Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor
Katherine G. MacDonald, Romy E. Hoeppli, Qing Huang, Jana Gillies, Dan S. Luciani, Paul C. Orban, Raewyn Broady, Megan K. Levings
Katherine G. MacDonald, Romy E. Hoeppli, Qing Huang, Jana Gillies, Dan S. Luciani, Paul C. Orban, Raewyn Broady, Megan K. Levings
View: Text | PDF
Technical Advance Immunology

Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor

  • Text
  • PDF
Abstract

Adoptive immunotherapy with regulatory T cells (Tregs) is a promising treatment for allograft rejection and graft-versus-host disease (GVHD). Emerging data indicate that, compared with polyclonal Tregs, disease-relevant antigen-specific Tregs may have numerous advantages, such as a need for fewer cells and reduced risk of nonspecific immune suppression. Current methods to generate alloantigen-specific Tregs rely on expansion with allogeneic antigen-presenting cells, which requires access to donor and recipient cells and multiple MHC mismatches. The successful use of chimeric antigen receptors (CARs) for the generation of antigen-specific effector T cells suggests that a similar approach could be used to generate alloantigen-specific Tregs. Here, we have described the creation of an HLA-A2–specific CAR (A2-CAR) and its application in the generation of alloantigen-specific human Tregs. In vitro, A2-CAR–expressing Tregs maintained their expected phenotype and suppressive function before, during, and after A2-CAR–mediated stimulation. In mouse models, human A2-CAR–expressing Tregs were superior to Tregs expressing an irrelevant CAR at preventing xenogeneic GVHD caused by HLA-A2+ T cells. Together, our results demonstrate that use of CAR technology to generate potent, functional, and stable alloantigen-specific human Tregs markedly enhances their therapeutic potential in transplantation and sets the stage for using this approach for making antigen-specific Tregs for therapy of multiple diseases.

Authors

Katherine G. MacDonald, Romy E. Hoeppli, Qing Huang, Jana Gillies, Dan S. Luciani, Paul C. Orban, Raewyn Broady, Megan K. Levings

×

Figure 2

Generation of HLA-A2–CAR Tregs.

Options: View larger image (or click on image) Download as PowerPoint
Generation of HLA-A2–CAR Tregs.
(A) Sorting strategy to isolate naive Tr...
(A) Sorting strategy to isolate naive Tregs and Tconvs from CD25-enriched and CD25-depleted CD4+ cells, respectively. (B) Schematic diagram outlining the protocol to transduce naive human T cells with lentiviral vectors encoding CARs. (C) Extracellular expression of CARs was assessed by staining for the Myc-epitope tag. The average proportion of CAR+ cells in ΔNGFR-selected cells is summarized. The average CAR MFI was determined relative to ΔNGFR MFI on the same cell (n = 3). (D) Expression of FOXP3 was assessed at day 14; representative data are on the left and averaged data are on the right (n = 3). (E) TSDR methylation was determined by pyrosequencing of cells from males at day 14 (n = 4). Left panel shows data from each CpG residue, with averaged data combing all CpGs to the right. Significance determined by 2-way ANOVA. Data represent mean ± SEM. *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts