# SUPPLEMENTARY MATERIALS

# **CONTENTS**

-Detailed Methods

**Supplementary Tables** 

-Table S1: Mutations detected by whole exome sequencing\* in responding (hematologic improvement or complete remission) subjects (Patient #s 3, 10, 14 were analyzed by targeted exome sequencing). A) Mutations in responders. B) Mutations in non-responders.

-Table S2: Biomarker quantification by ImageIQ software of whole tissue sections. Raw data for A) DNMT1. B) p27/CDKN1B. C) MYC.

-Table S3: Oligomer standards used for absolute telomere length measurements

# **Supplementary Figures**

- Figure S1: Hemoglobin and platelet counts 50 days prior to initiation of protocol treatment until day +120 and analyses of freedom from transfusion in subjects requiring transfusion prior to initiation of therapy.

- Figure S2: Observed versus Expected Overall Survival by IPPS-R risk categories

- Figure S3: Flow cytometric quantification of  $\gamma$ H2AX in bone marrow cells prior to treatment (week 0)

and after 6 and 12 weeks of therapy in responders versus non-responders (per IWG criteria)

-Figure S4. DNMT1 protein expression decreased during treatment

-Figure S5. MYC protein expression decreased between week 0 to 6

-Figure S6. p27/CDKN1B protein expression increased between week 0 to 6, images

-Figure S7. DNMT1, MYC and p27/CDKN1B protein expression changes between week 0 to 6, graphical summaries

-Figure S8. Pre-treatment bone marrow cellularity was higher in responders than non-responders

-Figure S9. In AML patients, there was a significant inverse correlation between presenting platelet and white blood cell counts (TCGA, n=196)

-Figure S10. Standard curve used to calculate absolute telomere length

References cited in supplementary material

#### **DETAILED METHODS**

#### **Study Design**

This was a single arm Phase 1/2 study (registered at ClinicalTrials.gov as NCT01165996). In MDS, morbidity and death is caused by low blood counts, and hematologic improvement (HI) produces better overall survival. HI or better was the primary end-point per International Working Group (IWG) 2006 Criteria for Response in MDS Clinical Trials, defined as an increase in hemoglobin of  $\geq 1.5g/dL$ , reduction in red blood cell transfusion by at least 4 transfusions/8weeks compared with pre-treatment, increase in platelets by  $\geq 30x10^{9}/L$  (if baseline platelets  $\geq 20x10^{9}/L$ ), increase in platelets from  $<20x10^{9}/L$  to  $\geq 20x10^{9}/L$  and by at least 100%, at least 100% increase in neutrophils and absolute increase  $\geq 0.5x10^{9}/L$  (if baseline neutrophils  $<0.5x10^{9}/L$ ). Secondary endpoints included  $\geq$ Grade 2 toxicity by NCI/CTEP v4 criteria, measures of response and duration per IWG criteria, disease genetics by whole exome sequencing and standard metaphase karyotyping, and mechanism-ofaction biomarker correlation with response.

# Patients

Patients were enrolled after written informed consent on an Institutional Review Board approved protocol in accordance with the Declaration of Helsinki. A diagnosis of MDS classified by hematopathology review as WHO categories chronic myelomonocytic leukemia, atypical chronic myeloid leukemia (BCR-ABL1 negative), myelodysplastic/myeloproliferative neoplasm unclassifiable, refractory anemia with ring sideroblasts and thrombocytosis, refractory cytopenia with unilineage dysplasia, refractory anemia with ring sideroblasts, refractory cytopenia with multi-lineage dysplasia (RCMD), refractory anemia with excess blasts, myelodysplastic syndrome unclassifiable was required. In addition, subjects were required to have symptomatic anemia or thrombocytopenia with a platelet count of  $<100 \times 10^9$ /L, or transfusion dependence for red-cells, or transfusion dependence for platelets, or an absolute neutrophil count  $<1 \times 10^9$ /L. MDS with isolated del(5q) on cytogenetics was excluded unless failed prior lenalidomide therapy. Also excluded were individuals previously treated with decitabine, but not individuals previously treated with 5-azacytidine, lenalidomide or other therapies.

Other exclusion criteria were: (i) untreated erythropoietin deficiency defined as an erythropoietin level of <200 IU/L despite hemoglobin <9 g/dl, (ii) uncontrolled infection, (iii) severe sepsis or septic shock, (iv) current pregnancy or breast feeding, (v) the patient was of childbearing age, and is unwilling to use contraception and has not had a tubal ligation, hysterectomy, or vasectomy, or their partner is also unwilling to use an acceptable method of contraception as determined by the investigator, (vi) not able to give informed consent, (vii) altered mental status or uncontrolled seizure disorder, (viii) ALT >300 IU; or albumin < 2.0 mg/dL, (ix) creatinine > 2.5 mg/dl and creatinine clearance <60ml/min, (x) patients who were moribund or patients with concurrent hepatic, renal, cardiac, metabolic, or any disease of such severity that death within 60 days was likely, (xi) B12, folate, or iron deficient, until corrected, (xii) NYHA class III/IV status, (xiii) ECOG

performance status  $\geq$ 3, (xiv) HIV positive or history of seropositivity for HIV, (xv) transformation to acute leukemia ( $\geq$  20% myeloblasts in marrow aspirate).

### Treatment

Study Drug and regimen (Fig 1): Study drug (Eisai, Tokyo, Japan), supplied as a lyophilized powder for injection (50mg), was reconstituted with 5ml sterile water to facilitate subcutaneous administration. If pre-treatment bone marrow myeloblast percentage was <10%, starting dose decitabine 0.2mg/kg was administered 2X/week for the initial 4 weeks (**Fig.1**). If bone marrow myeloblasts were  $\geq$ 10% and there was a clinical concern of rapid progression to AML, the treating investigator had discretion to administer decitabine 0.2mg/kg 3X/week for 4 weeks. The planned duration of protocol therapy was 1 year (52 weeks).

*Management of neutropenia:* Neutrophil count nadirs occurring 5-8 weeks after initiation of therapy or after any increase in dose or treatment frequency were managed by temporary withholding of drug for 1-2 weeks and then resumption at the same dose or reducing the dose no more than 0.05 mg/kg, with the minimum dose of 0.1 mg/kg 1X/week. Granulocyte-colony stimulating factor (G-CSF) support was permitted if neutrophils were <0.5x10<sup>9</sup>/L. The overall goal was to relieve cytopenia while maintaining malignant clone suppression with at least decitabine 0.1 mg/kg 1X/week. Regular administration, at a lower dose if necessary, was always preferred to infrequent administration of a higher dose.

*Bone marrow aspirate and biopsies:* Worsening cytopenias concurrent with increasing bone marrow cellularity (hypercellular relapse) was an indication of progressive disease that could be managed with increasing frequency of drug administration (maximum 0.2 mg/kg 3X/week). Worsening peripheral cytopenias concurrent with a decrease in marrow cellularity (hypocellular relapse) could reflect nadir or over-treatment to be managed as described for neutropenia.

#### Immunohistochemistry

Immunostaining was performed on decalcified and formalin-fixed paraffin embedded bone marrow biopsy sections (4 µm) obtained at protocol screening (pre-treatment), weeks 6 and 12, and on positive and negative controls for each immunostain. Antibodies used were rabbit monoclonal antibody cMYC (clone Y69, Epitomics #1472-1, Burlingame, CA), 1:50 dilution for 1 hour at room temperature. Rabbit monoclonal antibody Ki67 (clone 30-9, Ventana Medical Systems, Inc. #790-4286, Tucson, AZ), predilute antibody for 16 minutes at 37 C<sup>o</sup>. Both stains were performed with Ventana Benchmark Ultra using iView detection (Ventana #760-091) and a high pH tris-based buffer (Cell Conditioning 1, Ventana #950-124). Mouse monoclonal anti-p27 (clone Kip1, BD Bioscience #610241, CA), 1:1600 dilution for 32 minutes at room temperature. Mouse polyclonal anti-Dnmt1 (Abcam #ab19905, Cambridge, MA), 1:200 dilution for 32 minutes at room temperature. Both stains were performed with Ventana Discovery using OmniMap detection and a high pH tris-based buffer (Cell Conditioning 1, Ventana #950-124).

#### Image acquisition and quantitative immunohistochemical analysis

High resolution, large field-of-view images were acquired using a Leica SCN400 (Leica Microsystems Inc, Buffalo Grove, IL) at a scanning magnification equivalent to 20x (0.3 um/pixel). ImageIQ software (Image IQ Inc., Cleveland, OH) was used to manage and analyze whole section digital images. Using the ImageIQ software, it was possible to perform manual reviews of digital images in addition to automated image analysis (IA). The Image IQ automated image analysis algorithm was launched and implemented from within Image-Pro Plus software (Media Cybernetics, Silver Springs, MD) for batch analysis of all images. Analysis parameters were adjusted to detect cell nuclei. In brief, the algorithm used a combination of color detection and morphometric interpretation to isolate the nuclei that stained positive for the targeted biomarker (cMYC, Ki67, p27, and DNMT1) based on grayscale values. Whole tissue area was first calculated by converting images to grayscale and applying a low-pass filter followed by thresholding. Due to the similarity in hues to nuclei, bone within each section was segmented and "subtracted" from the original image using HSI color space conversion, image mathematical operations, and morphological "opening". For segmentation of positively stained nuclei (brown), the blue channel of the original RGB image was extracted, inverted, and segmented (intensity > 180, area > 10 pixels). A watershed filter followed by a morphological "opening" filter were applied to the resultant image to split touching nuclei. For segmentation negative nuclei (blue), a similar procedure was followed with the substitution of YIQ color space conversion for RGB channel extraction. Lastly, positive and negative cell counts, and tissue and bone areas were exported to Excel. Positively segmented nuclei Sobel filtered, pseudocolored green, and superimposed upon the original image for visual validation of the algorithm performance.

#### Flow Cytometry Quantification of yH2AX, a DNA Damage Marker

Bone marrow aspirate mononuclear cells were isolated using a standard density gradient procedure: ~6 mL of heparinized bone marrow aspirate was layered over an equal volume of Histopaque®-1077. Cells fixed with 1% paraformaldehyde (EMS grade Cat #15710) were permeabilized with cold methanol and blocked with 6% FBS for 15 minutes at room temperature prior to immunostaining with Alexa Fluor® 488-conjugated mouse anti- $\gamma$ H2AX (pS139, cat# 560445) for 1 hour at room temperature. Positive (BD Biosciences, cat #51-6552LZ) and negative control cells (Cat 51-6553LZ) as well as healthy donor cell controls were concurrently stained and analyzed. Flow cytometric analysis was performed with an FC500 flowcytometer (Beckman-Coulter Inc) equipped with CXP acquisition software (CXP analysis 2.2, Beckman Coulter Inc). Gating was determined by positive and negative controls, and results were expressed as the percentage of cells demonstrating fluorescence intensity located within this positive gate.

#### Whole Exome Sequencing

Sequencing procedures: Tumor DNA was extracted from bone marrow mononuclear cells. For germline control, DNA was obtained from paired CD3 positive T cells. Whole exome capture was accomplished based on liquid phase hybridization of sonicated genomic DNA having 150 - 200bp of mean length to the bait library synthesized on magnetic beads (SureSelect®, Agilent Technology), according to the manufacture's protocol (SureSelct Human All Exon 50Mb kit). The captured targets were subjected to massive sequencing using Illumina GAIIx and/or HiSeq 2000 with the pair end 75-108 bp read option, according to the manufacture's instruction.

*Pipeline for data processing:* The raw sequence data generated from Illumina GAIIx or HiSeq2000 sequencers were processed through the in-house pipeline constructed for whole-exome analysis of paired cancer genomes at Human Genome Center the Institute of Medical Science, University of Tokyo. The data processing is divided into two steps,

1) Generation of a .bam file (http://samtools.sourceforge.net/) for paired normal and tumor samples for each case.

2) Detection of somatic point mutations and indels by comparing normal and tumor BAM files.

Generation of .bam files: *Preprocessing:* First, .fastq files originally generated from Illumina sequencers are converted to .fastq in Sanger format via the maq-sol2sanger [http://maq.sourceforge.ned/]. PCR adaptor sequences contaminated in the sequence reads were removed by the following procedure: If the first 12 consecutive 3' bases of the opposite adaptor sequence were matched, the remaining bases were matched to the remaining adaptor sequence. If and only if the all the remaining sequence was completely matched, all the matched bases were removed from the read.

*Mapping of sequence reads and detection of duplicate reads:* Sequenced reads are aligned to the NCBI Human Reference Genome Build 37 with BWA (version 0.5.8 and default parameter settings) [http://bio-bwa.sourceforge.net/]. The output is written into a .sam file, which were converted into a .bam file format for the subsequent calculations via SamFormatConverter in the Picard suit [http://picard.sourceforge.net/Picard]. The aligned reads are examined with the MarkDuplicates algorithm from Picard to identify molecular duplicates, where a read is considered a molecular duplicate, if both ends of the pair reads are mapped to the identical genomic locations. The detected duplicates are flagged in the .bam file.

*Local re-alignment:* After mapping to the reference genome and detection of duplicate reads, local re-alignment was performed to increase the sensitivity and specificity of indel detection, in which the entire context of multiple mapped reads has to be taken into account and serves as evidence for putative indels. Most short read aligners map each read independently to the reference genome and hence reads supporting indels may be aligned with multiple mismatches to the reference rather than with a gap. We applied IndelRealigner in Genome Analysis Tool Kit (GATK) [http://www.broadinstitute.org/gatk] to perform multiple sequence re-alignment around the locations of candidate indels. This step tries to correct the above mentioned placement errors and decrease the false positive rate of indel and SNV calls.

Recalibration of base quality and aggregation of sample data in multiple lanes: Each sequenced nucleotide within a short read was associated with a Phred-like quality value which indicates the probability that the base call was wrong. We used GATK to recalibrate the base quality scores after the re-alignment process. The software recalculates O scores based on the originally reported quality score, the position of the nucleotide within the read, and the preceding and current nucleotide. Finally, sequence data for the same sample from multiple lanes were combined into single .bam file using samtools-merge command [http://samtools.sourceforge.net/].

Detection of somatic mutations and indels:

*Generation of the pile-up files for tumor and control data:* Before summarizing base call data, low quality reads are eliminated from each .bam file, including those reads which have more than 5 mismatches to the reference sequences or whose mapping quality was less than 30 were removed. The sequence data in .bam files were then summarized into .pileup file, which contains the counts of each base call at every nucleotide position in the target sequences. To suppress too many false positive finding, the following nucleotide positions were eliminated from the further analysis, including those positions at which the depth is less than 10 in either tumor or control, or the most frequent single nucleotide variant (SNV) or indel accounts less than 7% of all reads in tumor. The SNV comprising equal to or more than 7% of total reads at each nucleotide position, if exists, is adopted as the candidate mutation.

*Statistical evaluation of SNVs and indels:* The significance of each candidate mutation is evaluated by Fisher's exact test by enumerating the number of the reference base and the candidate SNV in both tumor and control. Candidate mutations either (i) having p-values of less than 0.001, or (ii) having p-values of less than 0.05, more than 20% of the mutated allele in tumor sample and less than 10% of the mutated all in normal sample, were adopted as provisional candidate for somatic mutations. The provisional candidates for somatic mutations were subjected to validation using Sanger sequencing, if they do not satisfy any of the following conditions:

-SNPs registered in dbSNP 131.

-SNPs found in the1000 Genomes [http://www.1000genomes.org/] database.

-Variants on the intron region excluding splicing sites.

-Synonymous mutations.

# **Measurement of Telomere length**

Measurement of absolute telomere length (aTL) was by QRT-PCR as described previously (O'Callaghan NJ, Fenech M. A quantitative PCR method for measuring absolute telomere length. Biological procedures online. 2011;13:3). The Cawthon method (Cawthon RM. Telomere measurement by quantitative PCR. Nucleic acids research. 2002;30:e47) for relative measurement of telomere length (TL) was modified by introducing an oligomer standard to measure aTL. Oligomer standards (Table S3) for both Tel & single copy gene (SCG) (36B4) were purchased from Integrated DNA Technologies, Inc.

QRT-PCR conditions: each reaction included 10  $\mu$ L 2× SYBR Green mix (Bio-Rad), 0.5  $\mu$ L each of 2.5  $\mu$ M forward and reverse primers, 6.5  $\mu$ L molecular-filter water and 2.5  $\mu$ L genomic DNA (7 ng/ $\mu$ L) to yield a 20- $\mu$ L reaction per well. All samples were run on an ABI 7500 Fast-real time PCR Detection System with Ver. 2.0.4 software (Applied Biosystems [AB], Foster City, CA). Reaction conditions 95°C for 10 min followed by 40 cycles of data collection at 95°C for 15 s, 60°C anneal for 30s, and 72°C extend for 30s followed by 80 cycles of melting curve from 60°C to 95°C. After thermal cycling was completed, the 7500 Fast RT PCR software version was used to generate standard curves and Ct values for telomere signals and 36B4 gene signals.

Six levels of diluted standards were analyzed to generate a standard curve using the formulas shown below (**figure S7**). This standard curve was used to to derive absolute telomere length of patient and normal control samples analyzed in conjunction with known short/long telomere controls (Roche #12209136001). Formulas:

• The synthesised 36B4 oligomer standard is 75 bp in length with a MW of 23268.1.

• The weight of one molecule of 36B4 oligomer standard is MW/Avogadro's number =  $23268.1/6.02 \times 10^{23} = 0.38 \times 10^{-19}$  g.

• The highest concentration standard (SCG STD A) had 20 pg of 36B4 oligomer per reaction.

• Therefore there are  $20 \times 10^{-12}/0.38 \times 10^{-19} = 5.26 \times 10^8$  copies of 36B4 amplicon in SCG STD A.

• Therefore SCG STD A is equivalent to  $2.63 \times 10^9$  diploid genome copies, because there are two copies of 36B4 per diploid genome.

A standard curve was generated by performing serial dilutions of SCG STD A (10<sup>-1</sup>through to 10<sup>-6</sup>dilution).

Human Telomere copy number per reaction was calculated as follows:

• The oligomer standard is 84 bp in length (TTAGGG repeated 14 times), with a molecular weight (MW) of 26667.2.

• The weight of one molecule is MW/Avogadro's number =  $26667/6.02 \times 10^{23} = 0.44 \times 10^{-19}$ g.

• The highest concentration standard (TEL STD A) has 5 pg of telomere oligomer ( $5 \times 10-12g$ ) per reaction.

• Therefore there are  $5 \times 10^{-12}/0.44 \times 10^{-19} = 0.1136 \times 10^9$  molecules of oligomer in TEL STD A.

• The amount of telomere sequence in TEL STD A is calculated as:  $0.1136 \times 10^9 \times 84$  (oligomer length) =  $95.45 \times 10^8$  bp of telomere sequence in TEL STD A.

A standard curve was generated by performing the aTL qPCR assay on serial dilutions of TEL STD A  $(10^{-1}$  [95.45 × 10<sup>8</sup>] through to  $10^{-6}$  [95.45 × 10<sup>3</sup>] dilution).

Final results were reported as aTL in base pair (bp) per genomic copy following adjustment of telomere length to the single copy gene from the same sample.

# Analysis of master transcription factor expression in normal hematopoietic stem cells (NHSC), MDS stem cells (MDS-SC), and AML stem cells (AML-SC)

Master transcription factors analyzed for gene expression were HLF that drives stem cell fate and CEBPA, PU.1 and GATA1 that drive myeloid lineage-fates, demonstrated in lineage-conversion and murine knock-out studies (1, 2). Surface phenotypes defining NHSC, MDS-SC and AML-SC and used for flow-purification, reproducibly identify cell fractions with the capacity to reconstitute long-term myelopoiesis in immuno-compromised mice (3, 4)(GSE55689 and GSE24006). NHSC and MDS-SC were DAPI<sup>-</sup>Lin<sup>-</sup>CD34<sup>+</sup>CD38<sup>-/lo</sup>CD90<sup>+</sup>CD45RA<sup>-</sup>; AML-SC were DAPI<sup>-</sup>Lin<sup>-</sup>CD34<sup>+</sup>CD38<sup>-/lo</sup>CD90<sup>-</sup> (AML engrafting cells differ from NHSC and MDS-SC in being CD90-, and can also be CD38<sup>+</sup>, a fraction not analyzed here)(3, 4). Lineage markers analyzed included CD2, CD3, CD4, CD7, CD8a, CD10, CD11b, CD14, CD19, CD20, CD56, CD235ab, glycophorin-A and CD123. MDS and AML cases were representative of the morphologic and genetic spectrum of disease, and in the case of MDS, included low and intermediate-risk cases (3, 4). Gene expression was relative to mean expression of the same gene in simultaneously analyzed NHSC.

#### **Data Collection and Statistical Methods**

Data was collected into a protected Oncore database. The sample size (25 patients) was based on a 2-stage design with a null hypothesis of 30% of the patients having a hematological improvement versus an alternative hypothesis of 60%, using a one-sided alpha of 5% and power of 90%. After 15 patients, at least 5 hematologic improvements were needed for the trial to proceed, at which point 10 additional patients were enrolled.

Parameters related to response, mechanism-of-action and prediction of response (pharmacodynamics: DNMT1 - molecular target of therapy, γH2AX - DNA damage and cytotoxicity marker; terminal differentiation: p27/CDKN1B; proliferation/oncoprotein: MYC; growth fraction and deoxycytidine kinase surrogate: KI67) were percentages (i.e. of cells positive for a marker) and thus not normally distributed. We therefore used the nonparametric Wilcoxon Signed Rank Test to determine the significance of within-patient differences between time points. Fisher's exact or chi-squared test was used to compute P values of differences in proportions of adverse events or positive biomarkers. P values were computed using SAS9.2 (SAS Institute, Cary, NC) and R 3.0.1 (http://www.r-project.org/). p-values <0.05 are considered statistically significant.

Table S1: Mutations detected by whole exome sequencing\* in responding (hematologic improvement or complete remission) subjects (Patient #s 3, 10, 14 were analyzed by targeted exome sequencing). A) Mutations in responders. B) Mutations in non-responders. Known recurrent mutations are highlighted in bold, and apoptosis genes are additionally underlined.

| 1 | AXIN2     | DOCK8    | LRP1     | CDH11    | SRSF2    | BCOR        | JAK2    | LARP1B   | GIGYF1   | OVCH2   |
|---|-----------|----------|----------|----------|----------|-------------|---------|----------|----------|---------|
|   | PTPRM     | MUC5B    | TET2     | CUX1     | RUNX1    | LARP1B      | ASXL1   | MUC21    | 0.011    | 0.0     |
| 4 | TET2      | KDM6B    | PTPRZ1   | GPR107   | FMN2     | <u>TP73</u> | SF3B1   | LAMA2    | DYNC2H1  | BCORL1  |
|   | ANPEP     | MUC16    | BCOR     | CEBPA    | DHX29    | DNMT3A      | KDM6A   | RUNX1    | SRSF2    | SUZ12   |
|   | ABCB1     | ABCC3    | ABCF3    | ACSF3    | ADCY5    | ADRA1B      | AKAP13  | ANO7     |          |         |
|   | AP3B2     | APC2     | ARHGEF2  | ASPA     | ATP13A3  | AXDND1      | B3GALT4 | B4GALNT3 | B4GALNT4 | BMP2K   |
|   | C10orf129 | C17orf64 | C19orf21 | C22orf43 | CCDC48   | CCDC64      | CCDC87  | CDC23    | CDH11    | CDH16   |
|   | CDON      | CEP78    | CHST10   | CLASP1   | CLCN6    | CMYA5       | CNTN6   | COL27A1  | COL2A1   | COL4A1  |
|   | COL4A6    | COQ3     | CREB3L4  | DCP2     | DCTD     | DDX6        | DENND1C | DGKD     | DLG2     | DNAH3   |
|   | DNAJC25   | DOCK10   | DPF1     | DSC3     | DSE      | ZZEF1       | ECHDC3  | EIF4E3   | EMP3     | EPHB2   |
|   | EPHB6     | ERN1     | FAM194B  | FAM194B  | FAM194B  | FAT2        | FBLIM1  | FCHO1    | FHDC1    | FRY     |
|   | FRYL      | FZD5     | GAK      | GAS1     | GEMIN5   | GFM2        | GPR158  | GPR84    | GPRIN3   | GTF2IRE |
|   | HBS1L     | HEATR5A  | HEATR5B  | HECTD4   | HERC2    | HMHA1       | HSPBAP1 | HTATIP2  | IGSF10   | IL1RAP  |
|   | IL20RA    | INCENP   | IRX2     | ITSN1    | KIAA0196 | KLF9        | KLHL36  | KPNB1    | KRTAP4-3 |         |
|   | LAMA4     | LAMB4    | LARP7    | LIG4     | LONRF3   | LPAR2       | LRP2    | LRP2     | LRRC34   | LTK     |
|   | LTN1      | MAEL     | MAN2B2   | MDGA1    | MMEL1    | MPDZ        | MRGPRF  | MSMO1    | MST4     | MUTYH   |
|   | MYBPC1    | MYH1     | MYH14    | NAPRT1   | NKAIN2   | NOA1        | ODF3L2  | OLFML2A  | OR1G1    |         |
|   | OR5M8     | OR9G4    | PCDH1    | PCDHGA6  | PCED1A   | PCMTD1      | PCNX    | PCNXL4   | PDE9A    |         |
|   | PELI2     | PHIP     | PIK3R5   | PIKFYVE  | POLI     | PPARGC1E    | PPP6R2  | PRMT7    | PSME4    | PTPRM   |
|   | RAB11B    | RAD18    | RBBP8    | RFWD2    | RHBDF2   | RNF149      | RNF170  | RNF6     | RNGTT    | RUNX1T  |
|   | SBF2      | SCFD1    | SDC2     | SEC23IP  | SEC24B   | SERPINB8    | SGIP1   | SHROOM3  | SIX4     | SLC2A1  |
|   | SLC4A5    | SLC9C2   | SMPD3    | SMYD1    | SOGA3    | SP140       | SPATA6  | SPTB     | ST5      |         |
|   | STK36     | SUPT3H   | TAAR5    | TBC1D13  | TCF20    | TECRL       | TENM4   | THADA    | TMEM131  |         |
|   | TMEM244   | TPP2     | TRANK1   | TTBK1    | ULK4     | URB1        | UROC1   | VPS13A   | VPS37A   | VPS37C  |
|   | VPS4B     | WDFY3    | WDR66    | WNT3A    | WSB1     | XIRP1       | ZC3H4   | ZCCHC14  | ZNF140   | ZNF182  |
|   | ZNF605    | ZNF717   | ZNF814   | ZNF830   | ZNF880   |             |         |          |          |         |
| 8 | STXBP4    | LYST     | PUS10    | ATN1     | MUC6     | ALMS1       | INTS9   | ZNF516   |          |         |
| 9 | C8orf59   | FOLH1    | GJA3     | FSIP2    | ATM      | SSX4B       | SLIT2   | SRSF7    | MLL2     | ARID2   |
|   | ORC2      | TET2     | C10orf76 | DRD2     | OR10Z1   | BCL11B      | CNTNAP2 | KRAS     | OR10Z1   |         |
|   | PCDHA13   | SRSF2    |          |          |          |             |         |          |          |         |

| 11 | RAN      | SACS     | <u>TP53</u> | FRMD3    | ANKRD20A4 | MDN1     | SAA1     | ODZ1      | CMYA5    |          |
|----|----------|----------|-------------|----------|-----------|----------|----------|-----------|----------|----------|
|    | TPBG     | GNL3     | MPP5        | NSUN7    | CTNNA2    | CADPS2   | RNF123   | CCDC123   | CDON     | EIF3A    |
|    | PCMTD1   | CORO7    | ZNF208      | HAVCR1   | MEP1A     | TXLNA    |          |           |          |          |
| 13 | HYDIN    | STRN4    | PRSS3       |          | FST       | MUC17    | TAF2     | SYNPO2    | KRTAP5-2 |          |
|    | RPL14    | TTN      | PCDHB9      | IQGAP3   | PCDH17    | CCNE1    | C14orf21 | NOS1      | PLA2G4F  | EI24     |
|    | OR14A16  | KDM4B    | CD97        | MTMR4    | SLC15A3   | SYNE2    | BCOR     | HLCS      | PCCA     |          |
|    | ARHGAP36 | ARMC4    | B3GAT3      | BCL11A   | C12orf51  | C12orf77 | C3orf59  | C7orf43   | CACNA1E  |          |
|    | CACNA2D3 | CASKIN2  | DNAH6       | EFCAB6   | EI24      | ETV6     | PDE6C    | FAM83H    | EZH2     |          |
|    | FAM82A2  | FCGBP    | FGD2        | CLTB     | FRS3      | GPR109B  | GPR55    | GPR97     | HBM      | ITPKC    |
|    | KCNH7    | USH2A    | KLHL26      | UBAP2L   | MAPK8IP3  | MED12    | MICAL3   | MSR1      | WNK2     |          |
|    | OGT      | PAK6     | PASD1       | PCDHA4   | PDCD6     | PDE11A   | PIKFYVE  | PLD2      | PLEKHG4  |          |
|    | PPFIA2   | U2AF1    | RGS3        | SNIP1    | STK10     | TSHZ1    | TAF15    | TLN2      |          |          |
| 14 | SF3B1    |          |             |          |           |          |          |           |          |          |
| 17 | ALDH3B1  | HCFC1    | CHD7        | FASLG    | MUC17     | KIAA0562 | FRRS1    | CRYAB     | HCN2     | ZNF814   |
|    | MASP1    |          |             |          |           |          |          |           |          |          |
| 18 | ADCY2    | BCAM     | UPB1        | CRMP1    | PRDM14    | FMO2     | ZNF248   | PTPRU     | SCIN     | ZAK      |
|    | OR812    | C8B      | TET2        | TRIML2   | LNX1      | ASH2L    | CBL      | APOBEC3D  | SRSF2    | C15orf23 |
|    | AKR1E2   | CYP2E1   | FGD2        | CCDC50   | SIPA1     | MICALCL  | GDPD4    | CEBPZ     | AURKA    |          |
|    | POLG     | NLRP11   | NOTCH4      | AUTS2    | KLB       | CAMTA2   | COL7A1   | CAMK1     | CLDN7    | LARP7    |
|    | MCM3AP   | PRPF8    | PTTG1IP     | SETD1B   | SLC22A9   | TP53AIP1 | TRIM16   | TUB       | UPK2     | WDR46    |
|    | ZNF282   | KIAA0415 | LRRC3B      | ABCB10   | ACSM2A    | ADCK5    | ADCY5    | AOC3      | ARHGEF25 | ARL13B   |
|    | ARNT     | ARSD     | ATP9A       | BCOR     | C16orf45  | C19orf61 | C3orf64  | C3orf75   | CAPN2    | CARS     |
|    | CD164    | CHRM5    | CHRNE       | CNKSR2   | CNPY3     | CNTROB   | COL4A1   | CSAD      | CSPG4    |          |
|    | CTU2     | DDX5     | DIP2C       | DLX1     | DNAH17    | DNAH9    | DNAJB12  | DNAJB6    | DPYD     | DSG3     |
|    | DYSF     | EFEMP2   | EHMT1       | EIF2B5   | ELL2      | ELMO3    | FA2H     | FSIP2     | GALNT10  | GALNTL2  |
|    | GGT7     | GLI2     | GRIK3       | GTF2IRD1 | HK2       | HMG20B   | ICAM3    | IGDCC3    | IGSF21   | IL11RA   |
|    | IL1R2    | IRX1     | KIAA0664    | KIAA0947 | KIAA1161  | KIAA1407 | KIAA1797 | KIF26B    | KLHL31   | KLHL33   |
|    | LRFN5    | LRRC16A  | LYZL4       | MAN2B2   | MAOA      | MAPK7    | MFN1     | MUC2      | MYO19    | MYO9A    |
|    | MYSM1    | NBEAL2   | NLE1        | NOTCH4   | NXF5      | OGG1     | OPRL1    | OR11H6    | OR7G2    | OSTN     |
|    | PEAR1    | PGS1     | PHF1        | PIK3CB   |           | PLEKHH1  | PLK1S1   | PRDM4     | PSMC1    | PTH1R    |
|    | PTX4     | RACGAP1  | RBM26       | RGNEF    | RGS9      | RUNX1    | SATB1    | SDCBP2    | SH3YL1   | SLC25A13 |
|    | SLC25A41 | SLC5A10  | SLC6A20     | SLIT2    | SPC24     | SRRM1    | STRA6    | THOC2     | THOC2    | TMEM194B |
|    | TMEM63A  | TNFSF15  | TRAF3IP2    | TRMT1    | TSPAN6    | UBTF     | UGT3A2   | UHRF1BP1L | UTP3     | WDR87    |
|    | ZCCHC5   | ZFAND6   | ZFYVE27     | ZNF687   | ZNF775    | ZSCAN21  | CD300A   | CLSTN3    | COL14A1  | KDM6B    |
|    | KIAA0355 | KIAA1467 | PRDX2       | SIGLEC6  | TBRG4     | TMEM110  |          |           |          |          |

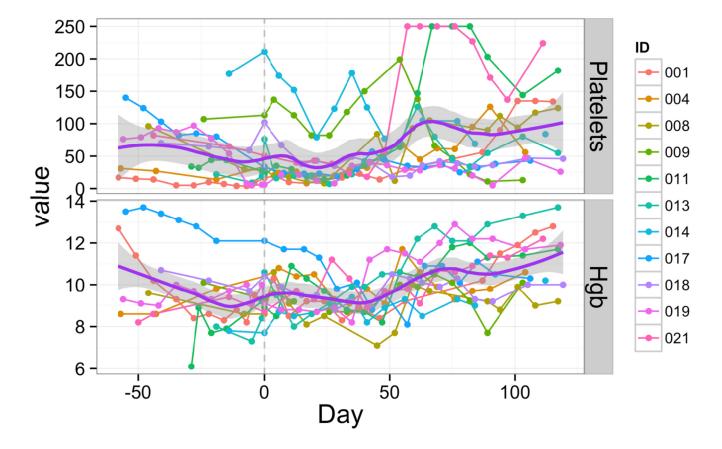
| 19 | TRIM65 | HIP1  | HAVCR1    | PLXNC1  | FST     | ATP1B4 | SLC12A1 | FHAD1  | TMEM216 | ACTR1B  |
|----|--------|-------|-----------|---------|---------|--------|---------|--------|---------|---------|
|    | MC4R   | MUC2  | NMT1      | SEBOX   | TBC1D9  | VCX3A  |         |        |         |         |
| 21 | MUC2   | MUC5B | SERPINB12 | DNAH10  | AR      | ADCK5  | AFAP1   | CYP1A2 | FRMD4A  | IRF2BP1 |
|    | LRP2   |       | TCF12     | TMEM63A | TSNARE1 | TWSG1  | ZNF157  |        |         |         |

| B) Patient# | MUTATIONS       | IN NON-RESP | ONDERS      |          |          |                |           |         |          |         |
|-------------|-----------------|-------------|-------------|----------|----------|----------------|-----------|---------|----------|---------|
| 2           | CCDC144NL       | DNMT3B      | AKAP12      | USP35    | KIF20B   | PCLO           | RAI14     | PCLO    | APOBEC3H |         |
|             | LRRC31          | CD97        | CDC20B      | MYRIP    | ATP2C2   | ZNF814         | APOBEC3H  | SH2D5   | CSMD1    | NOX4    |
|             | AOC3            | ERBB4       | GRK6        | ITGBL1   |          |                |           |         |          |         |
| 3           | SF3B1           |             |             |          |          |                |           |         |          |         |
| 5           | CLCN7           | ARHGAP36    | GSPT1       | PPRC1    | ASXL1    | TNPO2          | C12orf56  | SEMA3F  | RAPGEF5  |         |
| 6           | PHF6            | ATP6V0C     | KPRP        | FHDC1    | PHF10    | SLC4A4         | MAP3K4    | CCDC135 | SPTAN1   | HOXA13  |
|             | DDX54           | RBM6        | DEFB118     | NPY1R    | CDH11    | <u>TP53BP1</u> | TRIOBP    | SF3B1   | L1CAM    | TSPAN1  |
|             | HNRNPK          | ABCD4       | FBXL21      | TTN      | CELF2    | SLC25A3        | ARC       | FLT3    | FMNL1    | IMPG2   |
|             | KCNA5           | KCNT2       | KIAA1409    | PCDHA1   | PHOX2B   | PPFIA2         | PWWP2B    | RUNX1   | STS      | SYT14   |
|             | VPS8            | WSCD1       | WT1         |          |          |                |           |         |          |         |
| 7           | VEZF1           | MUC2        | SF3B1       | DNMT3B   | PCDH8    | MTNR1B         | ZNF717    | TRIOBP  | ADRBK1   | CLDN8   |
| 10          | ASXL1           | PRPF8       | <u>TP53</u> |          |          |                |           |         |          |         |
| 12          | FAM71E2         | ABLIM1      | C9orf79     | KIAA1257 | MIR205HG | G MUC16        | PAX5      | ZFP36L2 |          |         |
| 15          | EHD3            | FRG1        | ANKRD30A    | PCDHA4   | ERCC6    | NUPL1          | RRP9      | IDH1    | NCAPG    | KIAA124 |
|             | TWSG1           | AMELY       | COL19A1     | GLMN     | NT5C1B   | ROCK2          | VPS36     | ZFP64   | DLAT     | NPM1    |
|             | POLG            | ABCA9       | ALDH3B1     | ARHGEF15 | C1orf9   | C1QTNF3        | CCDC152   | CENPB   | COL19A1  | CYLC2   |
|             | DMXL1           | DNAH12      | DYNC2H1     | ESYT2    | FLT3     | GFRAL          | GMCL1     | GNL2    | GTF2H2   | HDAC9   |
|             | IDE             | ITSN2       | KRIT1       | LPHN1    | MAN1A1   | MYH14          | NKAP      | NUPL2   | OBFC2A   | PIGB    |
|             | RPGRIP1L        | SI          | SRSF2       | STAB2    | SUZ12    | SYNE2          | TBC1D8B   | THY1    | TTC14    | UBE2H   |
|             | UBE2U           | USP25       | UTP15       | UTS2D    | ANKRD18  | A CLGN         | SKA3      | STAG1   | STXBP5   | TRPM7   |
|             | ZNF814          | ATP2B2      | SEC22B      | ACACA    | PCDHA4   | NUPL1          | TAF7L     | RRP9    |          |         |
|             | NCAPG           | MEGF10      | C11orf30    | KIAA1244 | FGFRL1   | POLG           | EMD       | GEMIN7  | MUC2     |         |
| 16          | HCRTR1          | ZNF865      | EXTL1       | GJB4     | SRSF2    | ODZ3           | SPAG17    | USP8    | WDR47    | IST1    |
|             | DENND4B         | MAGED1      | STC2        | SPATA21  | USP38    | ACTRT2         | DLX6      | DUSP13  | FOXS1    | GGT5    |
|             | KCNU1           | KREMEN1     | LCE4A       | MTFR1    | PAPLN    | RPGR           | STARD9    | UTS2R   | VARS     | ARMC8   |
|             | ELMO2           | SPATA21     | GPR126      |          |          |                |           |         |          |         |
| 20          | CASP8AP2        | MUC4        | SERPINE3    | MUC2     | CLTCL1   | MLC1           | BAHD1     | EFCAB11 | LAMA3    | MARS    |
|             | MTMR11          | NOTCH1      | SERINC2     | SIRT7    | SLC29A2  | USP5           | YIPF5     | ZBTB16  |          |         |
| 22          | SF3B1           |             |             |          |          |                |           |         |          |         |
| 23          | TRAP1           | C6orf163    | MUC2        | TRABD    | C8orf86  | LYRM7          | TTLL2     | BTBD7   | PSMC5    | ETFA    |
|             | GPR183<br>RNGTT | OBSCN       | HEY2        | ANGPTL3  | POU4F2   | NOS3           | PPM1D     | CRTAC1  | CSHL1    | LENG9   |
| 24          | DLC1            | ZNF720      | BOC         | ZNF596   | AFF2     | FBXO25         | C10orf137 | BRWD3   | DNMT3A   | PROZ    |
|             |                 |             |             |          |          |                |           |         |          |         |

|    | FAN1   | ARHGAP6 | BBS7     | LY9      | RBM12   | BOLL   | SLMO1 | TTK     | BCHE    |
|----|--------|---------|----------|----------|---------|--------|-------|---------|---------|
|    | KDM6B  | GTPBP1  | C9orf153 | C15orf40 | CBFA2T3 | FPGS   | MUC21 | NOP16   | PLEKHA7 |
|    | RNF145 | SYN1    | VAV2     | ZNF208   | CDK12   |        |       |         |         |
| 25 | TET2   | ATM     | SRSF2    | KIAA0754 | POLR2A  | SLC5A1 | UNC5D | ZCCHC11 | ZNF717  |

Table S2: Biomarker quantification by ImagelQ software of whole tissue sections. Raw data for A) DNMT1. B) p27/CDKN1B. C) MYC.

A)


| DNMT1 |               | Week 0        |          |               | Week 6        |          |
|-------|---------------|---------------|----------|---------------|---------------|----------|
| Pt ID | P. Nuclei (n) | T. Nuclei (n) | Mean (%) | P. Nuclei (n) | T. Nuclei (n) | Mean (%) |
| Pt 1  | 1125          | 17715         | 7        | 2852          | 25977         | 13       |
| Pt 2  |               |               |          | 1377          | 13913         | 11       |
| Pt 3  | 9212          | 35058         | 25       | 4201          | 16631         | 24       |
| Pt 4  | 8050          | 23036         | 34       | 9043          | 25547         | 35       |
| Pt 5  | 3715          | 17592         | 20       | 2779          | 21305         | 12       |
| Pt 6  | 870           | 9745          | 9        | 243           | 2532          | 9        |
| Pt 7  | 30869         | 62147         | 49       | 9627          | 32440         | 30       |
| Pt 8  | 3246          | 18825         | 17       |               |               |          |
| Pt 9  | 12203         | 34781         | 34       | 751           | 7594          | 7        |
| Pt 10 | 9525          | 40639         | 16       | 403           | 6734          | 8        |
| Pt 11 | 17169         | 65065         | 26       | 7826          | 32320         | 25       |
| Pt 12 | 50            | 1095          | 6        | 572           | 14680         | 4        |
| Pt 13 | 13473         | 43431         | 31       | 1421          | 9285          | 19       |
| Pt 14 | 8381          | 20224         | 39       | 3033          | 36999         | 9        |
| Pt 15 | 8502          | 31774         | 27       | 103           | 1198          | 9        |
| Pt 16 |               |               |          | 3283          | 28310         | 11       |
| Pt 17 | 3720          | 21949         | 17       | 1313          | 5020          | 26       |
| Pt 18 | 33745         | 53547         | 63       | 3794          | 17829         | 21       |
| Pt 19 | 9191          | 26055         | 35       | 3120          | 31330         | 11       |
| Pt 20 | 1000          | 8467          | 14       |               |               |          |
| Pt 21 | 13221         | 24261         | 55       | 1027          | 9269          | 11       |
| Pt 22 | 1156          | 5793          | 18       | 1812          | 39710         | 4        |
| Pt 23 | 8220          | 30135         | 28       |               |               |          |
| Pt 24 | 13206         | 44381         | 29       | 4561          | 25865         | 18       |
| Pt 25 | 1444          | 8915          | 17       | 2697          | 17122         | 17       |

| p27   |               | Week 0        |          | Week 6        |               |          |  |
|-------|---------------|---------------|----------|---------------|---------------|----------|--|
| Pt ID | P. Nuclei (n) | T. Nuclei (n) | Mean (%) | P. Nuclei (n) | T. Nuclei (n) | Mean (%) |  |
| Pt 1  | 1697          | 10738         | 15       | 4044          | 14960         | 29       |  |
| Pt 2  | 1614          | 6660          | 25       | 522           | 5127          | 10       |  |
| Pt 3  |               |               |          | 206           | 1047          | 18       |  |
| Pt 4  | 964           | 28929         | 3        | 4497          | 23668         | 20       |  |
| Pt 5  | 4839          | 19226         | 25       | 2322          | 15430         | 13       |  |
| Pt 6  | 8935          | 31894         | 27       | 51            | 1088          | 4        |  |
| Pt 7  | 7960          | 50294         | 16       | 11024         | 26866         | 41       |  |
| Pt 8  | 1766          | 11501         | 14       |               |               |          |  |
| Pt 9  | 771           | 35307         | 2        | 458           | 6099          | 9        |  |
| Pt 10 | 1625          | 11002         | 16       | 704           | 5224          | 13       |  |
| Pt 11 | 2495          | 29635         | 8        | 2326          | 13809         | 17       |  |
| Pt 12 | 114           | 1281          | 11       | 128           | 1390          | 8        |  |
| Pt 13 | 6526          | 48763         | 13       | 1543          | 7566          | 23       |  |
| Pt 14 | 3803          | 30932         | 12       | 3304          | 24630         | 14       |  |
| Pt 15 | 1184          | 33173         | 4        | 358           | 4510          | 7        |  |
| Pt 16 | 2212          | 24776         | 9        | 5150          | 47943         | 11       |  |
| Pt 17 | 3392          | 29826         | 11       | 1347          | 5287          | 19       |  |
| Pt 18 | 6473          | 63348         | 10       | 705           | 18142         | 4        |  |
| Pt 19 | 2325          | 24425         | 9        | 4765          | 22709         | 20       |  |
| Pt 20 | 1205          | 13619         | 9        |               |               |          |  |
| Pt 21 | 8013          | 44375         | 18       | 970           | 11766         | 8        |  |
| Pt 22 | 6303          | 46212         | 14       | 621           | 25394         | 2        |  |
| Pt 23 | 1797          | 19806         | 9        |               |               |          |  |
| Pt 24 | 5404          | 43851         | 12       | 2699          | 22195         | 12       |  |
| Pt 25 | 416           | 9451          | 4        | 1961          | 14966         | 15       |  |

| c-MYC |               | Week 0        |          | Week 6        |               |          |  |
|-------|---------------|---------------|----------|---------------|---------------|----------|--|
| Pt ID | P. Nuclei (n) | T. Nuclei (n) | Mean (%) | P. Nuclei (n) | T. Nuclei (n) | Mean (%) |  |
| Pt 1  | 351           | 10853         | 4        | 1532          | 16795         | 10       |  |
| Pt 2  | 2820          | 9752          | 29       | 1407          | 6547          | 22       |  |
| Pt 3  | 4715          | 29492         | 16       | 4171          | 24613         | 17       |  |
| Pt 4  | 8356          | 39282         | 21       | 5463          | 22334         | 23       |  |
| Pt 5  | 6864          | 52204         | 14       | 4217          | 37054         | 12       |  |
| Pt 6  | 14759         | 59546         | 24       | 882           | 6403          | 15       |  |
| Pt 7  | 17349         | 95228         | 18       | 5968          | 42331         | 14       |  |
| Pt 8  | 2262          | 16386         | 14       |               |               |          |  |
| Pt 9  | 5605          | 56505         | 13       | 203           | 4346          | 5        |  |
| Pt 10 | 3047          | 11053         | 27       | 471           | 5381          | 7        |  |
| Pt 11 | 7116          | 37463         | 19       | 1780          | 13420         | 13       |  |
| Pt 12 | 133           | 1334          | 14       | 219           | 7318          | 4        |  |
| Pt 13 | 3401          | 34863         | 10       | 558           | 5315          | 11       |  |
| Pt 14 | 4304          | 37148         | 12       | 1824          | 17169         | 11       |  |
| Pt 15 | 3483          | 46207         | 8        | 1521          | 12951         | 13       |  |
| Pt 16 | 1348          | 26751         | 5        | 3409          | 53373         | 6        |  |
| Pt 17 | 2113          | 38863         | 6        | 2             | 1997          | 0        |  |
| Pt 18 | 14327         | 63385         | 22       | 524           | 10568         | 5        |  |
| Pt 19 | 2565          | 29327         | 9        | 1848          | 20796         | 9        |  |
| Pt 20 | 1603          | 18200         | 9        |               |               |          |  |
| Pt 21 | 5405          | 58582         | 9        | 340           | 7887          | 4        |  |
| Pt 22 | 5020          | 48431         | 10       | 147           | 12474         | 1        |  |
| Pt 23 | 1406          | 18071         | 8        |               |               |          |  |
| Pt 24 | 3998          | 57146         | 7        | 1598          | 17917         | 9        |  |
| Pt 25 | 819           | 9198          | 10       | 636           | 9769          | 9        |  |

# Table S3: Oligomer standards used for absolute telomere length measurements

| Oligomer         | Oligome              | Oligomer sequence (5'-3')                                                       | Amplic            |
|------------------|----------------------|---------------------------------------------------------------------------------|-------------------|
| Туре             | r Name               |                                                                                 | on size           |
| Standards        | Telomere<br>standard | (TTAGGG)14                                                                      | 84 bp             |
|                  | 36B4<br>standard     | CAGCAAGTGGGAAGGTGTAATCCGTCTCCACAGACAAGGCCAGGACTCGTTT<br>GTACCCGTTGATGATAGAATGGG | 75 bp             |
| PCR<br>Primers   | teloF                | CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTT                                               | >76bp             |
|                  | teloR                | GGCTTGCCTTACCCTTACCC TTACCCTTACCCT                                              |                   |
|                  | 36B4F                | CAGCAAGTGGGAAGGTGTAATCC                                                         | 75bp              |
|                  | 36B4R                | CCCATTCTATCATCAACGGGTACAA                                                       |                   |
| Oligomer<br>Type | Oligomer<br>Name     | Oligomer sequence (5'-3')                                                       | Amplic<br>on size |
| Standards        | Telomere<br>standard | (TTAGGG)14                                                                      | 84 bp             |
|                  | 36B4<br>standard     | CAGCAAGTGGGAAGGTGTAATCCGTCTCCACAGACAAGGCCAGGACTCGTTT<br>GTACCCGTTGATGATAGAATGGG | 75 bp             |
| PCR<br>Primers   | teloF                | CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTT                                               | >76bp             |
|                  | teloR                | GGCTTGCCTTACCCTTACCC TTACCCTTACCCT                                              |                   |
|                  | 36B4F                | CAGCAAGTGGGAAGGTGTAATCC                                                         | 75bp              |
|                  | 36B4R                | CCCATTCTATCATCAACGGGTACAA                                                       |                   |



В

| Subject ID | Day until which       | Day of Relapse/Resumption | <b>#Days Transfusion-Free</b> |
|------------|-----------------------|---------------------------|-------------------------------|
|            | Transfusions Required | Regular Transfusion       |                               |
|            |                       | Red Cells                 |                               |
| 001        | 56                    | 1208                      | 1152                          |
| 008        | 94                    | 1049                      | 955                           |
| 011        | 42                    | 359                       | 317                           |
| 013        | 25                    | 315                       | 290                           |
| 014        | 57                    | 308                       | 251                           |
| 017        | 49                    | NA                        | 1106*                         |
| 019        | 32                    | NA                        | 1055*                         |
| 021        | 13                    | 447                       | 434                           |
|            |                       | Platelets                 |                               |
| 001        | 39                    | 1107                      | 1068                          |
| 004        | 18                    | 204                       | 186                           |
| 013        | 25                    | 343                       | 318                           |
| 017        | 1                     | NA                        | 1155*                         |
| 019        | 88                    | NA                        | 999*                          |

**Figure S1: A) Hemoglobin and platelet counts 50 days prior to initiation of protocol treatment (day -50) until day +120 in 11 responding subjects.** Mean values = purple line; 95% confidence interval = grey shade. Pre-study blood counts shown according to availability in study documents. Platelet and absolute neutrophil count (ANC) values x10<sup>9</sup>/L. Hemoglobin (Hgb) values g/dL. Values were clipped if they exceeded the depicted Y-axis scales. **B) Day until which transfusions were required after initiation of treatment, and day of relapse requiring resumption of transfusion, in responders who required transfusion prior to initiation of protocol therapy.** NA and \*=transfusion-free at time of analysis.

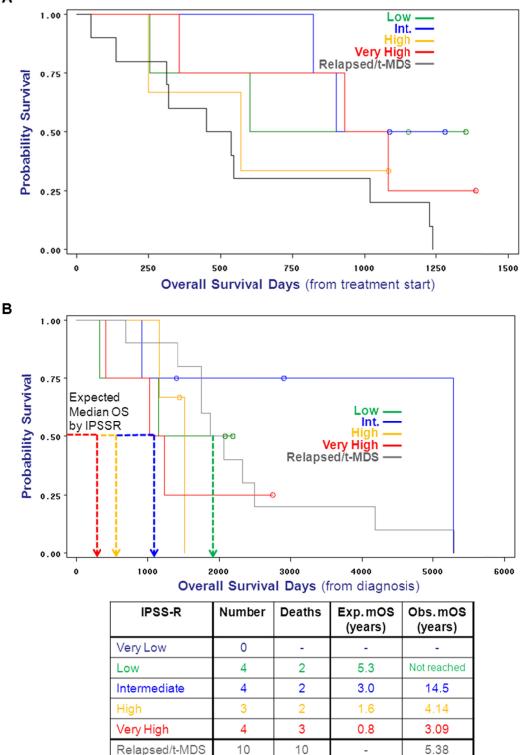



Figure S2. Observed versus Expected Overall Survival by IPPS-R risk categories. A) From start of treatment on this protocol. No subjects were in the IPSS-R very low risk category. Patients with relapsed or therapy-related MDS (t-MDS) were not analyzed in the IPSS-R. B) From time of diagnosis. Dashed vertical arrows indicate expected median 3 year survival per IPSS-R risk categories (5). Exp. mOS = expected median overall survival; Obs. mOS = observed median overall survival.

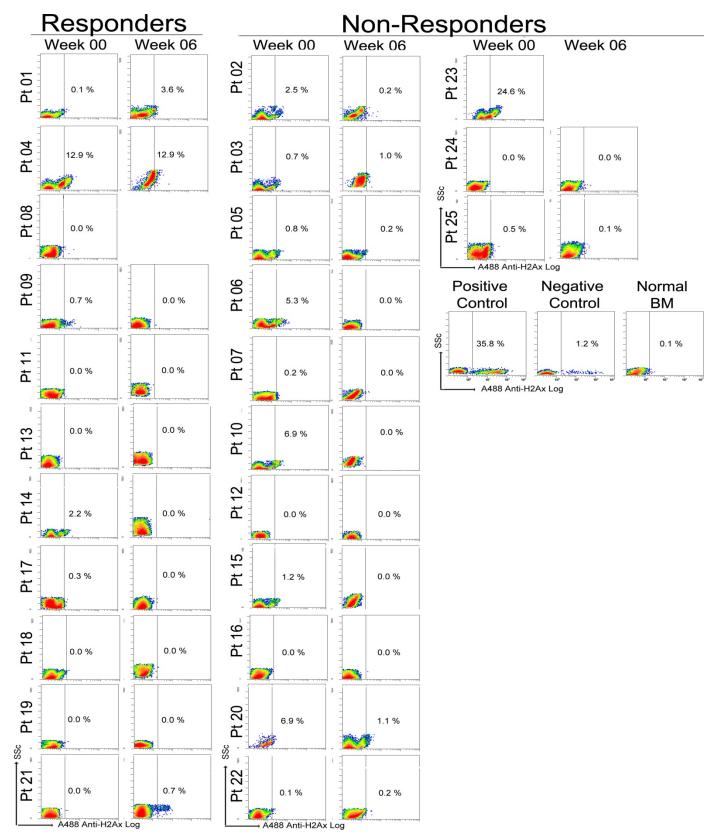
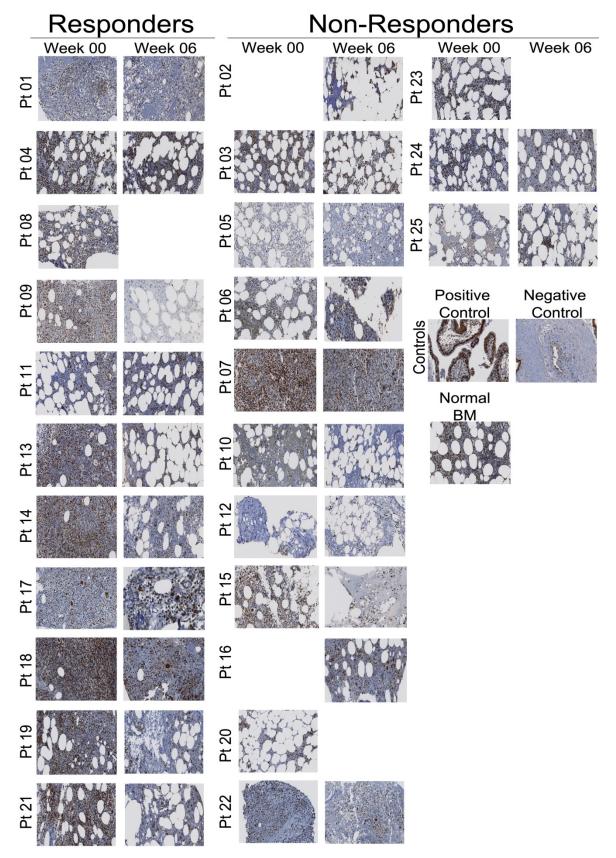




Figure S3: Flow cytometric quantification of  $\gamma$ H2AX in bone marrow cells prior to treatment (week 0) and after 6 and 12 weeks of therapy in responders versus non-responders (per IWG criteria). Positive and negative control cells (Cat 51-6553LZ) as well as healthy donor cell controls were concurrently stained and analyzed. Flow cytometric analysis was performed with an FC500 flowcytometer (Beckman-Coulter Inc) equipped with CXP acquisition software (CXP analysis 2.2, Beckman Coulter Inc). Gating was determined by positive and negative controls, and results were expressed as the percentage of cells demonstrating fluorescence intensity located within this positive gate.



**Figure S4. DNMT1 protein expression decreased during treatment**. Decalcified and formalin-fixed paraffin embedded sections (4 µm) of bone marrow biopsies from different time points were concurrently immunostained on the same slide (raw data for all subjects in supplementary material), and on positive and negative controls. ImageIQ software was used to segment the image and positive nuclei were objectively quantified in cellular segments. Raw data from software quantification of positive nuclei is in Table S2. Examples of quantified segments are shown.

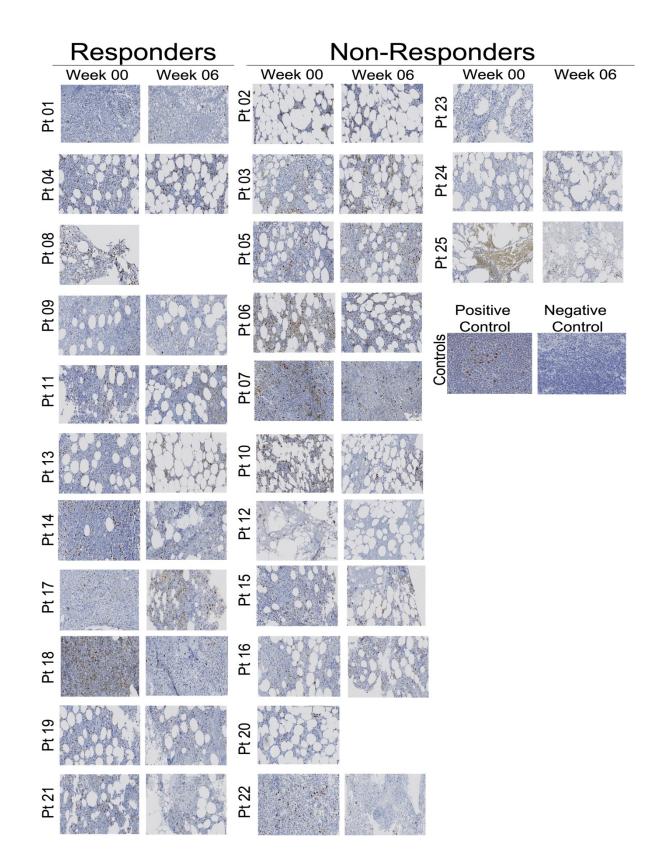




Figure S5. MYC protein expression decreased between week 0 to 6. Decalcified and formalin-fixed paraffin embedded sections (4 µm) of bone marrow biopsies from different time points were concurrently immunostained on the same slide (raw data for all subjects in supplementary material), and on positive and negative controls. ImageIQ software was used to segment the image and positive nuclei were objectively quantified in cellular segments. Raw data from software quantification of positive nuclei is in Table S2. Examples of quantified segments are shown.



**Figure S6. p27/CDKN1B protein expression increased between week 0 to 6**. Decalcified and formalin-fixed paraffin embedded sections (4 µm) of bone marrow biopsies from different time points were concurrently immuno-stained on the same slide (raw data for all subjects in supplementary material), and on positive and negative controls. ImageIQ software was used to segment the image and positive nuclei were objectively quantified in cellular segments. Raw data from software quantification of positive nuclei is in Table S2. Examples of quantified segments are shown.

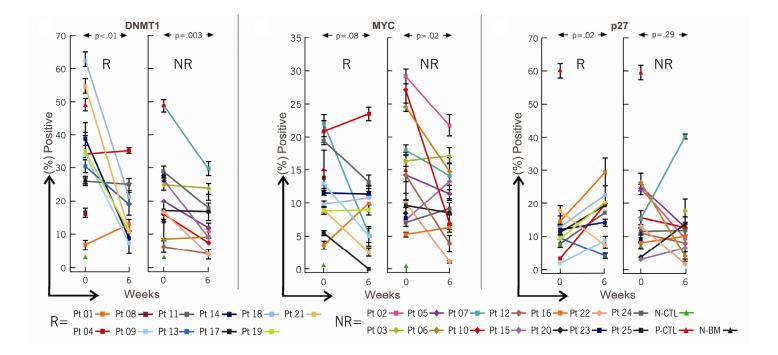
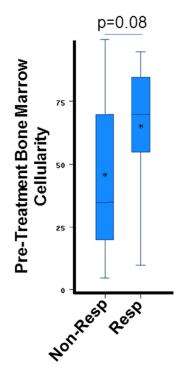




Figure S7. Changes in DNMT1, MYC and p27/CDKN1B protein expression between week 0 to 6 in individual subjects. R=responders. NR=non-responders. Graphical representation of raw data represented in Figures S3- S5. Decalcified and formalin-fixed paraffin embedded sections (4 µm) of bone marrow biopsies from different time points were concurrently immuno-stained on the same slide (raw data for all subjects in supplementary material), and on positive and negative controls. ImageIQ software was used to segment the image and positive nuclei were objectively quantified in cellular segments (shown are mean values±standard deviation for multiple segments for each patient and time-point). Raw data from software quantification of positive nuclei is in Table S2. Positive, negative and normal bone marrow controls as indicated. p-value paired t-test.



**Figure S8. Pre-treatment bone marrow cellularity was higher, but not statistically significantly, in responders than non-responders.** Estimated by clinical pathology pre-treatment (prior to treatment and response determination). p-value Mann-Whitney test.



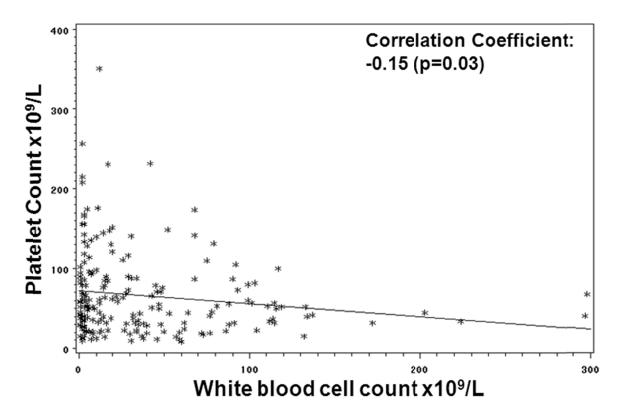
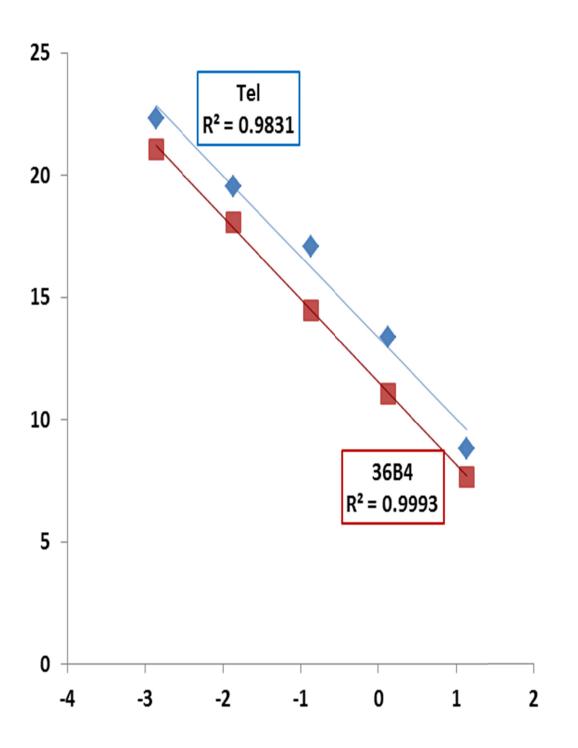




Figure S10. Standard curve used to calculate absolute telomere length.



# **REFERENCES CITED IN SUPPLEMENTARY MATERIAL**

- 1. Vierbuchen T, and Wernig M. Molecular roadblocks for cellular reprogramming. *Mol Cell*. 2012;47(6):827-38.
- 2. Riddell J, Gazit R, Garrison BS, Guo G, Saadatpour A, Mandal PK, Ebina W, Volchkov P, Yuan GC, Orkin SH, et al. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. *Cell.* 2014;157(3):549-64.
- 3. Woll PS, Kjallquist U, Chowdhury O, Doolittle H, Wedge DC, Thongjuea S, Erlandsson R, Ngara M, Anderson K, Deng Q, et al. Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells In Vivo. *Cancer Cell*. 2014.
- 4. Gentles AJ, Plevritis SK, Majeti R, and Alizadeh AA. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. *JAMA*. 2010;304(24):2706-15.
- 5. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, Bennett JM, Bowen D, Fenaux P, Dreyfus F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. *Blood.* 2012;120(12):2454-65.