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Broadly neutralizing 
antibodies: good or bad news 
for HIV-1 vaccination?
PG9 was one of the first broadly neutral-
izing monoclonal antibodies (bnmAbs) 
isolated from an HIV-1–infected individ-
ual and was shown to potently neutralize 
more than 85% of HIV-1 isolates that it 
was tested against (1). Isolation of PG9 and 
the related bnmAb PG16 (1, 2) presaged 
an ongoing explosion in the knowledge of 
the HIV-1 epitopes recognized by bnmAbs 
(reviewed in refs. 3, 4; see ref. 5) and how 
bnmAbs evolve over the course of infec-
tion (reviewed in refs. 6, 7). In this issue, 
Willis and collaborators further extend 
this knowledge through their employment 
of a computer model to predict mutations 
that markedly improved the neutralization 
potency and breadth of PG9 (8).

bnmAbs can be characterized in terms 
of their neutralization fitness, which 
herein refers to the combination of neu-

tralization potency (half the maximal 
neutralization titer) and neutralization 
breadth (the percentage of representa-
tive viral panels neutralized) for a given 
bnmAB. Previous reports have shown that 
mixtures of bnmAbs with known specific-
ity are able to potently neutralize essen-
tially all variants in panels that represent 
circulating HIV-1 strains (9). Such results 
are promising because they suggest that 
a universal AIDS vaccine is possible, pro-
vided a suitable immunogen and immu-
nization schedule can be found. More-
over, the goal of a universal vaccine has 
been made more likely, as the result of an 
increasingly clear picture of the epitopes 
recognized by neutralization-fit bnmAbs 
and recent studies that have also provided 
important insight into the HIV-1 envelope 
(Env) glycoprotein trimer structure (10–
12), which is targeted by many bnmAbs, 
including PG9. The Env trimer consists of 
three copies of gp160, which comprises a 

receptor-binding domain (gp120) and a 
membrane-anchored domain (gp41) that 
mediates membrane fusion (reviewed in 
ref. 13). Neutralization-fit bnmAbs have 
been identified that recognize gp120 
epitopes, including the V1/V2 region plus 
glycans (defined by PG9; refs. 14, 15), 
the V3 region plus glycans (defined by 
PGT121; ref. 16), the outer domain (OD) 
plus glycans (defined by 2G12; ref. 17), and 
the CD4 binding site (CD4BS; defined by 
VRC01; ref. 18). Other neutralization-fit 
bnmAbs recognize gp41 epitopes in the 
membrane proximal region (MPER), and 
this group is defined by several classes of 
bnmAbs, including 2F5, 4E10, and 10E8 
(reviewed in ref. 4), with 10E8 being 
far and away the most neutralization 
fit (19). Additionally, neutralization-fit 
bnmAbs can recognize hybrid epitopes 
comprising elements of both gp120 and 
gp41 — defined by bnmAbs PGT151 (20), 
8ANC195 (21), and 35O22 (22). Thus, 
there is no shortage of potential epitope 
targets for neutralization-fit bnmAbs; 
however, the issue remains as to how to 
generate such antibodies with a vaccine.

Unfortunately, neutralization-fit bnm-
Abs have only been observed in HIV-1–
infected people (3) and SIV-infected rhe-
sus macaques (23); these bnmAbs are not 
detectable until approximately 2 1/2 years 
(24) and two-thirds of a year (23) after 
infection, respectively. The convergence 
of several lineage studies indicates that 
neutralization-fit bnmAbs arise only in 
response to exposure to different viral vari-
ants over these time periods (6, 7). Thus, 
the emergence of bnmAbs is the result 
of a predator-prey interaction in which 
the bnmAbs become increasingly “fit” in 
response to the increased viral variation 
that emerges in response to antibody pres-
sure. Many of the identified pathways to 
neutralization fitness differ among stud-
ies, and it is not yet clear whether these 
pathways can be recapitulated by vacci-
nation. Currently, it appears that lengthy 
(and clinically cumbersome) immuniza-
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While current HIV-1 therapies have greatly improved the quality and 
duration of life for infected individuals, a vaccine to prevent transmission 
of the virus is lacking. Broadly neutralizing monoclonal antibodies 
(bnmAbs) with the capacity to neutralize multiple HIV-1 variants have 
been isolated from HIV-1–infected individuals, and there has been a great 
effort to investigate how these bnmAbs arise, due their potential for 
HIV-1 vaccination. In this issue of the JCI, Willis and colleagues apply a 
computational approach to design variants of the bnmAb PG9 in an attempt 
to enhance potency and neutralization breadth. One of these variants was 
able to target multiple PG9-resistant strains, as the result of stabilization of 
the long heavy chain complementarity determining region 3 (HCDR3). The 
results of this study provide important insight and a unique approach to 
optimizing HIV-1 bnmABs.
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interactions, each of which appears to be 
critical for function (14, 15, 26). Further-
more, PG9 makes contact with two pro-
tomers in the Env trimer, resulting in the 
unusual stoichiometry of 1 Fab per trimer 
(28), in contrast to the usual 3:1 Fab-to-
trimer ratio for other neutralization-fit 
bnmAbs (11, 12, 28, 29). Another hallmark 
of PG9 specificity is that this bnmAb only 
neutralizes viruses that have particular gly-
can at N160 in the V1/V2 region (Figure 2; 
reviewed in ref. 4). Based on these proper-
ties, PG9 was a sound choice for rational 
improvement, since most of its interactions 
with antigens are due to HCDR3; however, 
this choice has its own difficult experimen-
tal problem.

The PG9 HCDR3 is 28-residues long; 
therefore, there are 532 possible single- 
point mutations, and up to 2 × 1029 possi-
ble variants accounting for multiple-point 
mutations. The effort required to con-
struct and screen this point mutation and 
resulting variants is out of reach without 
further winnowing of the possibilities. 
Willis and colleagues turned to the Rosetta 
Design software suite (reviewed in ref. 30) 
to solve this problem (8). The PG9 CDHR3 
sequence was redesigned computation-
ally to optimize its thermodynamic sta-
bility with a predicted increase in binding 
energy (based on the starting structure in 
ref. 13). Willis et al. used these computa-
tions, coupled with visual inspection of 
energetically favored residues that might 
alter function, to whittle down the possible 
designs down to three single-point muta-
tions, N100FY, N100FL, and D100LN, as 
well as two other variants with either two 
or four mutations (8). This is an example of 
the power of Rosetta Design to rationally 
reduce the number of candidate struc-
tures for in-depth analysis of structure and 
function. Of these variants, PG9_N100FY 
exhibited the most consistent increases in 
binding and neutralization fitness for all 
viruses tested. Strikingly, this variant also 
neutralized viruses that lacked a glycosyla-
tion site at position 160. Neutralization fit-
ness was also increased for PG9_N100FL, 
but the improvements for this PG9 vari-
ant were less than those for PG9_N100FY. 
Thus, a single-point mutation at N100FY 
dramatically increased the neutraliza-
tion fitness of PG9, suggesting that such 
variants could arise without the extensive 
mutational gymnastics required for neu-

fitness (1, 14, 15, 26). Rather, these bnmAbs 
use long HCDR3s — which are often 
tyrosine-sulfated — to penetrate the glycan 
shield, thereby achieving neutralization fit-
ness. Long HCDR3 lengths are determined 
by rearrangements of certain D and J seg-
ments during B cell development and not 
by insertional mutagenesis during somatic 
hypermutation (27). If an immunogen can 
be found that stimulates primary B cells 
that are specific for the PG9 bnmAb series, 
it is likely that a protracted immunization 
schedule will not be necessary to achieve 
neutralization fitness. Willis and collabora-
tors shed new light on how the PG9 series 
of bnmAbs reach neutralization fitness 
without extensive somatic hypermutation; 
the authors demonstrated that a point 
mutation in HCDR3 can markedly increase 
the neutralization potency and breadth 
of PG9 (8). While it may not be surprising 
that a single mutation can improve the 
neutralization fitness of PG9, the way in 
which Willis et al. identified this mutation 
and how it increases neutralization fitness 
provides important insight into improving 
bnmAb function.

A harder-hitting hammerhead
The long HCDR3s found in the PG9 series 
of bnmAbs results in an unusual hammer-
head structure (Figure 1; refs. 14, 15, 26) 
that is stabilized by a network of hydrogen 
bonds that extends from the face of the 
antigen-binding fragment (Fab) and con-
tacts both glycans and residues of the V1/
V2 region of gp120 (Figure 2). bnmAb bind-
ing at this region of gp120 involves glycan, 
electrostatic, and sequence-independent 

tion schedules will be required to elicit 
neutralization-fit bnmAbs by a vaccine. 
This problem is confounded further by the 
likely need for multiple variants of Env in 
trimer immunogens to drive neutralization 
fitness. Solving this problem is a tall order, 
but there is hope that some pathways to 
neutralization fitness are shorter than 
others. Such appears the case for the PG9 
class of bnmAbs.

PG9: navigating the road to 
neutralization fitness
bnmAbs are typically characterized either 
by high levels of somatic hypermuta-
tion, long heavy chain complementarity 
determining region 3 (HCDR3) lengths, 
or both, regardless of epitope specificity 
(reviewed in refs. 4, 6, 7). HCDR3 lengths 
upwards of 25 residues are characteristic 
of glycan-shield and anti-MPER antibod-
ies (reviewed in refs. 4, 6, 7), with high fre-
quencies of somatically mutated residues 
also present in some of these glycan-shield 
and anti-MPER bnmAbs (reviewed in refs. 
4, 6, 7). In contrast, CD4BS antibodies 
typically have moderate-length HCDR3s 
but are highly mutated, and the mutation 
of framework residues even contributes 
in unexpected ways to specificity (ref. 25; 
reviewed in refs. 4, 6, 7). It is unclear how 
these disparate pathways to neutralization 
fitness can be mimicked by vaccination, 
but in the case of the PG9 series, it is pos-
sible that the road to neutralization fitness 
may be the shortest.

Unlike some bnmAbs, the PG9 series 
does not require high levels of somatic 
hypermutation to achieve neutralization 

Figure 1. Depiction of the PG9 HCDR3 hammer-
head. The Fv region of PG9 is shown with the 
heavy chain in gray and the light chain in cyan. 
Prominent extension of the hammerhead from 
the antigen-binding face of the Fv structure is 
readily apparent at the bottom of the figure. 
The figure was made with the ICM software 
suite (Molsoft LLC., La Jolla, California, USA) 
using PDB: 3u4e from ref. 13.
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importance for future HIV-1 vaccine devel-
opment, as well as for the development of 
prophylactic and therapeutic bnmAbs to 
prevent or treat a variety of infections.
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