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Targeting the extrinsic apoptotic pathway in cancer:

lessons learned and future directions
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From Coley’s toxins to PARAsS

In 1894, Coley showed that cell extracts
from gram-negative bacteria caused
tumor shrinkage in patients. Nearly a
century later, the discovery and clon-
ing of TNF-a as a host factor induced
by bacterial LPS made it possible for
the first time to attempt to recapitulate
Coley’s seminal observation with a sin-
gle, molecularly defined agent. Although
purified TNF-a was too toxic for systemic
therapy, it was later approved in Europe
for the treatment of sarcoma by isolated
limb perfusion (1). Subsequently, Kram-
mer and Nagata identified the death
receptor Apol/Fas (CD95), which helped
decipher the extrinsic apoptotic path-
way (2-5). However, attempts to activate
CD95 for cancer therapy were again

Apoptosis is a metazoan process of controlled cell elimination that plays
critical roles in embryonic development and adult tissue homeostasis.
Apoptosis dysregulation contributes to several important diseases, including
cancer. Two distinct yet interconnected signaling pathways control apoptosis
by activating a core intracellular machinery of death proteases called
caspases. The intrinsic apoptotic pathway engages caspases via members of
the BCL-2 protein family and the mitochondria in reaction to severe cellular
damage or stress. The extrinsic pathway activates caspases via cell-surface
death receptors, which respond to cognate death ligands expressed on
immune-effector cells. Tumor cells can acquire various apoptosis-evasion
mechanisms; nevertheless, the transformed state of these cells makes them
uniquely susceptible to apoptosis reactivation if resistance is circumvented.
Molecular approaches to reengage the apoptotic pathways in cancer have
been underway for over two decades. Gratifyingly, BCL-2 antagonists — which
drive the intrinsic pathway — are beginning to bear clinical fruit. In contrast,
clinical attempts to stimulate the extrinsic pathway with proapoptotic
receptor agonists (PARAs) have been disappointing, despite compelling
preclinical efficacy with this class of agents. Here, | discuss some of the
possible reasons for this translational discrepancy and suggest strategies to
overcome it with the next generation of PARASs.

hampered by toxicity, in this case due to
excessive apoptosis of hepatocytes (2, 3).

A third opportunity to test the concept
that tumor cells could be killed deliber-
ately through a specific biological pathway
arose in the mid-1990s, when my labo-
ratory at Genentech and Ray Goodwin’s
laboratory at Immunex independently dis-
covered another death ligand, called Apo2
ligand or TNF-related apoptosis-inducing
ligand (Apo2L/TRAIL or TNFSF10) (6, 7).
My team developed a recombinant soluble
version of the human ligand comprising
the extracellular domain of the endoge-
nous protein and possessing a homotrim-
eric structure. In our 1999 JCI article (8),
we reported that recombinant Apo2L/
TRAIL induced apoptosis in a wide range
of cancer cell lines while sparing various
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normal cell types. Moreover, the recombi-
nant ligand exerted significant antitumor
activity as a single agent and in combi-
nation with chemotherapy in a murine
cancer xenograft model (8). The Immu-
nex group reported similar results with a
version of the ligand that was trimerized
via a yeast-Gal4 leucine zipper (9). These
findings were corroborated and expanded
in numerous studies (10-12). X-ray crystal-
lography later revealed that stabilization
of the homotrimeric Apo2L/TRAIL mole-
cule by an internal zinc ion was crucial for
its selective proapoptotic activity against
malignant, but not normal, cells (13, 14).
The work with Apo2L/TRAIL and the
identification of its cognate proapoptotic
death receptors DR4 (TNFRSF10A) and
DR5 (TNFRSF10B) (4, 15) prompted sev-
eral groups, including my own, to develop
agonistic anti-DR4 and anti-DR5 antibod-
ies (16,17). Compared with soluble Apo2L/
TRAIL, these antibodies enable less fre-
quent dosing; however, the agonistic activ-
ity of anti-DR4 and anti-DR5 antibodies
in vivo is restricted by a requirement for
binding to Fcy receptors (18). Conversely,
cross-linking of Apo2L/TRAIL — either
directly or via anti-DR5 antibody — trig-
gers apoptosis in tumor-associated endo-
thelial cells, disrupting the tumor vascula-
ture while sparing normal vessels (19, 20).
Thus, optimizing geometry and stoichiom-
etry of PARAs appears crucial for effective
and selective apoptosis engagement.

The impressive efficacy of PARAs in
preclinical cancer models provided a com-
pelling rationale for testing these agents in
the clinic. To date, about 30 phase I and/
or phase II trials have been conducted to
evaluate PARAs in various cancers, includ-
ing non-small-cell lung cancer, colorec-
tal cancer, pancreatic cancer, multiple
myeloma, and non-Hodgkin’s lymphoma
(http://www.clinicaltrials.gov).  Impor-
tantly, unlike TNF-o and anti-CD95 ago-
nist antibodies, Apo2L/TRAIL and DR4-
or DR5-targeting agonist antibodies were
relatively well tolerated. Disappointingly,
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these PARASs failed to show significant effi-
cacy either as monotherapies or in combi-
nation with conventional chemotherapies
and/or certain biological agents. There
were some rare, yet notably durable pos-
itive responses, for example, in a patient
with chondrosarcoma (21).

Lessons learned and future
strategies

What might account for the discrep-
ant preclinical and clinical results with
PARAs? One plausible explanation is that
tumors encountered in the clinic have a
higher threshold for reactivation of the
extrinsic pathway than do those in pre-
clinical models. This potentially could
be addressed by implementing several
strategies (Figure 1): (a) augmenting
PARA potency a step beyond the first
generation of agents while ensuring a
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favorable therapeutic index; (b) stratify-
ing patients and optimizing dosing based
on predictive and pharmacodynamic
diagnostic biomarkers; and (c) combin-
ing PARAs with other targeted agents
to achieve synthetic lethality against
tumors. Approaches to augment potency
include the presentation of two Apo2L/
TRAIL trimers on Fc fusion platforms
(22) or multiple trimers on liposomal
membranes (P. Nair and A. Ashkenazi,
unpublished observations), or a com-
bined treatment with Apo2L/TRAIL and
a suitable DR5 antibody (20). Biomark-
ers that may help predict responsiveness
to PARAs include membranous expres-
sion of DR4 and DR5 on malignant and
endothelial cells within tumors; O-glyco-
sylation enzymes involved in post-trans-
lational modification of DR4 and DR5
in the Golgi apparatus — a modification
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Figure 1. Apoptotic signaling pathways
engaged by PARAs that target the death
receptors DR4 and DRS. There are several
potential strategies to improve the clinical effi-
cacy of these PARAs. One strategy would be to
augment potency by increasing the oligomeric
state of Apo2L/TRAIL or the affinity of ago-
nistic anti-DR4 or anti-DR5 antibodies for Fcy
receptors (blue asterisks). Another strategy to
improve efficacy would be the implementation
of predictive and pharmacodynamic diagnostic
biomarkers that might help predict or deter-
mine whether a patient’s cancer is sensitive
(green asterisks) or resistant (red asterisks) to
PARA treatment. A third approach would be

to improve synthetic lethality against cancer
cells by combining PARAs with pharmacological
agents that target various other intracellular
signaling components or modulators of the
apoptotic pathways (black asterisks). BAX/BAK,
BCL-2-associated X protein/BCL-2 antagonist
killer 1; BCL-2/X, B cell lymphoma-2/extra long;
BID, BH3-interacting domain death agonist;
cFLIP, cellular FLICE-inhibitory protein; CUL3,
cullin 3; DISC, death-inducing signaling complex;
FADD, Fas-associated death domain; FUT3/6,
fucosyltransferase 3/6; GALNT14/3, polypeptide
N-acetylgalactosaminyltransferase 14/3; SMAC,
second mitochondria-derived activator of cas-
pases; TRAF2, TNF receptor-associated factor 2;
XIAP, X-linked inhibitor of apoptosis.

that augments ligand-induced receptor
clustering (23, 24); Fcy receptor poly-
morphism (18), which may impact the
affinity and hence efficacy of agonistic
antibodies; expression of E-cadherin,
which facilitates ligand activation of DR4
and DR5 by dynamically coupling these
receptors to the actin cytoskeleton in epi-
thelial cancer cells (25); and ubiquitin E3
ligases involved in potentiating or cur-
tailing caspase-8 activation in epithelial
cancer cells (26, 27), among other com-
ponents and modulators of the extrinsic
pathway. Pharmacodynamic biomarkers
may include cleaved caspase-8 and cas-
pase-3 or other readouts for caspase acti-
vation and apoptosis. Potential synthetic
lethal strategies include combinations
with BCL-2 antagonists, IAP antagonists,
proteasome inhibitors, agents targeting
aberrant signaling cascades such as the
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RAS/RAF/MEK/ERK, PI3K/AKT, JNK,
or p38 MAPK pathways (28), or inducers
of ER stress (29). Finally, it would also
be interesting to explore whether PARAs
cooperate with the emerging class of can-
cer immunotherapeutic agents.

Conclusions

An attractive feature of apoptosis reactiva-
tion is the potential to cause tumor regres-
sion rather than just stasis. On the other
hand, discriminating between malignant
and healthy cells is crucial to avoid untow-
ard side effects. Attempts to translate
Coley’s seminal findings by directly engag-
ing the extrinsic apoptotic pathway were
hampered by toxicities associated with
TNF-o or anti-CD95 antibodies. We now
have progressed beyond these safety hur-
dles with DR4- and DR5-targeted PARAs,
although clinical efficacy with these agents
has yet to be achieved. This creates a
unique opportunity to overcome tumor
resistance by (a) developing second-gen-
eration PARAs with enhanced potency
while maintaining a therapeutic index;
(b) implementing diagnostic biomarker
approaches; and (c) investigating more
advanced combinatorial strategies. Albert
Einstein said: “failure is success in prog-
ress.” I hope that researchers in academia
and industry will find this article helpful in
their quest to harness the extrinsic path-
way for medical benefit.
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