1	Supplemental data
2	
3	Mutant huntingtin protein in Huntington's disease
4	cerebrospinal fluid
5	Edward J. Wild, Roberto Boggio, Douglas Langbehn, Nicola Robertson, Salman Haider,
6	James R. C. Miller, Henrik Zetterberg, Blair R. Leavitt, Rainer Kuhn, Sarah J. Tabrizi,
7	Douglas Macdonald and Andreas Weiss
8	
9	Supplemental data

2

3 Supplemental Figure 1. A) Purity and quality control of recombinant N-terminal 4 (N458) human wild-type (HTT 19Q) and mutant (HTT 46Q) huntingtin proteins shown 5 by Coomassie blue SDS page gel. B) Immunodepletion experiment with a non-6 huntingtin control antibody (anti-LC3) and the anti-huntingtin antibody 4C9, designed 7 against an epitope that is not recognized by either of the antibodies used in the 8 detection assay, shows the specific detection of huntingtin protein by the assay (n=3 9 replications per experiment). C-D) Recovery rates of purified mutant huntingtin 10 protein spiked into independent human CSF samples from healthy control,

- 1 premanifest Huntington's disease and moderate Huntington's disease patients (n=2
- 2 replications per sample).

3

1 Supplemental figure 2

2

3 Supplemental Figure 2. A) Relationship between CSF mHTT and CSF hemoglobin. 4 Values outside the quantifiable range of the assay are shown as having the lower 5 (n=6) and upper (n=3) quantifiable values. Spearman Rank analysis: n=9, r=-0.55, 6 p=0.125 for London; n=29, r=0.01, p=0.945 for Vancouver. There was no statistically 7 significant difference in hemoglobin values between the London and Vancouver 8 cohorts (*p*=0.63 by Wilcoxon test). **B)** Relationship between CSF mHTT protein and 9 CSF total protein. Linear regression: n=9, R=0.0816, p=0.835 for London; n=30, 10 R=0.0376, p=0.844 for Vancouver. C-D) Relationship between matched CSF and 11 plasma mHTT concentrations. No significant association was seen between CSF and

- 1 matched plasma mHTT concentrations **(C)** in the whole dataset (linear regression
- 2 with 95% bootstrap confidence interval -0.145 to 0.740; n=38) or **(D)** after the
- 3 exclusion of two extreme outliers (Linear regression: r=-0.074. *p*=0.670; n=36).

Supplemental table 1

A. Before controlling for disease burden score

CSF		SDMT	Stroop	Stroop	Stroop
protein			Color	Word	Interference
mHTT	R	-0.565	-0.620	-0.612	-0.505
	p	0.0062	0.0012	0.0015	0.012
	q	0.083	0.030	0.030	0.012
	n	22	24	24	24
Tau	R	-0.437	-0.382	-0.363	-0.30168
	p	0.042	0.065	0.082	0.15
	q	0.11	0.11	0.11	0.15
	n	22	24	24	24
NFL	R	-0.699	-0.838	-0.744	-0.792
	p	0.012	0.0002	0.0023	0.0007
	q	0.012	0.0008	0.0031	0.0014
	n	12	14	14	14

B. After controlling for disease burden score

CSF		SDMT	Stroop	Stroop	Stroop
protein			Color	Word	Interference
mHTT	R	-0.440	-0.512	-0.500	-0.331
	р	0.046	0.012	0.015	0.12
	$p_{\scriptscriptstyle { m FDR}}$	0.061	0.038	0.038	0.096
	n	22	24	24	24
Tau	R	-0.376	-0.343	-0.321	-0.251
	р	0.093	0.11	0.14	0.25
	$p_{\scriptscriptstyle { m FDR}}$	0.18	0.18	0.18	0.25
	n	22	24	24	24
NFL	R	-0.553	-0.626	-0.449	-0.547
	р	0.078	0.022	0.124	0.053
	$p_{\rm FDR}$	0.10	0.08	0.12	0.10
	n	12	14	14	14

Supplemental table 2. Associations between individual CSF proteins and cognitive scores (A) before and (B) after adjustment for disease burden score. Linear regression analysis. p-values below the 0.05 significance threshold are in bold. *q*, FDR value accounting for multiple comparisons.