Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Fighting polyglutamine disease by wrestling with SUMO
Tim J. Craig, Jeremy M. Henley
Tim J. Craig, Jeremy M. Henley
Published January 20, 2015
Citation Information: J Clin Invest. 2015;125(2):498-500. https://doi.org/10.1172/JCI80278.
View: Text | PDF
Commentary

Fighting polyglutamine disease by wrestling with SUMO

  • Text
  • PDF
Abstract

Spinobulbar muscular atrophy (SBMA) is an X-linked disease characterized by degeneration of motor neurons, muscle atrophy, and progressive weakness. It is caused by a polyglutamine (polyQ) expansion in the androgen receptor (AR), a transcription factor that is activated upon hormone binding. The polyQ expansion in AR causes it to form intracellular aggregates and impairs transcriptional activity. Intriguingly, SUMOylation (where SUMO indicates small ubiquitin-like modifier) of AR inhibits its transcriptional activity and reduces aggregation of the polyQ form of this protein, but it is unclear whether SUMOylation plays a pathogenic or protective role in SBMA. In this issue of the JCI, Chua et al. address this question by generating knockin mice in which the native AR is replaced by either a polyQ AR or a polyQ AR lacking the two lysine residues that are SUMOylated. The results from this study demonstrate that inhibiting SUMOylation of polyQ AR restores much of its transcriptional activity and prevents many (but not all) SBMA-associated symptoms in this mouse model.

Authors

Tim J. Craig, Jeremy M. Henley

×

Full Text PDF | Download (178.83 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts