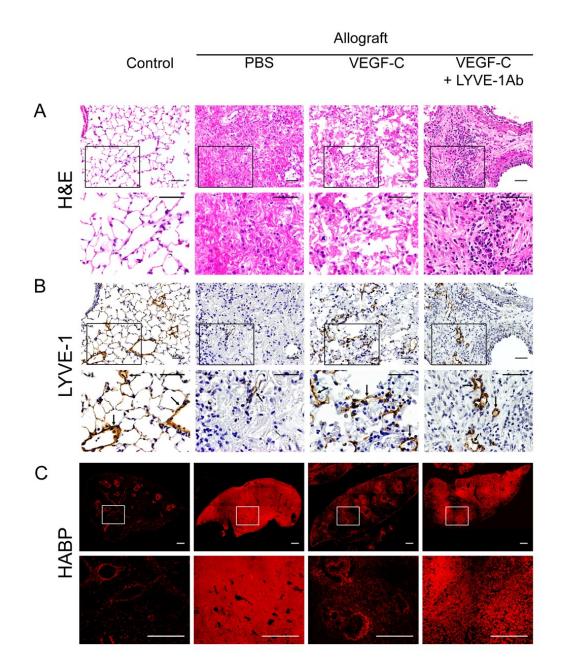
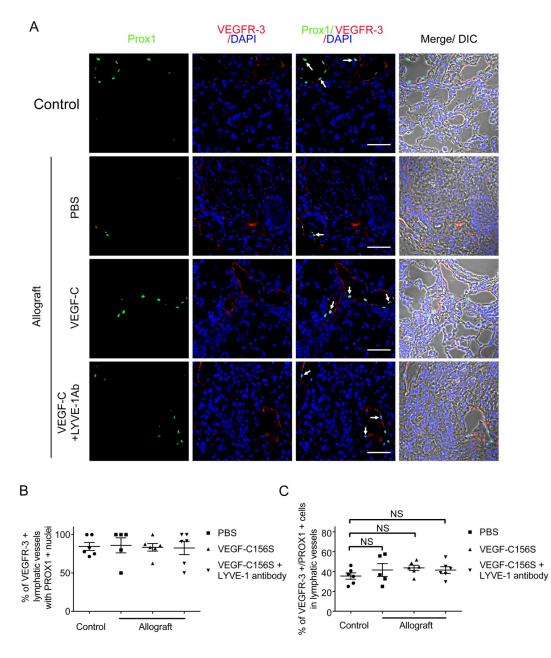
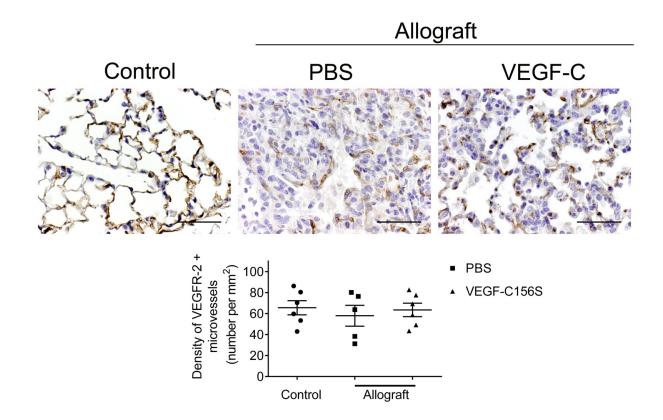
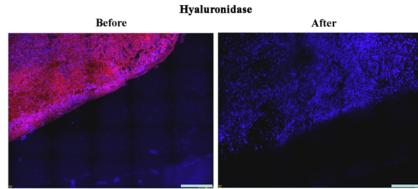

3 Supplemental Figure 1 (Related to Figure 1). Loss of lymphatic vessels in lung allograft rejection. (A and B) Representative images of H&E staining (A) and LYVE-1 4 immunohistochemical staining (B) of control untransplanted lungs (n=6 mice), isografts (n=3 5 6 mice) and allografts (n=5 mice) shown at low magnification (upper panels) and high magnification (lower panels). LYVE-1-positive lymphatic vessels are indicated by black arrows. 7 The areas enclosed in the rectangles in the upper panels are enlarged in the lower panels. Scale 8 9 bars, 200µm. Animals receiving isogeneic or allogeneic lung grafts were sacrificed 30 days after 10 transplant together with age-matched untransplanted controls.


- 11
- 12

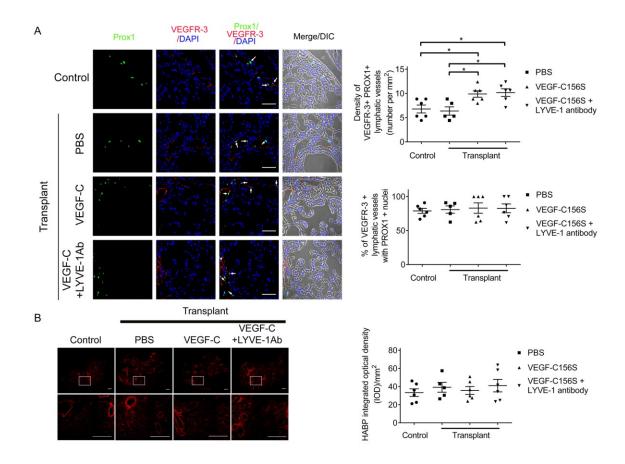


3 Supplemental Figure 3 (Related to Figure 1). Double immunofluorescence staining verifies the loss of lymphatic vessels in lung allograft rejection. (A) Representative images of double 4 immunofluorescence staining with anti-PROX-1 (green) and anti-VEGFR-3 (red) antibodies in 5 6 lung tissues from control untransplanted lungs (n=6 mice), isografts (n=3 mice) and allografts (n=5 mice). Nuclei were counterstained with 4',6-diamidino-2-phenylindole (DAPI, blue). 7 PROX-1/VEGFR-3 double positive cells are indicated by white arrows. Scale bars, 50µm. (B) 8 9 Percentage of VEGF-R3-positive lymphatic vessels with PROX1-positve nuclei. (C) Percentage of VEGFR-3/Prox-1-double positive cells in lymphatic vessels. All data were presented as mean 10 \pm SEM. There were no statistically significant differences between groups as determined by 1-11 way ANOVA. 12

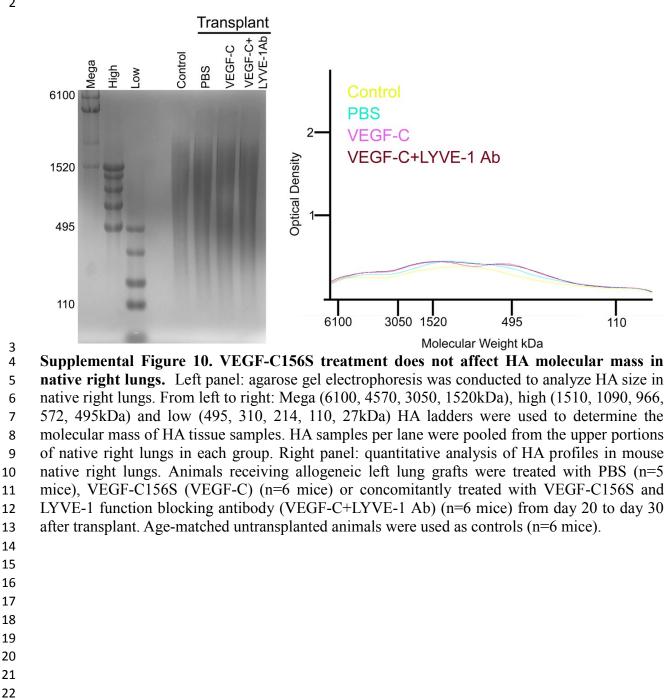


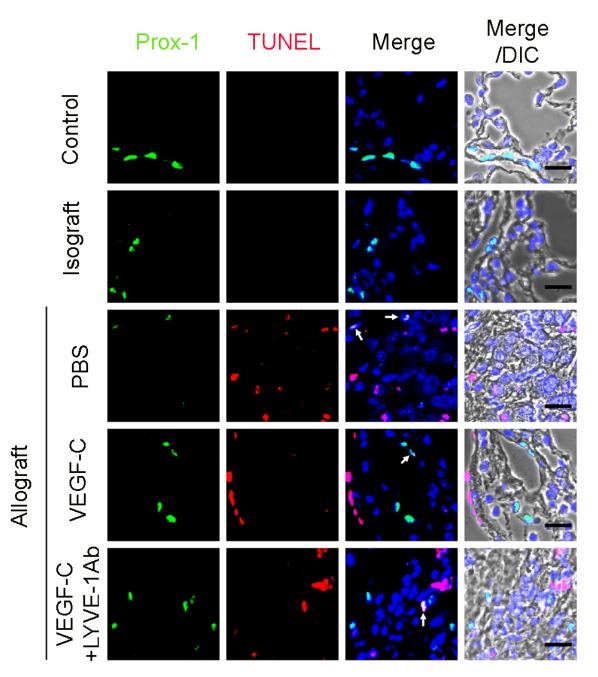

2 Supplemental Figure 5 (Related to Figure 2). VEGF-C156S treatment ameliorates lung allograft rejection by clearing hyaluronan. (A and B) Representative images of H&E (A) and 3 LYVE-1 (B) staining shown at low magnification (upper panels) and high magnification (lower 4 5 panels). LYVE-1-positive lymphatic vessels are indicated by black arrows. Scale bars, 50µm. (C) Representative images of hyaluronic acid binding protein (HABP) fluorescent staining (red). 6 7 Scale bars, 500µm. (A-C) The areas enclosed in the rectangles in the upper panels are enlarged in the lower panels. Animals receiving allogeneic lung grafts were treated with PBS (n=5 mice), 8 VEGF-C156S (VEGF-C) (n=6 mice) or concomitantly treated with VEGF-C156S and LYVE-1 9 function blocking antibody (VEGF-C+LYVE-1 Ab) (n=6 mice) from day 20 to day 30 after 10 transplant. Age-matched untransplanted animals were used as controls (n=6 mice). 11

1 2 Supplemental Figure 6 (Related to Figure 2). Double immunofluorescence staining verifies 3 the pro-lymphangiogenic effects of VEGF-C156S treatment. (A) representative images of double immunofluorescence staining with anti-PROX-1 (green) and anti-VEGFR-3 (red) 4 antibodies in mouse left lung. PROX-1/VEGFR-3 double positive cells are indicated by white 5 6 arrows. Nuclei were counterstained with DAPI (blue). Scale bars, 50µm. Animals receiving allogeneic lung grafts were treated with PBS (n=5), VEGF-C156S (VEGF-C) (n=6 mice) or 7 VEGF-C156S and LYVE-1 function blocking antibody (VEGF-C+LYVE-1 Ab) (n=6) from day 8 9 20 to day 30 after transplant. Untransplanted animals were used as controls (n=6). (B) Percentage 10 of VEGF-R3-positive lymphatic vessels with PROX1-positve nuclei. (C) Percentage of VEGFR-3/Prox-1-double positive cells in lymphatic vessels. Data were presented as mean \pm SEM. No 11

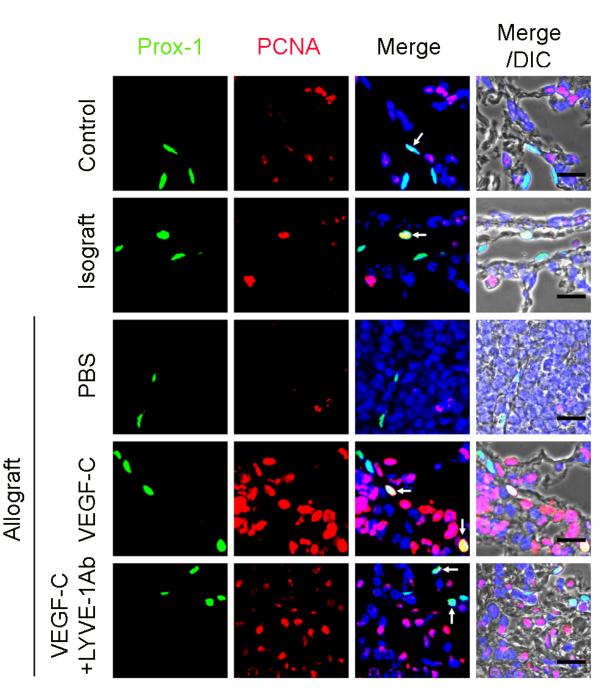


Supplemental Figure 7. VEGF-C 156S treatment does not affect blood vessel density. Upper panel: representative images of VEGFR-2 immunohistochemical staining of control untransplanted lungs and allografts treated with either PBS or VEGF-C156S. Scale bars, 50µm. Lower panel: images of the entire lung section were obtained. The number of VEGFR-2-positive blood vessels were quantified and subsequently adjusted to the cross sectional area of the entire tissue. Animals receiving allogeneic lung grafts were treated with PBS (n=5 mice) or VEGF-C156S (VEGF-C) (n=6 mice) from day 20 and sacrificed 30 days after transplant together with age-matched untransplanted controls (n=6 mice). All data were presented as mean \pm SEM. There were no statistically significant differences between groups as determined by 1-way ANOVA.


1	
2 3	Supplemental Figure 8. Specificity of hyaluronan binding protein is confirmed by pre-
3 4	treatment with hyaluronidase. Hyaluronidase pretreatment abolished hyaluronic acid reactivity
5	(red) in allograft tissue sections, which confirmed the specificity HABP staining. Nuclei were
6	counterstained with DAPI (blue). Scale bars, 200µm.
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23 24	
24 25	
25 26	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	



Supplemental Figure 9. VEGF-C156S treatment induces lymphangiogenesis but does not affect HA deposition in native right lungs. (A) Left panel: representative images of double immunofluorescence staining with anti-PROX-1 (green) and anti-VEGFR-3 (red) antibodies in right lung. PROX-1/VEGFR-3 double positive cells are indicated by white arrows. Nuclei were counterstained with DAPI (blue). Scale bars, 50µm. Upper-right panel: quantification of lymphatic vessel density in right lungs. Lower-right panel: percentage of VEGF-R3-positive lymphatic vessels with PROX1-positive nuclei in right lungs. (B) Representative images of HABP fluorescent staining (red) in right lungs (left panel) and quantification of HABP integrated optical intensity (IOD) (right panel). Scale bars, 500um. Areas enclosed in the upper panel are enlarged in the lower panel. Animals were treated with PBS (n=5), VEGF-C156S (VEGF-C) (n=6) or VEGF-C156S and LYVE-1 function blocking antibody (VEGF-C+LYVE-1 Ab) (n=6) from day 20 to day 30 after left lung transplant. Untransplanted animals were used as controls (n=6). All data were presented as mean \pm SEM. *p < 0.05, as determined by 1-way ANOVA.



2 Supplemental Figure 11 (higher magnification of images in Figure 4). VEGF-C156S treatment reduces lymphatic endothelial cell apoptosis in lung allografts. Representative 3 4 images of PROX1 (green) and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL, red) double immunofluorescence staining. PROX-1/TUNEL-double positive 5 6 cells are indicated by white arrows. Nuclei were counterstained with DAPI (blue). Scale bars, 7 20µm. Animals receiving allogeneic lung grafts were treated with PBS (n=5 mice), VEGF-C156S (n=6 mice) or concomitantly treated with VEGF-C156S (VEGF-C) and LYVE-1 function 8 blocking antibody (VEGF-C+LYVE-1 Ab) (n=6 mice) from day 20. Animals receiving isogeneic 9 10 (n=3 mice) or allogeneic lung grafts were sacrificed 30 days after transplant together with age-

11 matched untransplanted controls (n=6 mice).

Supplemental Figure 12 (higher magnification of images in Figure 4). VEGF-C156S 3 treatment stimulates lymphatic endothelial cell proliferation in lung allografts. Representative images of PROX1 (green) and proliferating cell nuclear antigen (PCNA) (red) 4 5 double immunofluorescence staining. PROX-1/PCNA-double positive cells are indicated by white arrows. Nuclei were counterstained with DAPI (blue). Scale bars, 20µm. Animals 6 7 receiving allogeneic lung grafts were treated with PBS (n=5 mice), VEGF-C156S (VEGF-C) (n=6 mice) or concomitantly treated with VEGF-C156S and LYVE-1 function blocking antibody 8 9 (VEGF-C+LYVE-1 Ab) (n=6 mice) from day 20. Animals receiving isogeneic (n=3 mice) or allogeneic lung grafts were sacrificed 30 days after transplant together with age-matched 10 untransplanted controls (n=6 mice). 11

1			
2	CD3	Immunohistochemistry	Catalog no. ab5690 (Abcam, Cambridge, MA)
3	CD68	Immunohistochemistry	Catalog no. ab125212 (Abcam)
5	CD68	Immunofluorescence	Catalog no. MCA1957 (AbD Serotec, Raleigh, NC)
6	D2-40	Immunohistochemistry	Catalog no. CM266A (BioCare Medical, Concord, CA)
7	LYVE-1	Function blocking	Catalog no. MAB2125 (R&D Systems, Minneapolis, MN)
8	LYVE-1	Immunohistochemistry Immunofluorescence	Catalog no. 11-034 (AngioBio, Del Mar, CA)
9	PCNA	Immunofluorescence	Catalog no. 13110 (Cell Signaling Technology, Danvers, MA)
10	Prox-1	Immunofluorescence	Catalog no. AF2727 (R&D Systems)
	VEGFR-2	Immunohistochemistry	Catalog no. ab51873 (Abcam)
	VEGFR-3	Immunofluorescence	Catalog no. 552857 (BD Biosciences, San Diego, CA)

11 Supplemental Table 1

12 List of antibodies used.