Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Hair keratin mutations in tooth enamel increase dental decay risk
Olivier Duverger, … , Mary L. Marazita, Maria I. Morasso
Olivier Duverger, … , Mary L. Marazita, Maria I. Morasso
Published October 27, 2014
Citation Information: J Clin Invest. 2014;124(12):5219-5224. https://doi.org/10.1172/JCI78272.
View: Text | PDF
Brief Report Genetics

Hair keratin mutations in tooth enamel increase dental decay risk

  • Text
  • PDF
Abstract

Tooth enamel is the hardest substance in the human body and has a unique combination of hardness and fracture toughness that protects teeth from dental caries, the most common chronic disease worldwide. In addition to a high mineral content, tooth enamel comprises organic material that is important for mechanical performance and influences the initiation and progression of caries; however, the protein composition of tooth enamel has not been fully characterized. Here, we determined that epithelial hair keratins, which are crucial for maintaining the integrity of the sheaths that support the hair shaft, are expressed in the enamel organ and are essential organic components of mature enamel. Using genetic and intraoral examination data from 386 children and 706 adults, we found that individuals harboring known hair disorder–associated polymorphisms in the gene encoding keratin 75 (KRT75), KRT75A161T and KRT75E337K, are prone to increased dental caries. Analysis of teeth from individuals carrying the KRT75A161T variant revealed an altered enamel structure and a marked reduction of enamel hardness, suggesting that a functional keratin network is required for the mechanical stability of tooth enamel. Taken together, our results identify a genetic locus that influences enamel structure and establish a connection between hair disorders and susceptibility to dental caries.

Authors

Olivier Duverger, Takahiro Ohara, John R. Shaffer, Danielle Donahue, Patricia Zerfas, Andrew Dullnig, Christopher Crecelius, Elia Beniash, Mary L. Marazita, Maria I. Morasso

×

Full Text PDF | Download (3.66 MB)


Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts