Supplemental Data

Bernier-Latmani et al., "DLL4 promotes continuous lacteal regeneration in the adult small intestine".

6 Supplemental Figures

4 Supplemental Movies

3 Supplemental Tables

Supplemental Figure 1: Characterization of small intestinal stroma. (**A**) VEGFR3 (red) is expressed at high levels in adult lacteals and on blood capillaries (PECAM1, green) at the villus tip (yellow). (**B**) VEGFR2 (green) is expressed at high levels on villus blood capillaries and at lower, but detectable, levels on lacteals (arrows). (**C**) Desmin (green) is co-expressed with αSMA (red) on villus SMCs and expressed by a population of αSMA^{neg} pericyte-like cells. (**D**) FOXP3⁺ regulatory T cells (FOXP3, green nuclei; CD3, red membrane) are closely associated with villus SMCs (αSMA, cyan). (**E**) Wholemount immunostaining for ITGβ1 and ITGα9 (green, black) and lacteals (LYVE1, red) in adult intestinal villi. (**F**) RT-qPCR analysis of *Itgb1* and *Itga9* expression in sorted intestinal LECs and BECs. Mean ± s.d. of relative expression, *n*=3. Isolation purity was confirmed by analyzing expression of BEC marker *Vegfr1* and LEC marker *Prox1*. Scale bars: 50 µm A, D; 25 µm B; 20 µm C; 5 µm F. ** *P* < 0.01, ****P* < 0.001, two-tailed unpaired Student's *t*-test.

Supplemental Figure 2: DLL4 (white) displays perinuclear localization in both villus arterioles (PECAM1, green, arrow) and lacteals (pink outline). Scale bar: 20 μ m.

Lymphatic capillary length

Supplemental Figure 3: Dermal lymphatic capillary (LYVE1, red) length and branching are unchanged in $Dll4^{\Delta LEC}$ mice (PECAM1, green) 5 weeks after tamoxifen injection. Mean ± s.d. of lymphatic capillary length and number of branchpoints in control and $Dll4^{\Delta LEC}$ mice, n=5. Scale bar: 200 µm.

caspase-3 PROX1 DAPI

Ε

Supplemental Figure 4: Further characterization of DLL4 signaling in lymphatic and blood vessels. (A) Proliferation rate of intestinal LECs is comparable between $Dll4^{\triangle LEC}$ and control mice. Mean \pm s.d. % Ki67⁺ LECs in control and *Dll4*^{Δ LEC} submucosal and lacteal lymphatic vessels, *n*=4-6. (**B**) The number of LECs (PROX1, red) per lacteal length (LYVE1, green) is similar between $Dll4^{\Delta LEC}$ and control mice. Mean \pm s.d. of PROX1⁺ nuclei/ 100 μ m lacteal length, n=3. (C) Quantification of total LEC number in $Dll4^{\Delta LEC}$ and control lacteals. Mean \pm s.d. of PROX1⁺ nuclei/ lacteal, n=3. (**D**) Intestinal blood vessel Dll4 deletion increases the number of filopodia and vessel branches. Representative wholemount images of villus blood capillaries (top, PECAM1, green; bottom, VEGFR2, red) in control and $Dll4^{\Delta BEC}$ mice. (E) Immunostaining for PROX1 (red) and caspase-3 (green) in intestinal villi from control and $Dll4^{\Delta LEC}$ mice. Virtually no PROX1⁺/ caspase-3⁺ cells were detected in mice of either genotype. (F) siRNA-mediated knockdown of *DLL4* in LECs 24 hours after transfection, analyzed by RT-qPCR. Mean of relative expression. Data shown are representative of two independent experiments. (G) LEC expression of Notch target genes HES1, HEY1 and NRARP following transfection with either control or DLL4-specific siRNA, analyzed by RT-qPCR. Data shown are representative of two independent experiments. Scale bars: 50 μ m B, D (top), E; 20 μ m D (bottom). *P < 0.05, two-tailed unpaired Student's *t*-test.

С

Supplemental Figure 5: Regulation of DLL4 by VEGFR2 and VEGFR3 signaling. (A) VEGFC

induces DLL4 in cultured LECs. Representative images of DLL4 (white) expression in cultured LECs (β -catenin, red; DAPI, blue) after 48 hours of BSA or VEGFC treatment. Data shown are representative of two independent experiments. (**B**) Increased membrane VEGFR3 (green) localization in lacteals after 7 days treatment with α VEGFR3. (**C**) Efficient siRNA-mediated knockdown of *VEGFR2* and *VEGFR3* in LECs 24 hours after transfection, analyzed by RT-qPCR. Mean of relative expression. Data shown are representative of two independent experiments. Scale bars: 50 µm A; 20 µm, B.

Α

Β

VEGFR3

Supplemental Figure 6: (A) Expression of intestinal LEC *ephrinB2*, *Vegfr-3* and *Lyve-1* are unchanged in $Dll4^{\Delta LEC}$ mice. Mean \pm s.d. of relative expression as analyzed by qPCR. (B) Lacteal VEGFR3 is not decreased in $Dll4^{\Delta LEC}$ mice. Representative images of VEGFR3 (green) on lacteals from control and $Dll4^{\Delta LEC}$ mice. Scale bar: 20 µm.

Supplemental Movies 1-4: Individual LEC migration was tracked for 20 hours after a wound was made in a LEC monolayer transfected with either control or DLL4-specific siRNA and treated with BSA or VEGFC. Images were recorded every 15 min. Cell migration tracks are overlaid on movies for path visualization. Track colors are arbitrary.
Supplemental Movie 1: siCTRL+BSA
Supplemental Movie 2: siDLL4+BSA
Supplemental Movie 3: siCTRL+VEGFC

Supplemental Movie 4: siDLL4+VEGFC

SUPPLEMENTAL TABLES

			Catalog
	Antibody	Supplier	number/clone
	α-SMA-Cy3 (mouse)	Sigma	C6198
	β-catenin (rabbit)	Millipore	06-734
	CD3 (hamster)	Biolegend	100301
	CD11c (hamster)	BD Pharmingen	117313
	Desmin (rabbit)	Millipore	04-585
	Dll4 (goat)	R&D	AF1389
	E-cadherin (rabbit)	Cell Signaling	3195S
	F4/80 (rat)	Invitrogen	MF48000
	Fibronectin (rabbit)	Millipore	AB2033
	Foxp3 (rat)	eBioscience	14-5773
Wholemount	GFP (rat)	Biolegend	338002
vv notemount	Lyve-1 (rabbit)	AngioBio	11-034
	Lyve-1 (rat)	R&D	MAB2125
	NG2 (rabbit)	Millipore	AB5320
	Pecam-1 (rat)	BD Pharmingen	557355
	Periostin (goat)	R&D	AF2955
	Prox1 (goat)	R&D	AF2727
	Tenascin C (rat)	R&D	MAB 2138
	VE-cadherin (goat)	R&D	AF1002
	Vegfr-2 (goat)	R&D	AF644
	Vegfr-3 (goat)	R&D	MAB3491
	Vegfr-3 (rat)	Eli Lilly	clone mF4-31C1
Doroffin	Ki67 (mouse)	BD Pharmingen	556003
raraiiii	Prox1 (goat)	R&D	AF2727
	CD31-PE	eBioscience	12-0311-81
Coll corting	CD45-Apc-Cy7	eBioscience	25-0451-81
Cell sorting	EpCAM-eFluor 450	Biolegend	48-5791-80
	gp38-AlexaFluor 647	hybridoma	clone 8.1.1
G	Alexa Fluor 488	Invitrogen	
Secondary Abs	Alexa Fluor 555	Invitrogen	
	Alexa Fluor 647	Invitrogen	

Supplemental Table 1: Antibodies used in the study

Gene	Species	Forward primer	Reverse primer
18S	Human/ mouse	5'-AGGAATTCCCAGTAAGTGCG	5'-GCCTCACTAAACCATCCAA
Dll4	mouse	5'-GGAACCTTCTCACTCAACATCC	5'-CTCGTCTGTTCGCCAAATCT
ephrinB2	mouse	5'-ATTATTTGCCCCAAAGTGGACTC	5'-GCAGCGGGGTATTCTCCTTC
Itga9	mouse	5'-TGCTTTCCAGTGTTGACGAGA	5'-TTAAAGGACACGTTGGCATCATA
Itgβ1	mouse	5'-AATGCCAAATCTTGCGGAGAA	5'-TCTAAATCATCACATCGTGCAGAAGTA
Lyve-1	mouse	5'-TGGTGTTACTCCTCGCCTCT	5'-TTCTGCGCTGACTCTACCTG
Prox1	mouse	5'-AAGATATGTCCGACATCTCACCTTATTCAG	5'-CACGTCCGAGAAGTAGGTCTTCAG
Vegfr-1	mouse	5'-TGGCTCTACGACCTTAGACTG	5'-CAGGTTTGACTTGTCTGAGGTT
Vegfr-3	mouse	5'-CTGGCCAGAGGCACTAAGAC	5'-CAGGGTGTCCTCTGGGAATA
DLL4	human	5'-TGGGTCAGAACTGGTTATTGGA	5'-GTCATTGCGCTTCTTGCACAG
HES1	human	5'-AAGAAAGATAGCTCGCGGCAT	5'-CCAGCACACTTGGGTCTGT
HEY1	human	5'-AAGAAAGATAGCTCGCGGCAT	5'-CGTCAAAGTAACCTTTCCCTCCT
NRARP	human	5'-TCAACGTGAACTCGTTCGGG	5'-ACTTCGCCTTGGTGATGAGAT
VEGFR-2	human	5'-GGAACCTCACTATCCGCAGAGT	5'-CCAAGTTCGTCTTTTCCTGGGC
VEGFR-3	human	5'-GCACTGCCACAAGAAGTACCT	5'-GCTGCACAGATAGCGTCCC

Supplemental Table 2. Primers used for RT-qPCR analysis

Target Gene	Supplier	Reference number
siAllstar (siControl)	Qiagen	1027281
siDLL4	Life Technologies	132858
siDLL4	Life Technologies	132859
siDLL4 (pool)	Dharmacon	L-010490-00-0005
siVEGFR-2	Thermo Scientific	L-003148-00
siVEGFR-3	Thermo Scientific	L-003138-00

Supplemental Table 3. siRNA used for in vitro mRNA silencing