Inherited thrombocytopenias are a group of disorders that are characterized by a low platelet count and are sometimes associated with excessive bleeding that ranges from mild to severe. We evaluated 36 unrelated patients and 17 family members displaying thrombocytopenia that were recruited to the UK Genotyping and Phenotyping of Platelets (GAPP) study. All patients had a history of excessive bleeding of unknown etiology. We performed platelet phenotyping and whole-exome sequencing (WES) on all patients and identified mutations in schlafen 14 (SLFN14) in 12 patients from 3 unrelated families. Patients harboring SLFN14 mutations displayed an analogous phenotype that consisted of moderate thrombocytopenia, enlarged platelets, decreased ATP secretion, and a dominant inheritance pattern. Three heterozygous missense mutations were identified in affected family members and predicted to encode substitutions (K218E, K219N, and V220D) within an ATPase-AAA-4, GTP/ATP-binding region of SLFN14. Endogenous SLFN14 expression was reduced in platelets from all patients, and mutant SLFN14 expression was markedly decreased compared with that of WT SLFN14 when overexpressed in transfected cells. Electron microscopy revealed a reduced number of dense granules in affected patients platelets, correlating with a decreased ATP secretion observed in lumiaaggregometry studies. These results identify SLFN14 mutations as cause for an inherited thrombocytopenia with excessive bleeding, outlining a fundamental role for SLFN14 in platelet formation and function.
mophilia Comprehensive Care Centres, of which approximately 10% have a reduced platelet count. A candidate gene mutation has not been identified in approximately 50% of these patients. Over 500 patients from 25 UK Haemophilia Comprehensive Care Centres with excessive bleeding and suspected platelet function disorders have been recruited to the UK GAPP study. Of these patients, 13% have been classified as having a thrombocytopenia disorder. Approximately 50% of these patients have not been identified in approximately 50% of these patients.

Exome sequencing of DNA from IV:2, IV:4, and III:3 in family A revealed 22,867, 23,334, and 23,153 sequence variations, respectively. Comparisons with dbsNP build 135, the 1000 Genomes project database, and our in-house database (composed of >600 exomes) identified 124, 137, and 128 heterozygous variants we believe to be novel, respectively. Only 8 variants were shared by the 3 affected patients, of which 4 resulted in amino acid changes, including 3 nonsynonymous variants and 1 frameshift deletion. Sanger sequencing of these remaining 4 variants in all individuals in family A left 2 remaining candidate variants in NEMF (p.H962Y) and SLFN14 (p.V220D) that segregated with disease.

Table 1. Heterozygous SLFN14 mutations and Platelet Phenotyping in affected patients of the 3 families with thrombocytopenia, excessive bleeding and platelet secretion defects

<table>
<thead>
<tr>
<th>Family/patient ID</th>
<th>SLFN14 nucleotide alteration</th>
<th>Effect on SLFN14 protein</th>
<th>Platelet count (<10⁹/l)</th>
<th>Mean platelet volume (fl)</th>
<th>ISTH BAT score</th>
<th>Lumiaggregometry/flow cytometry defects</th>
<th>ATP secretion (nmol/1 × 10⁸ platelets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A; II:1</td>
<td>c.659 T>A</td>
<td>p.Val220Asp</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>A; III:2</td>
<td>c.659 T>A</td>
<td>p.Val220Asp</td>
<td>140</td>
<td>9.1</td>
<td>5</td>
<td>ADP (10, 30, 100 μM), collagen (1, 3 μg/ml), PAR-1 (100 μM)</td>
<td>0.81</td>
</tr>
<tr>
<td>A; III:3</td>
<td>c.659 T>A</td>
<td>p.Val220Asp</td>
<td>74</td>
<td>10.4</td>
<td>10</td>
<td>ADP (10, 30 μM), collagen (3 μg/ml), PAR-1 (30 μM)</td>
<td>0.42</td>
</tr>
<tr>
<td>A; IV:2</td>
<td>c.659 T>A</td>
<td>p.Val220Asp</td>
<td>110</td>
<td>9.3</td>
<td>13</td>
<td>ADP (10, 30 μM), collagen (1, 3 μg/ml), PAR-1 (100 μM)</td>
<td>ND</td>
</tr>
<tr>
<td>A; IV:4</td>
<td>c.659 T>A</td>
<td>p.Val220Asp</td>
<td>100</td>
<td>11.1</td>
<td>22</td>
<td>ADP (30 μM), collagen (3 μg/ml), PAR-1 (100 μM)</td>
<td>0.28</td>
</tr>
<tr>
<td>A; IV:5</td>
<td>c.659 T>A</td>
<td>p.Val220Asp</td>
<td>116</td>
<td>11.2</td>
<td>21</td>
<td>ADP (10 μM), collagen (3 μg/ml), PAR-1 (30 μM)</td>
<td>0.48</td>
</tr>
<tr>
<td>B; II:3</td>
<td>c.657 A>T</td>
<td>p.Lys219Asn</td>
<td>68</td>
<td>11.9</td>
<td>20</td>
<td>Flow cytometry reduced responses to high conc. CRP and PAR-1</td>
<td>NA</td>
</tr>
<tr>
<td>B; II:2</td>
<td>c.657 A>T</td>
<td>p.Lys219Asn</td>
<td>83</td>
<td>11.9</td>
<td>13</td>
<td>ADP (3, 10 μM), collagen (3, 10 μg/ml), PAR-1 (100 μM)</td>
<td>0.63</td>
</tr>
<tr>
<td>C; II:2</td>
<td>c.652 A>G</td>
<td>p.Lys218Glu</td>
<td>89</td>
<td>13.0</td>
<td>NA</td>
<td>ADP (10, 100 μM), collagen (1, 3 μg/ml), PAR-1 (100 μM)</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Heterozygous nucleotide changes present in SLFN14 and their predicted effects on the resulting protein are shown. Index cases are shown in bold.

Alternations are numbered according to positions in the NM_001129820. Mean platelet counts are shown. Normal reference range is 150 × 10⁹ platelets/l to 400 × 10⁹ platelets/l. Thrombocytopenia is defined as platelet count <150 × 10⁹ platelets/l. For mean platelet volume, the reference range is 7.83–10.5 fl.

International Society on Thrombosis and Haemostasis bleeding assessment tool (BAT) score. The 95th percentile (score of 4) was calculated from healthy volunteers (17). ATP secreted in response to 100 μM PAR-1 receptor-specific peptide SFLLRN. The 5th percentile in healthy volunteers is 0.82 nmol/1 × 10⁸ platelets. conc., concentration; CRP, collagen-related peptide; NA, not available; ND, not detectable.
II:3 was too low for lumiaggregometry (8), and so platelet function was analyzed by flow cytometry for P-selectin expression, revealing reduced responses to collagen-related peptide and PAR-1 peptide (Table 1). In line with this, lumiaggregometry on patient I:2 revealed deaggregation to ADP, collagen, and PAR-1 and reduced ATP secretion (Table 1). These results are similar to those seen in affected members of family A (Figure 2, A and B).

The index case in family C (II:2) was 3 years old at the time of enrollment. His platelet count in whole blood was 89 × 10⁹/l, and he was noted to bruise easily from a young age. Lumiaggregometry studies (http://exac.broadinstitute.org/gene/ENSG00000236320) and the latest version of dbSNP build 138.

Affected members of families B and C had remarkably similar platelet counts and platelet function defects. Family B included 3 patients, of which 2 were recruited to the study (I:2 and II:3). The proband in family B (II:3) was 35 years old when recruited to the study with a platelet count of 68 × 10⁹/l and a history of spontaneous epistaxis starting in childhood. Her mother (I:2) had a platelet count in whole blood of 83 × 10⁹/l, with a less severe bleeding history. The platelet count in patient II:3 was too low for lumiaggregometry (8), and so platelet function was analyzed by flow cytometry for P-selectin expression, revealing reduced responses to collagen-related peptide and PAR-1 peptide (Table 1). In line with this, lumiaggregometry on patient I:2 revealed deaggregation to ADP, collagen, and PAR-1 and reduced ATP secretion (Table 1). These results are similar to those seen in affected members of family A (Figure 2, A and B).

The index case in family C (II:2) was 3 years old at the time of enrollment. His platelet count in whole blood was 89 × 10⁹/l, and he was noted to bruise easily from a young age. Lumiag-

Figure 1. Identification of SLFN14 mutations in 3 unrelated families with a dominant form of thrombocytopenia. (A) Pedigrees from 3 families with moderate thrombocytopenia. Affected individuals are shaded; question marks denote that platelet count is unknown; asterisks indicate those patients whose exomes were sequenced; and arrows indicate nucleotide change. Representative Sanger electropherograms confirming SLFN14 mutations in patients are shown below the relevant families. (B) Linear domain organization of SLFN14 protein, showing the amino acid position of the 3 different missense SLFN14 mutations (K218E, K219N, and V220D) located in the ATPase-AAA-4 domain and conservation of the protein in higher order species.

population genetic studies (http://exac.broadinstitute.org/gene/ENSG00000236320) and the latest version of dbSNP build 138.

Affected members of families B and C had remarkably similar platelet counts and platelet function defects. Family B included 3 patients, of which 2 were recruited to the study (I:2 and II:3). The proband in family B (II:3) was 35 years old when recruited to the study with a platelet count of 68 × 10⁹/l and a history of spontaneous epistaxis starting in childhood. Her mother (I:2) had a platelet count in whole blood of 83 × 10⁹/l, with a less severe bleeding history. The platelet count in patient II:3 was too low for lumiaggregometry (8), and so platelet function was analyzed by flow cytometry for P-selectin expression, revealing reduced responses to collagen-related peptide and PAR-1 peptide (Table 1). In line with this, lumiaggregometry on patient I:2 revealed deaggregation to ADP, collagen, and PAR-1 and reduced ATP secretion (Table 1). These results are similar to those seen in affected members of family A (Figure 2, A and B).

The index case in family C (II:2) was 3 years old at the time of enrollment. His platelet count in whole blood was 89 × 10⁹/l, and he was noted to bruise easily from a young age. Lumiag-
gregometry findings in this patient are similar to those of study participants from families A and B, with a selective loss of response to ADP, collagen, and PAR-1 and normal responses to arachidonic acid (Table 1, Figure 2, and Supplemental Figure 1).

In humans and mice, SLFN14 is located in a SLFN cluster with other schlafen paralogs (9). Members of the SLFN family are highly conserved among mammalian species. SLFN family proteins contain a unique motif of unknown function, the “SLFN box,” and an AAA domain. The AAA domain consists of a P-loop NTPase implicated in ATP/GTP binding and hydrolysis (10). The SLFN family members are divided into 3 groups. SLFN5, SLFN8, SLFN9, SLFN10, and SLFN14 all belong to group 3, although SLFN14 is unique in containing a putative nuclear localization RKRRR motif in its C-terminus extension (10). The SLFN family of proteins have been suggested to be critical for a variety of processes, including cell-cycle regulation, proliferation, and differentiation (10–14). Recently, data have been published suggesting an important function for SLFN14 as an endoribonuclease, regulating rRNA and ribosome-associated mRNA cleavage and translational control in rabbit reticulocytes (15).

Rowley et al. (16) previously described SLFN14 mRNA expression in human and murine platelets. We identified expression of SLFN14 mRNA and protein in immature and mature megakaryocytes derived from CD34+ hematopoietic progenitor cells isolated from cord blood (Supplemental Figure 2). Expression of SLFN14 protein was confirmed by Western blotting of platelets from 11 healthy individuals, normalized to GAPDH loading controls (Supplemental Figure 3). Levels of SLFN14 in healthy volunteers ranged from 1.0 to 2.3 arbitrary units (mean 1.5, 95% CI 1.2–1.8).
The effect of SLFN14 variants on protein expression in platelets from affected family members was investigated by Western blotting (Figure 3A). Platelet lysates from carriers of the 3 SLFN14 variants showed a 65%–80% reduction in SLFN14 protein expression when compared with that of control platelets (Figure 3, A and B). Patient III:2 from family A expressing the p.V220D mutation demonstrated a reduction in SLFN14 expression to approximately 24% of that of control (P ≤ 0.001); patients I:2 and II:3 from family B expressing the K219N mutation showed a reduction to 33% (P ≤ 0.005) and 34% (P ≤ 0.001) of that of control, respectively; and patient II:2 from family C expressing the K218E mutation showed a decrease to 19% of that of control (P ≤ 0.001). This reduction in SLFN14 levels in all 3 families is over 50% despite the heterozygosity, suggesting that the mutant gene/protein influences stability of the wild-type protein. Importantly, the reduction in SLFN14 levels in platelets from carriers of the SLFN14 variants was confirmed in overexpression studies, in which, despite unaltered transfection efficiency, average field-of-view intensity measurements, and Western blot analysis demonstrated a significant reduction in expression of all SLFN14 variant constructs compared with the wild-type construct, i.e., SLFN14(K218E)-myc, SLFN14(K219N)-myc, and SLFN14(V220D)-myc expression was reduced to 5%, 8%, and 52% of SLFN14(WT)-myc expression, respectively (Supplemental Figure 4). The much larger reduction in both SLFN14(K218E)-myc and SLFN14(K219N)-myc expression may be a result of increased instability in these mutations in comparison to the SLFN14(V220D)-myc mutant.
Expression of SLFN14(WT)-myc in HEK293T cells revealed a punctate structure localized throughout the cytoplasm, with low level nuclear punctate staining also observed. No significant difference in protein localization was observed between overexpression of all SLFN14 mutants and the wild-type construct (Supplemental Figure 5).

The morphology of platelets from patients carrying heterozygous SLFN14 mutations was examined by transmission electron microscopy. Compared with platelets from healthy volunteers, no significant difference in α granule number or platelet ultrastructure was observed (Supplemental Figure 6). A small increase in platelet area was also observed corresponding with data shown in Table 1; however, a statistically significant increase was observed only in patient I:2 of family B (P ≤ 0.005). (Supplemental Figure 6).

Whole-mount electron microscopy was used to quantify dense granules numbers within affected patient and healthy volunteers platelets, and a significant reduction in dense granule number was observed in patient platelets from families A and B, patients IV:4 and II:3, respectively (Figure 3, C and D). This observation correlates with the reduced ATP secretion measured by lumia gregometry (Figure 2). Spreading of platelets on fibrinogen was not significantly different in platelets between affected individuals and healthy controls (Supplemental Figure 7).

In summary, we report 3 unrelated families with a dominantly inherited moderate thrombocytopenia, with a disproportionate bleeding phenotype. A combination of extensive platelet phenotyping and WES identified 3 mutations in SLFN14, which underlies a moderate thrombocytopenia with platelet secretion defects. The affected patients have a distinct platelet phenotype with decreased responses to ADP, collagen, and PAR-1, pointing toward a defect in the G, signalling pathway. Reduced dense granule secretion may also result in a loss of positive feedback during platelet activation. Platelets from affected patients displayed a relatively normal ultrastructure but show a significant reduction in dense granule number, correlating with lumia gregometry data showing decreased ATP secretion, and provide a basis for future mechanistic studies. This is the first description to our knowledge of a major role for SLFN14 in human disease.

Methods

Further methods are detailed in the Supplemental Methods.

Statistics. In studies in which statistical analyses were performed, a 2-tailed Student’s t test was used to generate P values. P values less than or equal to 0.05 were considered significant.

Study approval. The GAPP study was approved by the National Research Ethics Service Committee West Midlands – Edgbaston (REC reference 06/MRE07/36), and participants gave written informed consent in accordance with the Declaration of Helsinki. This study is registered at ISRCTN (http://www isrctn.org) as ISRCTN77951167. The GAPP study is included in the National Institute for Health Research Non-Malignant Haematology study portfolio (ID 9858).

Acknowledgments

We thank the families for providing samples and our clinical and laboratory colleagues for their help. This work was supported by the British Heart Foundation (RG/ PG/13/36/30275; RG/09/007; FS/13/70/30521), an MRC Doctoral Training grant (B. Johnson), a Wellcome Trust Combined Training Programme Fellowship (093994) (to G.C. Lowe), and the Platelet Charity (formerly known as FunnyBlood). The authors also acknowledge support from the Department of Health via the National Institute for Health Research (NIHR). We thank the NIHR Non-Malignant Haematology Specialty Group for their help in recruiting to the study and all our clinical investigators and collaborators. See the Supplemental Acknowledgments for study group details.

Address correspondence to: Neil V. Morgan, Centre for Cardiovascular Sciences, University of Birmingham, Institute of Biomedical Research, Edgbaston, Birmingham, B15 2TT, United Kingdom. Phone: 44.121.414.6820; E-mail: n.v.morgan@bham.ac.uk.