Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
PAX7 expression defines germline stem cells in the adult testis
Gina M. Aloisio, Yuji Nakada, Hatice D. Saatcioglu, Christopher G. Peña, Michael D. Baker, Edward D. Tarnawa, Jishnu Mukherjee, Hema Manjunath, Abhijit Bugde, Anita L. Sengupta, James F. Amatruda, Ileana Cuevas, F. Kent Hamra, Diego H. Castrillon
Gina M. Aloisio, Yuji Nakada, Hatice D. Saatcioglu, Christopher G. Peña, Michael D. Baker, Edward D. Tarnawa, Jishnu Mukherjee, Hema Manjunath, Abhijit Bugde, Anita L. Sengupta, James F. Amatruda, Ileana Cuevas, F. Kent Hamra, Diego H. Castrillon
View: Text | PDF
Research Article

PAX7 expression defines germline stem cells in the adult testis

  • Text
  • PDF
Abstract

Spermatogenesis is a complex, multistep process that maintains male fertility and is sustained by rare germline stem cells. Spermatogenic progression begins with spermatogonia, populations of which express distinct markers. The identity of the spermatogonial stem cell population in the undisturbed testis is controversial due to a lack of reliable and specific markers. Here we identified the transcription factor PAX7 as a specific marker of a rare subpopulation of Asingle spermatogonia in mice. PAX7+ cells were present in the testis at birth. Compared with the adult testis, PAX7+ cells constituted a much higher percentage of neonatal germ cells. Lineage tracing in healthy adult mice revealed that PAX7+ spermatogonia self-maintained and produced expanding clones that gave rise to mature spermatozoa. Interestingly, in mice subjected to chemotherapy and radiotherapy, both of which damage the vast majority of germ cells and can result in sterility, PAX7+ spermatogonia selectively survived, and their subsequent expansion contributed to the recovery of spermatogenesis. Finally, PAX7+ spermatogonia were present in the testes of a diverse set of mammals. Our data indicate that the PAX7+ subset of Asingle spermatogonia functions as robust testis stem cells that maintain fertility in normal spermatogenesis in healthy mice and mediate recovery after severe germline injury, such as occurs after cancer therapy.

Authors

Gina M. Aloisio, Yuji Nakada, Hatice D. Saatcioglu, Christopher G. Peña, Michael D. Baker, Edward D. Tarnawa, Jishnu Mukherjee, Hema Manjunath, Abhijit Bugde, Anita L. Sengupta, James F. Amatruda, Ileana Cuevas, F. Kent Hamra, Diego H. Castrillon

×

Figure 11

PAX7+ spermatogonia are conserved in mammals.

Options: View larger image (or click on image) Download as PowerPoint
PAX7+ spermatogonia are conserved in mammals.
(A) Epitope mapping of ant...
(A) Epitope mapping of anti-PAX7 mouse monoclonal antibody (generated against chicken aa 320–523). Chicken and corresponding mouse polypeptide aa sequences were tiled as sequential 12-mers at 1-aa resolution. (B) PAX7 Western blot (uncropped to show all visible bands in lanes shown). Addition of blocking peptide (22 aa) confirmed that the anti-PAX7 monoclonal antibody bound to the QPQADFSISP epitope. C2C12, skeletal muscle myoblast cell line. Uterus was included as a negative control. Molecular weight markers denote 75, 50, and 37 kDa. (C) IHC of testes from 7 additional mammalian species, including juveniles for 2 species. PAX7+ spermatogonia (arrows) were rare and localized to the basement membrane. Scale bar: 25 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts