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Introduction
Alzheimer’s disease (AD) is becoming more prevalent in aging 
populations worldwide, and there are no effective treatments (1). 
Mouse models that recapitulate some aspects of AD have been 
useful for dissecting pathogenic mechanisms of AD and devising 
therapeutic strategies. However, clinical trials based on promising 
results from these models have not identified disease-modifying 
therapies (2, 3). There are many reasons why experimental dis-
coveries in mice have not been translated successfully to humans 
(4). One reason is that the clinical tests used in patients minimally 
resemble the laboratory tests used to probe cognitive aspects of 
AD in animal models (5). Sensitive and analogous behavioral 
assays in animal models and humans are needed to improve the 
translational predictability of therapeutic strategies.

The Morris water maze (6) is the most frequently used 
behavioral assay of learning and memory in AD mouse models 
(5). Human amyloid precursor protein (hAPP) transgenic mice 
from line J20, which carry mutations that cause early-onset 
AD (7), show major deficits in this assay (8). Like humans with 

AD, hAPP mice have elevated levels of amyloid β (Aβ) peptides 
in the brain, network and synaptic dysfunction, and amyloid 
plaques (9). In some ways, hAPP mice better model the ear-
lier mild cognitive impairment stage of AD (MCI-AD) than the 
dementia stage (10). Patients with AD or MCI-AD are impaired 
in real-space, 2D, and virtual human adaptations of the Mor-
ris maze (11, 12). Across species, performance in the Morris 
maze assay relies on hippocampal networks that are critically 
affected in AD (13, 14).

Although the Morris maze assay detects AD-related impair-
ment and hippocampal dysfunction in mice and humans, its 
utility for translational research has been limited by major 
implementation differences across species. First, the typical 
mouse version of the Morris water maze includes visible-target 
training, hidden-target learning, and probe trials, but the human 
versions vary substantially in protocol design (15). Second, per-
formance measures are inconsistent within and across species, 
and it is unclear which measures are most sensitive to deficits in 
MCI-AD and relevant mouse models. Third, the canonical statis-
tical method used to analyze learning performances (repeated- 
measures ANOVA) violates critical statistical assumptions, lead-
ing to high rates of type I errors and unpredictability (16).

To address these limitations, we designed a virtual version 
of the Morris maze for humans that is analogous to the typical 
mouse version and includes visible-target training, hidden- 
target learning, and probe trials (Supplemental Video 1; supple-
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group (Figure 2, A and B). For this score to detect a theoretical 
treatment effect with 80% power, a sample size of 82 mice per 
group is required to detect a 0.5 effect, and a sample size of 447 
humans per group is required to detect a 0.25 effect (Figure 2, C 
and D). This result implies that only large treatment effects can 
be detected by efficacy studies in hAPP mice, since the number 
of mice per group will likely not be greater than 50, for practical 
and ethical reasons. In humans, sample sizes this large are not 
unusual for phase III clinical trials (21). Thus, in principle, the 
virtual Morris maze could be used to detect the efficacy of ther-
apeutic strategies in MCI-AD patients.

In the probe trial, the mean proximity and percentage of time 
in the target quadrant were both sensitive across species, but 
mean proximity was more sensitive than percentage of time in the 
target quadrant for mice, as previously reported (22) and as shown 
in Figure 1J and Table 1. For 80% power to detect impairment in 
mean proximity, a study would need 21 mice and 49 humans per 
group (Figure 2, A and B).

Results from the Morris water maze are usually analyzed 
using repeated-measures ANOVA, even though statistical 
assumptions required by this method are violated (Supplemen-
tal Materials). In contrast, the rank-summary method takes 
advantage of the identical training procedures for each subject 
in a given trial, greatly simplifies the methods, and does not 
require the assumptions of repeated-measures ANOVA (23). 
The rank-summary method also makes it easier to combine data 
from experimental cohorts that may differ slightly in subjects 
or procedures (Supplemental Figure 2), facilitating meta-anal-
yses. We examined whether this new approach is as powerful 
as more complex methods proposed to address the limitations 
of repeated-measures ANOVA. Since the learning effects were 
linear, the Cox proportional-hazards model was the most appro-
priate alternative (Supplemental Materials). However, it did not 
increase statistical power (Supplemental Figure 3).

In both hidden-target learning and the probe trial, impair-
ment levels were reproducible in both species but were greater in 
hAPP mice. This difference could reflect differences in the time 
between learning trials in the two assays. In mice, but not humans, 

mental material available online with this article; doi:10.1172/
JCI78464DS1). We compared the sensitivity of performance 
measures and statistical methods for detecting impairments in 
hAPP mice and humans with MCI-AD. In addition, we present 
a novel sensitive summary measure to assess learning perfor-
mance. Power analyses for group differences and treatment 
effects are presented for different sample sizes to guide preclin-
ical and clinical study design.

Results and Discussion
Deficits in the Morris mazes were compared in hAPP mice and 
MCI-AD patients using consistent procedures and performance 
measures. In visible-target training, MCI-AD patients rapidly 
learned the task and navigated as directly to the target as the con-
trols did (Table 1 and Figure 1A). Procedural learning is typically 
spared in mild AD (17), and the procedural demands of the assay 
appear to be minimal in humans. In contrast, hAPP mice had sig-
nificant deficits (Table 1 and Figure 1E), as reported in this (18) 
and other transgenic lines (19, 20). The procedural demands of 
the mouse assay are substantial: mice must overcome their ten-
dency to swim along the wall and instead learn to climb onto a 
platform to escape the water. A deficit in procedural learning can 
alter performance in the hidden-target task and confound the 
interpretation of spatial memory. We therefore recommend min-
imizing the procedural aspects of the task by training the mice to 
first locate a visible target.

In hidden-target learning, subjects had to learn the loca-
tion of the target relative to extra-maze cues. Analysis of the 
distance, latency, and cumulative search error (CSE) rank- 
summary scores revealed that MCI-AD patients and hAPP mice 
were significantly impaired in this task (Table 1 and Figure 1, B–D 
and F–I), consistent with a deficit in hippocampus-dependent  
spatial learning. hAPP mice, but not MCI-AD patients, navi-
gated more slowly than did their respective controls (Supple-
mental Figure 1), which may have impacted the latency rank-
summary score. The distance rank-summary score was sensitive 
across species, with an estimated power of 80% to detect an 
impairment with a sample size of 14 mice and 19 humans per 

Table 1. Group differences in performance metrics for hAPP mice and MCI-AD patients

Mice Humans
Cohen’s d 95% CI P value Cohen’s d 95% CI P value

Visible-target training
   Distance rank-summary score 1.00 (0.58, 1.41) 6.9 × 10–8A –0.33 (–0.76, 0.11) 1.3 × 10–1

Hidden-target learning
   Distance rank-summary score 0.88 (0.48, 1.29) 2.8 × 10–6A 0.75 (0.31, 1.20) 6.9 × 10–4A

   Latency rank-summary score 0.97 (0.56, 1.38) 8.6 × 10–8A 0.52 (0.08, 0.96) 1.8 × 10–2

   CSE rank-summary score 0.96 (0.55, 1.38) 4.9 × 10–8A 0.60 (0.16, 1.04) 6.1 × 10–3A

Probe trial
   % time in target quadrant 1.0 (0.60, 1.43) 2.4 × 10–6A 0.64 (–0.20, 1.08) 3.8 × 10–3A

   Mean proximity 1.2 (0.76, 1.61) 2.7 × 10–8A 0.66 (0.21, 1.10) 3.1 × 10–3A

Cohen’s d effect size is presented with the 95% CI and P values were based on a 2-sample t test for each performance measure. Positive Cohen’s d 
indicates larger values for the cases. ASignificant after Bonferroni’s correction for 6 comparisons per species (α = 0.05/6). 
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genic C57BL/6J breeders (The Jackson Laboratory). Mice had access 
to food (PicoLab Rodent Diet 20; LabDiet) and water ad libitum. 
The same protocol was administered to 3 independent cohorts of 
sex-balanced 4- to 7-month-old nontransgenic (n = 53) and hAPP  
(n = 53) mice. All transgenic mice were heterozygous with respect to 
the transgene. Nontransgenic littermates served as controls.

Humans. Subjects were recruited from the UCSF Memory and 
Aging Center’s longitudinal observational studies and from a Stan-
ford University study on normal aging and mild cognitive impair-
ment. Participants were diagnosed as neurologically healthy (n = 89) 
or as having MCI-AD (n = 28) (28).

Mouse and human Morris mazes. Mice were administered the 
Morris water maze test in an opaque pool with a submerged platform, 
and humans were administered a virtual version in a circular field 
with a buried treasure using a 30-in. monitor and a simple driving 
simulator. During visible-target training, no extra-maze landmarks 
were available; a visual cue indicated the target location. During 
hidden-target learning and probe trials, consistent extra-maze land-
marks were presented. Learning trials ended when the target was 
found or a time limit was reached. In the probe trial, the target was 
removed, and subjects were allowed to navigate for 90 seconds. For 
details, see Supplemental Materials.

Performance measures. Rank-summary scores were computed 
for distance (visible-target training) and for distance, time, and CSE 
(hidden-target learning). Raw scores were replaced with quantile 
scores for each trial, which were averaged for each subject. CSE is 
the sum of the 1-second average proximities to the target (29). For 

the trials were spaced to avoid the effects of hypothermia on per-
formance. Spaced training enhances learning in healthy mice and 
humans (24, 25) but likely increases the difficulty of the task for 
hAPP mice and MCI-AD patients due to forgetting between tri-
als (26, 27). Another possibility is species differences in incentive 
to complete the task. Since only the mouse assay was aversive, 
human controls may not have been as motivated as control mice 
to reach the target quickly.

Several recommendations and important considerations 
emerged from our translational study. First, the Morris maze can 
detect similar deficits in spatial learning and memory across spe-
cies. Second, in mice, visible-target training should be conducted 
first to reduce the influence of procedural learning on subse-
quent hidden-target trials. Third, future research should examine 
whether spaced hidden-target training and stronger incentives 
yield greater impairments in MCI-AD patients. Fourth, the rank-
summary score avoids the assumptions required of repeated- 
measures ANOVA and is as sensitive as more complex methods 
that are difficult to apply appropriately. Fifth, the rank-summary 
score for distance provides a sensitive cross-species measurement 
of learning and may be superior to latency. Sixth, adequate power 
can be obtained with these methods to detect clinically relevant 
treatment effects in human trials.

Methods
Mice. hAPPJ20 mice (7) were maintained on a C57BL/6J back-
ground by crossing heterozygous transgenic mice with nontrans-

Figure 1. Morris maze deficits in MCI-AD patients and hAPP mice. (A–H) Learning curves for humans and mice in visible-target training (A and E) and hid-
den-target learning (B–D and F–H). Values represent the mean ± SEM. (I) Hidden-target learning rank-summary scores for CSE, distance, and latency across 
species. (J) Delayed probe trial standardized mean proximity and percentage of time spent in the target quadrant across species. (I and J) Boxes represent 
the median and first and third quartiles, whiskers represent non-outliers within the 1.5 × interquartile range from the edge of the boxes, and dots represent 
outliers. For all panels, n = 53 mice per genotype, 28 patients with MCI-AD, and 89 human controls. NTG, nontransgenic.
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probe trials, we examined the percentage of time spent in the target 
quadrant and mean proximity to the target (29). Although the same 
protocol was used for the mouse cohorts, a linear regression model 
with indicators for genotype and cohort was used to adjust for possi-
ble training differences.

Statistics. All measures in cases versus controls were compared 
by 2-tailed t tests with Bonferroni’s correction for 6 comparisons 
per species. A P value of less than 0.0083 was considered signifi-
cant (Table 1). For power analyses of the treatment effect, untreated 
subjects were resampled from the cases; for a given treatment 
effect of δ, treated subjects were resampled from controls with a 
probability of δ and re-sampled from the cases with a probability 
of 1–δ (i.e., δ represents the proportion of subjects cured). For each 
configuration, 5,000 bootstrap samples were taken, leading to 
Monte Carlo standard errors below 0.007.

Study approval. The IACUC of the UCSF approved all mouse 
experiments. The UCSF and Stanford committees on human 
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Figure 2. Sample size required to detect a deficit and a treatment effect in hAPP mice or MCI-AD patients across performance measures. Probability 
of detecting a difference between hAPP mice (A) or MCI-AD patients (B) and their respective controls and probability of detecting treatment effects of 
different magnitudes in hAPP mice (C) or MCI-AD patients (D). In all analyses, n = 53 mice per genotype, 28 patients with MCI-AD, and 89 human controls. 
The type I error rate was set at 0.05. Cases and controls were re-sampled according to a given sample size using bootstrap methods (30).
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