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approaches to treat tumor-bearing hosts.

Tumor progression depends on the gradual accumulation of
genetic and epigenetic aberrations in cancer cells that also modify
the cellular composition of the tumor environment, establishing a
state of chronic inflammation characterized by the stromal infil-
tration of immune cells. Myeloid cells play a critical role in sus-
taining cancer progression (1). Moreover, inflammatory myeloid
cells help to create and fuel the mutagenic pressure underlying the
genetic instability of neoplastic cells by both direct mechanisms,
such as the production of free-radical compounds (2), and indirect
processes, such as the disruption of host defense barriers (3).

Tumor growth is assisted by tumor-associated macrophages
(TAMs), the major leukocyte population infiltrating cancers (4).
Although macrophages have the potential to attack and elimi-
nate tumor cells, TAMs exhibit many protumoral features that are
partly shared by macrophages involved in tissue repair, and they
interfere with the function and proliferation of immune effectors
(5). Thus, a high frequency of TAMs is associated with poor prog-
nosis in many but not all human tumors (6).

Myeloid-derived suppressor cells (MDSCs) have received
increased attention, and their presence and frequency in the blood
of patients with tumors is emerging as a potential and simple prog-
nostic marker to monitor clinical outcome and response to therapy
(7). MDSCs are characterized by their myeloid origin, heteroge-
neous cell composition, and ability to negatively regulate adap-
tive and innate immune responses to cancer. Although TAMs and
MDSCs are regarded as separate entities (Figure 1), the boundaries
between them are not clearly demarcated, and they share many
characteristics (8). TAM accumulation in cancerous tissues is sus-
tained by circulating inflammatory monocytes (CCR2*Ly6C* cells
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in mice and CCR2*CD14*CD16" cells in humans; ref. 9), which
are distinct from vessel-patrolling monocytes (Ly6CP°CX3CR1"
in mice and CD14%"CD16 CX3CR1" in humans). Interestingly,
immunosuppressive MDSCs with monocytic features are able to
traffic from BM to tumors, mainly through the same chemokine
pathway (10). Therefore, the CCR2/CCL2 axis is required for
MDSC and TAM accrual and functional specialization. Here, we
review the distinctive and common characteristics of TAMs and
MDSCs, their role in maintaining cancer growth, and the ongoing
development of selective therapeutic approaches.

MDSCs and TAMs result from
altered myelopoiesis
The most pervasive and efficient strategy of immune escape likely
relies on cancer’s ability to create a widespread tolerogenic envi-
ronment by altering normal hematopoiesis and promoting the
expansion of myeloid cells through the constant and progressive
release of tumor-derived factors (TDFs), which include metabo-
lites, cytokines, and chemokines (ref. 11 and Figure 2). This “reac-
tive myelopoiesis,” leading to MDSC and TAM accumulation,
presents marked and distinct molecular features compared with
emergency granulopoiesis (12), as emphasized below.

Macrophage composition in different tissues or inflammatory
environments depends on a dynamic equilibrium between recruited
and tissue-resident macrophages. Tissue-resident macrophages
originate at the prenatal stage from the yolk sac and fetal liver
(13-15) and acquire selective, tissue-dependent features through
the activation of distinctive transcriptional profiles (16-20). During
inflammation and under steady-state conditions in some tissues,
macrophages are derived from circulating Ly6C*CCR2* monocytes,
as in the case of colonic mucosal macrophages (21).

In cancer, the evidence to date indicates that TAMs are
dynamically replaced by circulating precursors. Both the tissue-
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A Figure 1. Common phenotypic markers of

MDSCs and TAMs. Several phenotypic markers of

mouse and human MDSCs (A) and TAMs (B) have
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resident macrophages present in normal mammary tissues and
TAMs that develop during tumor progression in the MMTV-
PyMT breast cancer model are derived from blood-circulating
CCR2*" monocytes, but only TAMs display self-renewal capability
(22). In fact, TAM differentiation relies on the NOTCH/recombi-
nation signal-binding protein for the Ig « ] region (RBPJ) signaling
pathway and is cell restricted, as genetic ablation of RbpJ caused
a reduction in both TAMs and tumor growth (22). In the MMTV-
neu mouse model of autochthonous mammary carcinogenesis,
in situ cell division of fully differentiated CD11b°F4,/80" mac-
rophages was the main contributor to the rapid TAM expansion;
however, circulating monocyte influx was required in the long
term (23). TAM progenitors (Ly6C* monocytes) can also arise
from tumor-induced extramedullary hematopoiesis within the
spleen (24), although the relative contribution of BM and spleen
to the monocyte reservoir and tumor trafficking is not clear and
might be tumor dependent (25).

MDSCs in tumor-bearing hosts: cellular heterogeneity. Normal
CD11b*Grl1* cells in BM are multipotent cells that can differenti-
ate, depending on the kind and/or extent of cytokine/chemokine
stimulation, into cells able to either enhance (e.g., myeloid DCs)
or restrain (MDSCs) the immune response (26, 27). However, even
in tumor-bearing hosts, BM CD11b*Grl1* cells are poorly suppres-
sive, while the same cells isolated from liver, spleen, blood, and
tumors are fully competent to inhibit T cell activation (28, 29).
These findings suggest that the BM niche is not permissive for a
complete, functional maturation of MDSCs.

Volume 125

Number9  September 2015

As further detailed by Marvel and Gabrilovich (30), mouse
MDSCs have been divided into two main subgroups with different
phenotypic and biological properties: the monocytic (MO-MDSC)
and polymorphonuclear/granulocytic (PMN-MDSC) subsets (31).
In tumor-bearing mice, MO-MDSCs (Gr1"CD11b*Ly6ChLy6G")
are highly immunosuppressive and exert their effects largely in an
antigen-nonspecific manner, whereas PMN-MDSCs (Gr1®CD11b*
Ly6ClLy6G*) are moderately immunosuppressive and promote
T cell tolerance via antigen-specific mechanisms (32, 33). TDFs
induce tumor-infiltrating MO-MDSC differentiation into immu-
nosuppressive TAMs. This conversion is primarily mediated
by CSF1 (34), but also by molecular pathways controlled by the
hypoxia-inducible factor la (HIF-1a) (35). HIF-lo may also be
stabilized by the lactic acid that is produced by aerobic glycoly-
sis (Warburg effect) in cancer cells (36). Alternatively, lactic acid
can be actively produced in immune-regulatory myeloid cells by
cytokine-activated, anerobic glycolysis (28, 37).

TAMs in tumor-bearing hosts: cellular plasticity. After arriving
at the tumor site, Ly6C*CD11c' MHCII"CD11b"VCAM™ mono-
cytes undergo sequential phenotypical changes characterized by
the downregulation of Ly6C and CD11b and the upregulation of
MHC class II (MHCII) molecules, VCAM, and CD11c (22). How-
ever, TAM differentiation and distribution is not a defined and
preserved track but depends on both anatomical location and the
tumor stage: cancers with different histology are infiltrated by
TAMs with phenotypic and functionally distinct features (38). It
is essential to avoid simplified conclusions regarding TAM onto-
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Figure 2. MDSC and TAM development in tumor-bearing mice. Under steady-state conditions, resident macrophages may originate from either embryonic
tissues or inflammatory monocytes. Resident macrophages are programmed by local factors, and molecular switches support their differentiation. Circu-
lating monocytes can be divided into two subsets: patrolling monocytes (Ly6C°CX3CR1") and inflammatory monocytes (Ly6C"CD11b*CD11c"MHCII-
VCAM1-CCR2"), originating from macrophage and DC precursors (MDPs) in BM. Inflammatory monocytes migrate from blood to tissue under the guid-

ance of CCL2/CCR2 chemokine signaling. Tumor cells secrete several factors that modify physiological myelopoiesis, promoting MDP differentiation into
PMN-MDSCs (CD11b*Ly6G*) and MO-MDSCs (CD11b*Ly6CMCCR2*CD115*F4/80"). MO-MDSCs also originate from the spleen under conditions of emergency
and reactive myelopoiesis. MO-MDSCs and inflammatory monocytes migrate to tumor tissues via CCL2/CCR2 and CSF1 signaling and differentiate into
TAMs (Ly6C-CD11b*/°CD68*CD1d*MHCII"/°F4/80*VCAM1*) in the presence of specific signals released by tumor cells within the local environment. However,
the TAM phenotypic profile depends on cancer histology and stage, which might influence marker distribution. TAMs also proliferate locally, with different
rates in various tumors. Furthermore, TAMs are inherently plastic, with an activation state falling along a continuum between the two extremes of M1-

and M2-like phenotypes. Rb, retinoblastoma.

genetic analysis; for instance, the adoptive transfer of fully differ-
entiated macrophages to alternate tissues demonstrated that the
local environment is sufficient to reprogram both the macrophage
chromatin landscape and gene expression, similar to what hap-
pens to less mature, BM-derived myeloid precursors (20).

The definition of TAM function that is based on a rigid dichot-
omy in which inducible NOS-positive (iNOS, also known as NOS2)
macrophages (M1) are antitumoral and ARGI1-positive macro-
phages (M2) are protumoral is no longer satisfactory and was
recently revised (39). The M1 and M2 designations should only
describe macrophages activated by either IFN-y and LPS or IL-4
and IL-13, respectively, and M1 and M2 should be viewed as the
extremes of a continuum that emphasize the extremes of macro-

phage plasticity. M1 and M2 extremes exhibit specific, character-
istic expression of metabolic enzymes (iNOS vs. ARG1), cytokines
(IL-12MIL-10% vs. IL-12°IL-10Y), chemokines (CXCL9 and CXCL10
vs. CCL17 and CCL22), and marker genes (Nos2, IL12b, and Ciita
vs. Argl, Retnla, and Chi313), as well as transcription factors (NF-«kB,
STAT1, and IRF5 vs. STAT6, MYC, IRF4, KLF4, and PPARy) (39).
M1 macrophages are functionally proinflammatory and cytotoxic,
whereas M2 macrophages act preferentially in antiinflammatory
responses and tissue repair; however, when applied to TAMs, this
classification is excessively simplistic and can generate misunder-
standings and serious errors in data interpretation. For instance,
mammary carcinoma-derived TAMs exhibit M2-related gene
expression that is IL-4 independent and primarily orchestrated by
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NOTCH signaling (22) or lactic acid-stabilized HIF-10. (36). M1-like
TAMs are detectable in early-stage cancers as well as in regressing
cancers and necrotic areas of growing tumors (40). Furthermore,
monocytes isolated from the blood of patients with renal cell car-
cinoma (RCC) simultaneously express both tumor-suppressing
genes, such as TNF and ILIA, and tumor-promoting genes, such as
VEGFA, MMP9, and HIF1A, a mixed profile that was confirmed in
macrophages of RCC specimens (41). Thus, TAM classification will
require the integration of a multiparameter analysis of cell surface
markers, exclusion of ambiguous identifications, and comparison
of the TAM transcriptome with the gene profile of resident macro-
phages isolated from the same tissues (39).

Factors driving TAM and MDSC recruitment,
expansion, and activation during tumor growth
In tumor-bearing hosts, MDSC and TAM generation requires the
integration of at least two types of signals: factors that expand mye-
loid precursors, followed by factors that activate immune-regula-
tory programs. Myeloid cells are activated and localize to specific
tumor areas with different kinetics during primary tumor forma-
tion. CSF1, granulocyte-CSF (G-CSF), and granulocyte-macro-
phage CSF (GM-CSF) are the three chief regulators of myeloid
lineage proliferation and differentiation. G-CSF promotes the dif-
ferentiation of myeloid precursors into PMN-MDSCs. Expansion
of Ly6G* PMN-MDSCs occurs very early during tumorigenesis in
the MMTV-PyMT mouse model, and these cells are detectable
in the blood, spleen, and lungs of mice at the onset of oncogene-
driven malignant conversion (42). In this model, tumor-released
G-CSF stimulated reactive granulopoiesis at the expense of ery-
thropoiesis by expanding hematopoietic stem cells and granulo-
cyte/macrophage progenitors, but not common myeloid progeni-
tors. This peculiar precursor signature in the BM is reproduced by
either G-CSF or GM-CSF inoculation (31, 42) as well as by trans-
plantable, GM-CSF-secreting tumors (31), suggesting a shared
action of both cytokines on myeloid progenitors. G-CSF also
mediates the lung infiltration of PMN-MDSCs, a step required for
the formation of the premetastatic niche (43).

GM-CSF and IL-6 activate the immune-suppressive program
in BM-derived progenitors by regulating the C/EBPp transcription
factor (28) and affect myeloid function during very early stages of
pancreatic ductal adenocarcinoma (PDAC) progression. After ini-
tiation of the transforming program controlled by the active KRAS
oncogene in mouse PDAC models, there are progressive waves of
myelomonocytic cell recruitment, with CD11b*Gr1* cells and TAMs
being among the first to be accrued (44). Along with transformed
epithelial cells, CD11b*Gr1* cells contribute to the local release of
IL-6 and IL-11, which activate protumoral STAT3 in cancer cells
(45, 46). Moreover, KRAS-dependent release of GM-CSF primed
CD11b*Gr1"* cells to suppress tumor-specific CD8* T cells and pro-
moted progression to invasive PDAC; only the blockade of either
GM-CSF production or CD11b*Gr1* cell activity restored antitumor
immunity (47). Other unknown factors might promote systemic
CD11b*Gr1"* cell expansion in tumors driven by the viral SV40 onco-
gene, but GM-CSF was nonetheless required for the full in vivo
maturation of CD11b*Grl* cell-suppressive activity (48). Further
highlighting the role of GM-CSF, mesenchymal breast cancer cells
activate TAMs by the combined activity of GM-CSF and lactate; in
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turn, TAMs release CCL18, which supports epithelial-to-mesenchy-
mal transition (EMT) and metastasis formation (49).

The master factor for TAM recruitment and programming in
the tumor microenvironment is CSF1. Genetic deletion of CSF1
either slowed tumor initiation or decreased disease progression
and distal metastatic spread, both of which were associated with
TAM loss or reduction (50, 51). Indeed, elevated CSF1 levels
correlated with marked macrophage infiltration in human met-
astatic breast cancer (52). In addition to CSF1 and CCL2, several
other TDFs attract circulating monocytes to the tumor site. For
instance, chemokines, such as CCL5, CXCL12, and CX3CL1 (53)
as well as growth factors and noncanonical chemotactic pep-
tides, such as VEGF, TGF-B, bFGF, and the antimicrobial peptide
B-defensin 3, are involved in monocyte recruitment and macro-
phage differentiation (54).

IL-4 and IL-13 participate in both TAM and MDSC survival
and the acquisition of an immune-suppressive phenotype. They
bind different receptors sharing the IL-4Ra chain that is responsi-
ble for recruiting and phosphorylating STAT6, which induces the
transcription of genes involved in the immune-suppressive pro-
gram, including ArgI (55). GM-CSF released by mouse and human
gliomas upregulate IL-4Ra in MDSCs (56), which further fuel a
positive loop for MDSC-mediated immune-suppressive activity
by releasing IL-13 and IFN-y, with the last cytokine maintaining
IL-4Ra surface expression (57). Accordingly, IL-4R genetic deple-
tion impaired MDSC-dependent immune suppression in vivo (57),
and administration of aptamers targeting IL-4Ra triggered MDSC
and TAM apoptosis and delayed tumor progression (58). Addition-
ally, IL-4 in the tumor microenvironment (secreted by tumor cells
or Th2-polarized infiltration T cells) (59, 60) induces local macro-
phages to produce WNT7B, thereby promoting tumor invasion (61).

Metabolic environmental signals can also modulate the intra-
tumoral distribution of myeloid cells. Macrophages can survive
in a hypoxic environment, but the high lactate levels produced
via the Warburg effect can influence their spatial dissemination
within specific areas of tumors as well as their dismissal (62).
Hypoxia induces semaphorin 3A (SEMA3A), which interacts with
a holoreceptor composed of neuropilin 1 (NRP1) and plexin A1/A4
to trigger VEGFRI1 phosphorylation and macrophage recruitment
(63). A TAM retention signal within hypoxic areas is delivered
by SEMA3A through plexin Al/A4; conversely, NRP1 is down-
regulated in cancer, and its genetic inactivation in macrophages
enhances TAM trapping within normoxic areas, resulting in the
ablation of their immunosuppressive and proangiogenic activity
(63). Partial correction of tumor hypoxia did not affect the relative
distribution of TAM subsets or overall M2 marker expression, but
rather downregulated the hypoxia-sensitive genes and proangio-
genic activity of TAMs residing in the hypoxic areas (64).

Myeloid cells and cancer promotion
MDSC and TAM activity is not simply a buildup of an immune-
suppressive environment that keeps T cells at bay and protects
tumors from the effector arm of the immune system, but includes
mechanisms that sustain and promote tumor growth and metasta-
sis (Figure 3), as detailed below.

MDSC- and TAM-induced immune dysfunction. TAMs and
MDSCs exert their immunosuppressive effects in an antigen-
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Figure 3. TAM- and MDSC-dependent mechanisms driving tumor progression. TAMs and MDSCs sustain tumor growth, progression, and dissemina-

tion by promoting immune dysfunction (green slices) but also by nonimmune-related mechanisms (yellow slices). (A) TAMs alter immune responses

in tumor-bearing hosts by four main mechanisms: 1) inhibition of T cell activation; 2) inhibition of T cell viability; 3) promotion of Treg induction and
recruitment; and 4) consumption of metabolites essential for T cell fitness. TAMs promote tumor angiogenesis and vasculogenesis by the release of VEGF
and WNT7, which favor the generation of new blood vessels and sustain metastasis. Finally, TAMs maintain the cancer cell reservoir by secreting IL-6 and
TNF-a and produce MFG-E8 to protect CSCs from chemotherapy. (B) MDSCs inhibit the immune response in tumor-bearing mice by four processes:

1) MDSCs drive the differentiation of immune cells toward regulatory cells; 2) MDSCs interfere with T cell migration and viability; 3) MDSCs alter T cell
fitness by turning on intracellular ARG1, NOS2, and NOX2 expression to produce NO, ROS, and RNS (ONOO-, OZ’, HZOZ); and 4) MDSCs deplete essential
metabolites for T lymphocyte fitness. MDSCs can also promote tumor angiogenesis and vasculogenesis via VEGF and MMP9 secretion. MDSCs produce
elevated levels of TGF-$ and HGF in primary tumors, inducing EMT, and secrete versican in the metastatic niche, promoting MET. Finally, MDSCs maintain
tumor cell stemness by both IL-IRA production and by inducing the upregulation of miR-101in cancer stem cells. cGMP, cyclic GMP; Bcat, B-catenin;

N, nitrosylated/nitrated; Tcf, HNF1 homeobox A.
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specific and -nonspecific manner, deploying strategies that can
be either direct or indirect, with the latter involving the genera-
tion or expansion of other regulatory cell populations, such as
CD4*CD25" Tregs (65).

Indirect strategies of immune suppression. The mechanisms for
Treg expansion and conversion are not completely understood
but involve cell-to-cell contact (including CD40 and CD40L
interactions) and the production of soluble factors such as TGF-,
IFN-y, and IL-10 (66-68). To sustain the immune-suppressive
environment, TAMs and MDSCs secrete an array of chemokines
acting on CCR5 and CCR6, which are involved in Treg recruit-
ment (67-69). MDSCs also skew macrophages toward an M2 phe-
notype, characterized by impaired production of functional IL-12,
through a cell contact-dependent mechanism (70). The down-
regulation of IL-12 is further exacerbated by the macrophages
themselves, because TAMs stimulate an additional IL-10 release
by MDSCs, thereby creating a self-perpetuating negative loop.
Therefore, both MDSCs and TAMs can regulate the intratumoral
IL-10/IL-12 balance, which is critical for priming T lymphocyte
responses, as reviewed elsewhere (54, 71-73). Interestingly, IL-10
receptor blockade enhanced tumor responses to paclitaxel and
carboplatin, enabling CD103* DCs to produce IL-12 and support
antitumor CD8* T cells (74).

Direct immune suppression strategies. Direct immune-suppres-
sive mechanisms rely on the activity of enzymes, chemokines,
and receptors in myeloid cells. L-arginine and L-tryptophan con-
sumption — which is dependent on the activity of ARG1 (73) and
iNOS (75) or indoleamine 2,3-dioxygenase 1 (IDO1) and IDO2
(76), respectively — or L-cysteine deprivation (77) promotes T cell
proliferation arrest and functional inhibition by downregulation
of the CD3( chain in the T cell receptor (TCR) complex. The pro-
duction of NO can inhibit T cell signaling downstream of IL-2R
and induce T cell apoptosis by different mechanisms in an anti-
gen-independent manner (78, 79). Another TAM/MDSC-related
immune-suppressive mechanism is based on the production of
ROS and reactive nitrogen species (RNS). ROS comprise superox-
ide anion (O,) and hydrogen peroxide (H,0,) and are generated
in high amounts by the activity of NADPH oxidase (NOX) family
members, in which NOX2 is the key player (80). ROS affect T cell
fitness by downregulating CD3( chain expression and reducing
cytokine secretion, as observed in pancreatic cancer (81). RNS,
such as peroxynitrite (ONOO"), are byproducts of the combined
activity of iNOS, ARG1, and NOX2 and can alter the formation
of a correct peptide-MHC complex in MHCI molecules or induce
modification of the immunodominant tumor-antigen peptides,
thereby affecting TCR recognition and T cell activation (82). RNS
can act on a and B chains of the TCR, promoting dissociation of
the CD3( chain from the TCR complex and preventing TCR sig-
naling (83). Last, RNS also modify trafficking of leukocytes that
promote homing of immune-suppressive subsets (but not T cells)
through aromatic amino acid nitration and nitrosylation of chemo-
kines (CCL2, CCL5, CCL21, CXCL12) or chemokine receptors
(CXCR4) (84, 85). Myeloid cells also promote immune dysfunc-
tion by expressing membrane surface ligands of T cell-inhibitory
receptors, such as programmed death ligand 1/2 (PD-L1/2), which
bind programmed death 1 (PD-1) (86-88) and B7-1/2, which bind
to cytotoxic T lymphocyte antigen 4 (CTLA4) (89) and CD28 as
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well as FASL (90). Moreover, TAMs express nonclassical HLA-G
and HLA-E molecules that can inhibit T cell activation upon their
ligation to the inhibitory leukocyte Ig-like receptor LIT-2 (91).

MDSC- and TAM-dependent protumoral aid
Cancer stemness. MDSCs finely tune tumor senescence by promot-
ing cellular stemness. At tumor onset in different autochthonous
tumor models, neoplastic cells showed a senescent phenotype, a
condition limiting tumor progression that was reversed by MDSCs
(92). MDSC-secreted IL-1RA was the main molecular media-
tor of this reprogramming activity, and interference with MDSC
trafficking to the tumor (i.e., by CXCL1/2 and CXCR2 target-
ing) enhanced chemotherapy-induced cellular senescence (92).
In human ovarian carcinoma, MDSCs regulated senescence by
inducing tumor cell expression of miR-101, which downregulated
the stemness repressor C-terminal-binding protein 2 (CTBP2),
ultimately triggering cancer stem cell (CSC) sphere formation and
enhancing metastatic potential (93). Finally, in a mouse model
of pancreatic cancer, MO-MDSCs directly induced expansion of
aldehyde dehydrogenase 1* (ALDH1A1") pancreatic CSCs; a simi-
lar effect was observed with human CD14*HLA-DR™ MDSCs from
patients with PDAC (94).

In pancreatic tumors, TAM depletion arrests the proliferation
of tumor-initiating cells (95). Indeed, TAMs can sustain CSC pro-
liferation by releasing proinflammatory cytokines such as TNF-o
and IL-6, which reinforce tumor cell proliferation through NF-«xB
and STAT3 signaling pathways (96, 97). These same molecular
pathways may be activated through a direct TAM-to-CSC con-
tact via CD90 and ephrin A4 receptors (98). Finally, the crosstalk
between CSCs and TAMs induced TAM secretion of milk fat glob-
ule EGF factor 8 (MFGES8) and IL-6, which favored CSC reservoir
survival during chemotherapeutic treatment (99).

Angiogenesis. MDSCs and TAMs play a crucial role in pro-
moting the angiogenic switch. During hypoxia adaptation, tumor
cells, which sense O, levels through HIF prolyl hydroxylase 1-3
(PHD1-3) to control HIF-1a stability, release VEGF and thereby
stimulate angiogenesis (100). Similarly, TAMs, in response to
hypoxia, release mediators such as VEGF, bFGF, CXCL8/IL-8,
and glycolytic enzymes (101, 102). Secreted VEGF also orches-
trates peripheral expansion, trafficking, and functional commit-
ment of MDSCs (103). In the tumor microenvironment, TAMs and
MDSCs release proteases (cathepsin and MMP9), which support
angiogenesis by freeing heparin-bound growth factors, such as
VEGF-A, and by inducing extracellular matrix remodeling, which
promotes invasion (51). Recruitment of MDSCs mediates resis-
tance to anti-VEGF Ab-mediated therapy, as MDSCs can support
new vessel growth, even in the presence of anti-VEGF Ab (104),
by releasing the proangiogenic bombina variegata peptide 8 (105).

EMT-mesenchymal-to-epithelial transition and metastatic
spreading. Myeloid cells play an active role in promoting the
spread of distal tumor cells. In mammary tumors, TAMs pro-
mote metastatic diffusion via a paracrine loop involving CSF1
and EGF, which induces macrophages and tumor cells to clus-
ter around blood vessels, where macrophages create a gate for
tumor cell intravasation into the circulation, thus producing a
tumor microenvironment for metastasis (TMEM) (106-108). The
proinflammatory proteins SI00A8 and S100A9, potent MDSC
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Table 1. Synopsis of therapeutic interventions to limit monocyte and macrophage protumoral activity

Drug Type of cancer
5-Fluorouracyl

Gemcitabine

Aptamers targeting (D124 (IL-4Ra)
Anti-CCL2 mAb

Thymoma (mouse)
Mammary cancer (mouse)

(mouse and human)
CSF1R antagonist

glioma (mouse and human)

Anti-CSFIR mAb (RG7155)
giant cell tumor

Lipid nanoparticles delivering Thymoma and CRC (mouse)
(CR2-targeting SIRNA

Bisphosphonates

Combined therapy with IL-12, IL-16,
CpG DNA, and anti-IL-10R mAb

(D40 agonist and gemcitabine

Anti-CD40 mAb with IL-2

Mammary tumor (mouse)
Lung and breast cancer (mouse)

PDAC (mouse and human)
RCC (mouse)

Histidine-rich glycoprotein
Trabectedin
(mouse and human)

Lung, breast, and sarcoma cancers (mouse)

Mammary carcinoma, prostate cancer, other solid tumors

Prostate tumor lung carcinoma, diffuse-type giant
cell tumor, and tenosynovial giant cell tumors,

Mouse colon carcinoma, human diffuse-type

Pancreatic and breast cancer, fibrosarcoma (mouse)
Lung and ovarian carcinomas, soft tissue sarcoma

Effects on myeloid cells References
MO-MDSC apoptosis 29,141
MO-MDSC apoptosis 29,142

MO-MDSC and TAM depletion 58

MO-MDSC recruitment and angiogenesis alteration M,153,154
MO-MDSC expansion and TAM recruitment 140, 152, 156
Circulating monocyte subsets, tissue macrophage 149
and TAM depletion
Ly6C" inflammatory monocytes and TAM depletion 159
TAM depletion, inhibition of MDSC expansion 160, 161
TAM reprogramming* 150
TAM reprogramming* 157
TAM reprogramming” in lung metastasis but not in primary 151
tumor
TAM reprogramming* 158
MO-MDSCs and macrophage depletion 90

Aln these studies, the indicated treatments did not affect TAM numbers; rather, TAMs were reprogrammed toward an antitumor, M1-like phenotype

and function.

chemoattractants, have been implicated in tumor progression
(109); SI00A8/A9-induced serum amyloid A3 directly recruited
MDSCs to premetastatic lungs, stimulated NF-«B signaling in a
TLR4-dependent manner, and facilitated metastatic spreading
(110). Moreover, MO-MDSCs and inflammatory monocytes are
recruited through the CCL2/CCR2 axis to a metastatic environ-
ment in which they can differentiate into metastasis-associated
macrophages (MAMs) (52, 111). Hypoxia in primary tumors
can trigger MDSC-induced dysfunction in NK cells within the
lung premetastatic niche, a defined site to which hematopoietic
cells migrate before the tumor cells can seed the niche (112).
PMN-MDSCs can also be armed by IL-17 released from vy T cells
infiltrating the primary breast cancers and assist lymph node
and lung metastasis, in part through the inhibition of CD8" T cell
function (113). MDSCs and TAMs also assist the metastatic pro-
cess by inducing tumor cell EMT. MDSCs attracted by CXCL5
induced EMT in melanoma cells by releasing HGF and TGF-p at
the primary tumor site; targeting of PMN-MDSCs in this model
resulted in marked impairment of primary tumor growth (114).
TAM recruitment induces EMT by both TGF-f release in a vari-
ety of solid tumors (115) and IL-8 in hepatocellular carcinoma
(116). Additionally, a positive correlation was found between
intratumoral macrophage densities, EMT markers, intraepithe-
lial TGF-B levels, and tumor grade of non-small-cell lung cancer
(NSCLC) patient samples (115). Because metastatic cells reac-
quire morphological and phenotypic traits of epithelial cells at
the metastatic site, it is conceivable that premetastatic myeloid
cells also control a mesenchymal-to-epithelial transition (MET)
that promotes cancer cell colonization of and survival in the new
organ, likely by releasing the proteoglycan versican (117).

Prognostic significance of myeloid cells
in cancer patients
Three main myeloid classes with distinct lineage commitments
have been identified in the blood of cancer patients: monocytic,
granulocytic, and immature MDSCs. Each class contains more
than one subset (118). Although the role of MDSCs has been
acknowledged in primary tumor formation (119), extensive data
connect MDSC expansion to more advanced cancer stages (120).
MDSC numbers are associated with clinical stage in bladder car-
cinoma (121), pancreatic adenocarcinoma (122), hepatocellular
carcinoma (123, 124), gastric cancer (125), NSCLC (126), and head
and neck squamous cell carcinoma (127), as well as in hematolog-
ical malignancies such as non-Hodgkin lymphoma (128). Collec-
tively, these results indicate that expansion of MDSCs in cancer
patients is a general phenomenon accompanying tumor progres-
sion. MDSC levels also correlated with response to therapy (126,
129, 130) or surgery (121); however, a deep analysis of clinical out-
come in patients showed that MDSC frequency in blood is associ-
ated with prognosis, independent of tumor burden (131, 132). In
patients with either stage IV breast cancer or stage IV colorectal
cancer (CRQ), a significant correlation was observed between high
numbers of circulating MDSCs and poor prognosis. In fact, survival
estimates for patients with high numbers of immature MDSCs
(lineage'HLA-DR”-CD11b*CD33*) in the blood prior to starting
standard chemotherapy were associated with shorter overall sur-
vival (OS) (133). Finally, high levels of MDSCs, cytokines, and
chemokines (PDGF, IL-4, IL-8, IL-17, FGF-2, CCL5, and VEGF) in
patients with PDAC are associated with progressive disease (134).
In recent years, immunotherapy has emerged as a therapeutic
option for the treatment of cancer. IMA901 is a therapeutic vac-
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cine for RCC that consists of HLA-A*Q2-restricted, tumor-derived
peptides. In patients with advanced RCC, the levels of five of six
MDSC subsets were expanded at baseline, and two of these sub-
sets were prognostic for OS following IMA901 administration.
These results indicate that MDSCs are potential biomarkers of
response to the vaccine (135).

Immune checkpoint inhibitors represent a new drug category
that is dramatically changing the treatment options for cancer
(136). Lower MDSC frequencies correlated with prolonged OS
in ipilimumab-treated patients (132, 137), whereas a decrease in
MDSCs after treatment correlated with improved progression-
free survival (PFS) in advanced melanoma patients receiving
neoadjuvant ipilimumab (138). To date, it is not clear whether ipil-
imumab targets MDSCs or, conversely, whether the lower MDSC
levels observed following ipilimumab treatment simply reflect
tumor shrinkage in response to immune-mediated rejection.

While some studies demonstrated a correlation of extensive
TAM infiltration with poor prognosis in breast, cervix, and blad-
der carcinomas, conflicting results were obtained in other solid
tumors like prostate, NSCLC, and brain cancers (139). Along the
same line, a recent meta-analysis of the literature showed incon-
sistent results (6), since elevated TAM numbers were associated
with worse OS in patients with gastric, urogenital, or head and
neck cancers, but with better prognosis in patients with CRC.

It appears that, while the expansion of MDSCs is often asso-
ciated with poor prognosis, expansion of TAMs is not always a
negative prognostic factor. When TAM evaluation is carried out at
the molecular level, another layer of complexity appears. As dis-
cussed above, monocytes from patients with RCC have a distinct
transcriptional profile, with upregulation of protumor and anti-
tumor genes. The tumor-promoting function of RCC monocytes
and TAMs required IL-1/IL-IR signaling, which also supported
progression of RCC xenografts (41). These results are the first
indication in human cancers that TAM induction is not mediated
by the tumor microenvironment and suggest that patients’ mono-
cytes are already primed in the blood. Finally, CSFIR inhibitionin a
mouse model of proneural glioblastoma (GBM) increased survival
by inducing regression of established tumors. Interestingly, a gene
signature induced by CSFIR inhibition in murine TAMs was associ-
ated with increased survival in patients with proneural GBM (140).

Conclusions and future perspective

Targeting MO-MDSCs and TAMs can open new therapeutic
opportunities to control tumor progression and block metastatic
diffusion. The main strategies used thus far involve the inhibition
of recruitment, depletion, or reprogramming of target cell popu-
lations. Some first-generation chemotherapeutic agents, such as
5-fluorouracil (141) and gemcitabine (29, 142), are able to control
MO-MDSC accumulation, probably because these cells are more
sensitive than tumor cells to low-dose chemotherapy (29). Low-
dose irradiation also increases CD8* T cell trafficking and normal-
izes tumor vasculature in many cancer models by reprogramming
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TAMs toward a more inflammatory M1 type that releases NO (143).
However, TAMs can either positively or negatively influence the
antitumor activity of cytotoxic chemotherapy and radiotherapy
(144), and targeting of immunosuppressive myeloid cells can have
different effects on cancer progression (145, 146). Additionally,
the microbiome can condition different myeloid cells, including
TAMs, within murine tumors to contribute to the antitumor effi-
cacy of both chemotherapy and immunotherapy (147, 148). Novel
biologic drugs recognizing MDSC and TAM antigens or disrupting
their function have been developed for selective targeting of these
cell populations. As shown in Table 1, these compounds include
Abs and/or aptamers (58, 111,149-151) as well as molecular antag-
onists of essential receptors and/or molecular pathways (152).
Among chemokines, targeting of CCL2 with a mAb (carlumab,
CNTO 888) has proven to be beneficial in patients (153, 154);
however, abrupt discontinuation of the therapy may result in a
rebound effect causing increased metastatic disease (155). The
inhibition of the CSF1/CSF1R axis with Abs (RG7155) or RTK
inhibitors (imatinib mesylate) affects macrophage recruitment
and differentiation and has shown encouraging results in clinical
trials (149, 156). Considering the role of macrophages in regulating
the tissue architecture and in mediating innate immune defense,
there are concerns about side effects from the extended depletion
of these cells. In this context, Abs activating immune stimulators
(CD40), combinations of cytokines and Abs, or administration of
histidine-rich glycoprotein appeared to modify macrophage polar-
ization toward an antitumor phenotype, without affecting overall
macrophage levels (150, 151, 157, 158).

Future investigations will need to focus on the mechanisms
driving macrophage polarization toward either proimmune
or protumoral phenotypes. Gene expression, proteomic, and
metabolomic profiles are increasing our understanding of TAM
and MDSC biology and offer potential therapeutic strategies for
impeding tumor-induced immune dysfunctions. The identifi-
cation of functional markers could guide the development of a
new class of drugs targeting specific subsets of macrophages and
MDSCs, thereby reducing the side effects of ablative therapy. In
conclusion, while MDSC/TAM targeting will likely be insufficient
to eradicate tumors, interference with patients’ immune dysfunc-
tions is a prerequisite and fundamental step for improving the effi-
cacy of passive and active immunotherapeutic protocols.
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