments. We are grateful to Canadian Blood Services and donors for providing research samples for completion of this project.

Address correspondence to: Megan K. Levings, A4-186, 950 West 28th Ave., Vancouver, British Columbia, Canada, V5Z 4H4. Phone: 604.875.2000, ext. 4686; E-mail: mlevings@mail.ubc.ca.