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regulate the T and B cell responses that 
effective vaccines seek to generate.
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Inhibiting HDAC for human hematopoietic stem 
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In this issue of the JCI, Chaurasia and colleagues report an impressive ex 
vivo expansion of HSCs from human cord blood (CB) using cytokines and 
altering epigenetic modifications. The application of this protocol provides 
information that has potential for clinical consideration. The enhanced 
expansion of CB HSCs is a substantial advance over recent work from the 
Chaurasia and Hoffman group, in which ex vivo production of human 
erythroid progenitor cells from CB was promoted by chromatin modifica-
tion. Moreover, this study takes advantage of information from the rapidly 
emerging, but not yet fully elucidated, field of epigenetics.
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Limited HSCs in cord blood  
prevent broad clinical use
The limited number of HSCs in single 
cord blood (CB) collections has been prob-
lematic for efficient engraftment in adult 
patients (1), hence the efforts of numerous 
groups to compensate for low HSC num-
bers by attempting to transplant double 
CB units, expand HSCs from CB ex vivo, 

increase the homing capabilities of HSCs 
through priming and other maneuvers, 
or modulate the recipient’s microenviron-
ment for more efficient engraftment (1). A 
number of efforts have been put forth to 
expand human HSCs ex vivo (2), with lim-
ited success.

HDAC inhibition dramatically 
improves CB HSC expansion
Epigenetics is a high-profile area of inves-
tigation (3). In this issue, Chaurasia et al. 
(4) followed up on their previous studies 
(5) by focusing on  means to more effec-
tively expand HSC populations isolated 
from CB using histone deacetylase inhib-

itors (HDACIs), primarily valproic acid 
(VPA), either in the context of cytoki-
ne-primed CB cells or with greater effect 
in addition to cytokines for the 7-day 
period of ex vivo cell culture (Figure 1). 
The cytokine cocktail included stem cell 
factor, FLT3 ligand, thrombopoietin, and 
IL-3 which, together in the presence of 
VPA, produced a phenomenal expansion 
of engraftable HSCs as assayed by state-
of-the-art procedures. Chaurasia and col-
leagues evaluated and quantitated human 
HSC engraftment and repopulation in 
sublethally irradiated NOD/SCID IL-2 
receptor γc–null (NSG) mice (4). Using 
limiting cell dilution analysis, Chaurasia 
et al. determined that the frequency of 
SCID-repopulating cells (SRCs) after ex 
vivo culture of CB cells with cytokines 
and VPA was 1 SRC in every 31 cells, while 
CB cells cultured with only cytokines 
produced 1 SRC in 9,225 cells, and input 
(unexpanded CB cells) had 1 SRC in 1,115 
cells. This translated to respective num-
bers of 32,258 SRCs from ex vivo–cultured 
CB cells in the presence of cytokines plus 
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means to decrease the engraftment period, 
including the use of an inhibitor of dipep-
tidylpeptidase 4 (DPP4). DPP4 selectively 
truncates a number of proteins by remov-
ing the last two amino acids from the N 
terminus, usually when the penultimate 
amino acid is an alanine or proline. SDF1/
CXCL12 and other cytokines have a DPP4 
site, and DPP4-truncated SDF1/CXCL12 
is less efficient in chemotaxis and blunts 
the activity of full-length SDF1/CXCL12 
(8, 9). Moreover, inhibition of DPP4 activ-
ity with diprotin A or sitagliptin enhances 
the homing and engrafting capability of 
HSCs in mouse models (8, 10).

Of practical interest is the observation 
that ex vivo expansion of CB cells was 
much more efficient under serum-free 
conditions compared with that observed 
in serum-containing cultures. This dis-

binds stromal-derived factor 1 (SDF1/
CXCL12), which is known to be involved 
in homing of HSCs (6, 7). Increased 
expression of CXCR4 on the cytoki-
ne-plus-VPA–cultured cells was associated 
with increased sensitivity of these cells to 
chemotaxis in vitro in response to SDF1/
CXCL12 and increased HSC homing in 
vivo. One of the disadvantages of using 
CB for hematopoietic cell transplantation 
(HCT) is that compared with transferred 
bone marrow, the time to neutrophil, 
platelet, and immune cell reconstitution 
is slower (1), a phenomenon that is also 
apparent when two CB units are used 
for HCT; therefore, increased expression 
of CXCR4 and possibly CD49f on HSCs 
may allow for decreased time to engraft-
ment. Even if enhanced CXCR4 does not 
improve engraftment, there are other 

VPA and 108 SRCs from ex vivo CB cells 
cultured with cytokines alone, while the 
input CB contained 897 SRCs. VPA-plus-
cytokine–expanded cells also had exten-
sive capacity for secondary mouse repop-
ulation, demonstrating their self-renewal 
activity. Thus, expansion of CB cells in 
the presence of cytokines alone under the 
conditions used in the study by Chaurasia 
and colleagues resulted in a loss of SRCs, 
while the addition of VPA with the same 
cytokines resulted in an approximately 
36-fold increase in SRCs compared with 
the number of input SRCs.

The use of VPA plus cytokines also 
resulted in increased aldehyde dehydroge-
nase (ALDH) activity as well as expression 
of CD90, CD117 (c-Kit), CD49f (integ-
rin α6), and CD184 (CXCR4) on the cell 
surface. The chemokine receptor CXCR4 

Figure 1
HDAC inhibition improves ex vivo expansion of HSCs from CB. Human CB was collected and exposed for 7 days to a cytokine cocktail or a 
cytokine cocktail plus HDACI in the presence (A) or absence (B) of serum. CB cells cultured in the presence of cytokines and HDACI exhibited 
increased numbers of cells expressing HSC phenotypes, including increased production of ALDH, upregulation of HSC surface markers CD90, 
c-Kit, integrin α6, and CXCR4, and expression of the pluripotent genes OCT4, SOX2, and NANOG (B). Surprisingly, the presence of serum 
decreased the efficiency of HDACI-associated HSC expansion (A). Cells expanded in in the presence of cytokines and HDACI had a much greater 
capacity to repopulate hematopoietic cell populations and engraft following transplantation into severely immune-deficient animals (B). The study 
by Chaurasia et al. (4) raises several questions for future consideration: What serum factors block full HSC expansion? What other intracellular 
factors are involved in epigenetic reprogramming of HSCs? Will other chromatin-remodeling agents and/or small-molecule inducers of pluripo-
tency promote ex vivo expansion of human HSCs alone or in combination with HDACIs? Can expanded HSCs with increased pluripotent gene 
expression be used for more efficient generation of fully programmed iPSCs?
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cells, such as CB CD34+ cells, to an iPSC 
state results in colonies that are morpho-
logically indistinguishable from ESCs; 
however, some iPSC colonies contain only 
partially reprogrammed cells (20). In this 
context, it would be reasonable to deter-
mine whether the CB HSCs produced ex 
vivo in the presence of VPA and cytokines, 
which already have enhanced expres-
sion of OCT4, SOX2, and NANOG, can 
be more efficiently induced toward fully 
reprogrammed iPSCs. Information on 
how to maximize the generation of iPSCs 
is of great scientific as well as potential 
practical interest in the context of regen-
erative medicine.

Conclusions
The study by Chaurasia et al. (4) presents 
important steps toward further under-
standing HSC biology and how to poten-
tially manipulate these cells for therapeu-
tic advantage. There have now been over 
30,000 CB HCTs performed (1), and the 
means to enhance the efficacy of this pro-
cedure could benefit many patients with 
malignant and nonmalignant disorders 
who cannot otherwise find another appro-
priate source of HLA-matched allogeneic 
HSCs for HCT.
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on the role of HDACIs in promoting HSC 
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HDACI-dependent induction  
of pluripotent genes
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primary or secondary NSG mice engrafted 
with the expanded cells. Moreover, injec-
tion of pluripotent CB HSCs into sites that 
have been shown to form teratomas follow-
ing embryonic stem cell (ESC) injection did 
not induce teratoma formation. Pluripo-
tent genes are involved in maintaining stem 
cell states for ESC lines and in reprogram-
ming somatic cells to exhibit an ESC-like 
state that is inherent in induced pluripo-
tent stem cells (iPSCs), and expression of 
these genes is usually associated with the 
ability of ESCs and iPSCs to form terato-
mas. Of course, the possibility exists that 
malignancies may manifest, if and when 
cytokine-plus-VPA–expanded CB HSCs 
are used for clinical HCT, and should be 
kept in mind, as it might take a long time 
for malignant transformation to occur in 
patients. In the context of patient HCT, 
there would be a much longer time for 
malignancies to manifest compared with 
the year or so that NSG mice are monitored 
following human cell engraftment. Regard-
less of whether ex vivo cytokine-plus-VPA–
expanded cells are used clinically, we are 
already the beneficiaries of increased 
knowledge about the regulation of HSC 
function. VPA-plus-cytokine treatment 
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Chronic immune activation is a key factor in HIV-1 disease progression. 
The translocation of microbial products from the intestinal lumen into the 
systemic circulation occurs during HIV-1 infection and is associated closely 
with immune activation; however, it has not been determined conclusively 
whether microbial translocation drives immune activation or occurs as a 
consequence of HIV-1 infection. In an important study in this issue of the 
JCI, Kristoff and colleagues describe the role of microbial translocation in 
producing immune activation in an animal model of HIV-1 infection, SIV 
infection of pigtailed macaques. Blocking translocation of intestinal bacte-
rial LPS into the circulation dramatically reduced T cell activation and pro-
liferation, production of proinflammatory cytokines, and plasma SIV RNA 
levels. This study directly demonstrates that microbial translocation pro-
motes the systemic immune activation associated with HIV-1/SIV infection.
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Immune activation and disease 
progression in HIV-1 infection
In humans, the gut-associated lymphoid 
tissue (GALT) contains a large number of 
activated CD4+CCR5+ T cells, thus serv-
ing as a major site of viral replication and 
CD4+ T cell depletion early in the course 
of HIV-1 infection (1, 2). In contrast to the 
rapid depletion of intestinal CD4+ T cells, 
the decline of CD4+ T cells in peripheral 

blood is much slower and less extensive 
during acute HIV-1 infection, suggesting 
that the majority of peripheral CD4+ T 
cells are nonpermissive at this stage (2, 3). 
During the chronic phase of infection, sys-
temic immune activation is very strongly 
correlated with disease progression (4). 
Activation of CD4+ T cells increases core-
ceptor expression and renders these cells 
more susceptible to HIV-1 infection, and 
these cycles of activation and infection may 
drive progression of disease to AIDS (5). In 
contrast, SIV infection in natural host spe-
cies very rarely progresses to AIDS and does 
not result in increased levels of immune 

activation, despite high levels of virus rep-
lication (6, 7). Infection and depletion of 
CD4+ T cells in GALT can be observed in 
both SIV and HIV-1 infection; however, 
natural host species infected with SIV do 
not often develop systemic immune acti-
vation, despite loss of GALT CD4+ T cells 
(6, 7), suggesting that factors other than 
direct infection and mucosal CD4+ T cell 
loss are essential for the increased degree of 
immune activation seen in HIV-1 infection.

Microbial translocation  
in HIV-1 infection
Translocation of microbial products from 
the lumen of the gastrointestinal tract 
into the circulation often occurs in HIV-1–
infected individuals and is closely associ-
ated with systemic immune activation. 
Many studies have shown that HIV-1–
infected individuals have elevated plasma 
levels of LPS and soluble CD14, which is 
indicative of LPS-induced monocyte and 
macrophage activation (8). Plasma levels of 
other microbial products, such as bacterial 
DNA and flagellin, are also increased in 
HIV-1–infected individuals compared with 
healthy controls (8, 9). Furthermore, there 
is a negative correlation between plasma 


