Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction
Geoffrey de Couto, … , Moshe Arditi, Eduardo Marbán
Geoffrey de Couto, … , Moshe Arditi, Eduardo Marbán
Published July 27, 2015
Citation Information: J Clin Invest. 2015;125(8):3147-3162. https://doi.org/10.1172/JCI81321.
View: Text | PDF
Research Article Cardiology

Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction

  • Text
  • PDF
Abstract

Ischemic injury in the heart induces an inflammatory cascade that both repairs damage and exacerbates scar tissue formation. Cardiosphere-derived cells (CDCs) are a stem-like population that is derived ex vivo from cardiac biopsies; they confer both cardioprotection and regeneration in acute myocardial infarction (MI). While the regenerative effects of CDCs in chronic settings have been studied extensively, little is known about how CDCs confer the cardioprotective process known as cellular postconditioning. Here, we used an in vivo rat model of ischemia/reperfusion (IR) injury–induced MI and in vitro coculture assays to investigate how CDCs protect stressed cardiomyocytes. Compared with control animals, animals that received CDCs 20 minutes after IR had reduced infarct size when measured at 48 hours. CDCs modified the myocardial leukocyte population after ischemic injury. Specifically, introduction of CDCs reduced the number of CD68+ macrophages, and these CDCs secreted factors that polarized macrophages toward a distinctive cardioprotective phenotype that was not M1 or M2. Systemic depletion of macrophages with clodronate abolished CDC-mediated cardioprotection. Using both in vitro coculture assays and a rat model of adoptive transfer after IR, we determined that CDC-conditioned macrophages attenuated cardiomyocyte apoptosis and reduced infarct size, thereby recapitulating the beneficial effects of CDC therapy. Together, our data indicate that CDCs limit acute injury by polarizing an effector macrophage population within the heart.

Authors

Geoffrey de Couto, Weixin Liu, Eleni Tseliou, Baiming Sun, Nupur Makkar, Hideaki Kanazawa, Moshe Arditi, Eduardo Marbán

×

Figure 9

Coculture of MCDC macrophages with oxidatively stressed NRVMs preserves cardiomyocyte viability in vitro.

Options: View larger image (or click on image) Download as PowerPoint
Coculture of MCDC macrophages with oxidatively stressed NRVMs preserves ...
(A) Schematic of in vitro protocol. NRVMs were stressed with 50 μM H2O2 for 15 minutes, serum-free media was replaced for 20 minutes (to simulate reperfusion), and then DiO-labeled M1, M2, or MCDC macrophages were introduced to the NRVMs. After 6 hours, cells were collected for analyses (n = 3 per group). (B) Immunoblot of cocultured cells (M1, M2, or MCDC macrophages with H2O2-treated NRVMs) and NRVM positive and negative controls (with and without H2O2, respectively) after 6 hours of culture. The lanes for this blot were run on the same gel but were noncontiguous. (C) Representative images of TUNEL-stained (red) cocultures of M1, M2, or MCDC macrophages (green) with NRVMs (white). Scale bar: 50 μm. (D) Pooled quantitative analyses of TUNEL+ cardiomyocytes (CM) and viable nucleated cardiomyocytes from M1, M2, and MCDC cocultures. (E) Pooled data demonstrating increased macrophage numbers in M1 cocultures and increased TUNEL+ macrophages in M2 cocultures. Graphs depict mean ± SEM. Statistical significance was determined using 1-way ANOVA followed by Tukey’s multiple comparisons test. *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts