et al. (11) is an excellent example of scientists pushing past the traditional limits of their discipline to take advantage of biology, chemistry, and nanotechnology and overcome the shortcomings of clinical applications of antiviral peptides. While the authors focused on the use of stabilized peptides and nanoparticle delivery as prophyactic measures, their cell-based work demonstrating robust inhibition of RSV fusion and entry (11) suggests that the peptides could be adapted as antiviral therapeutics for persons with RSV infection.

Moreover, the formation of hairpin-linked 6-HBs is a classic hallmark of many fusogenic enveloped viruses, including Ebola virus, HIV, and SARS coronavirus, which all bring viral and cellular membranes together via formation of a 6-HB in the same fashion as RSV (17). It is possible that the present findings made with RSV could be adapted to combat a host of pathogenic human viruses, both as prophylactic agents and as antiviral treatments.

Acknowledgments
The authors were supported by grants from the NIH (T32 AI095202 to S.P. Katzen; R01 AI076983 to T.S. Dermody).

Address correspondence to: Terence S. Dermody, Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, D2735 MCN, 1161 21st Avenue South, Nashville, Tennessee 37232, USA. Phone: 615.343.9943; Fax: 615.343.7659; E-mail: terry.dermody@vanderbilt.edu.


A VISTA on PD-1H

Yang Liu
Centers for Cancer and Immunology Research, Children’s Research Institute, Children’s National Medical Center, Washington, DC, USA.

Three years ago, two research groups independently identified a previously undescribed T cell cosignaling molecule; one referred to it as V-domain Ig suppressor of T cell activation (VISTA), and the other used the term programmed death-1 homolog (PD-1H). Recombinant and ectopically expressed PD-1H functions as a coinhibitory ligand for T cell responses. However, the function of endogenous PD-1H is not clear. In this issue of the JCI, Flies and colleagues demonstrate that endogenous PD-1H on both T cells and APCs serves as a coinhibitory molecule for T cell activation and provide further support for targeting PD-1H as a therapeutic strategy for transplantation and cancers.

Life is never dull, especially if you are interested in T cell cosignaling molecules. The identification of new members of this family can lead not only to new paradigms in immune recognition, but can also affect the treatment of cancer and autoimmune diseases (1–4). Among the newest additions to the T cell cosignaling family is an immunoglobulin superfamily member that bears two different names due to its independent discoveries three years ago: V-domain Ig suppressor of T cell activation (VISTA) and programmed death-1 homolog (PD-1H).

Wang et al. named this molecule VISTA (5), based on significant sequence homology with B7 homologue 1 (B7H1) and the ability of recombinant VISTA-Fc protein and ectopic expression of VISTA on APCs or tumor cells to inhibit T cell proliferation. In an independent study, Flies and colleagues identified the same molecule and named it PD-1H due to greater overall sequence and gene structure similarities with programmed death-1 (PD-1) (6).

Same target, different results
Remarkably, the antibodies produced against the molecule by Wang and colleagues and Flies et al. had starkly different effects. Whereas Wang et al. found that their anti-VISTA antibody exacerbated EAE, Flies et al. found that their anti-PD-1H antibody suppressed graft-versus-host diseases (GVHD) to such an extent that fully allogeneic bone marrow chimera mice (BALB/c to lethally irradiated C57BL/6 mice) could be obtained following a single dose of anti-PD-1H antibody
commentaries

Figure 1
Models of T cell/T cell interaction. (A) A new PD-1H–centric model. PD-1H on the surface of T cells and APCs interacts with an unknown receptor(s) on T cells to directly inactivate T cells and confer immune suppression. (B) Classic models of immune activation and immune suppression through modulation of costimulatory activity of APCs. For immune activation, interaction of CD40L expressed on Th cells with CD40 on APCs induces expression of costimulatory molecules, including CD86 and others. The T cells that recognize the same APCs are activated as they are provided with both signal 1 (S1), the cognate antigens (MHC plus peptide [MHCp]), and signal 2 (S2), the costimulatory signal. During immune suppression, Tregs use CTLA-4 to rip CD28 ligands from the surface of APCs. The T cells that recognize the same APC are suppressed as they are provided with only S1, which inactivates T cells through death and anergy (17, 18).

PD-1H on both T cells and APC inhibits T cell function
Flies et al. (11) obtained PD-1H–deficient mice from a regional resource center (Mutant Mouse Regional Resource Centers [MMRRC], UCD, Davis, California, USA). Despite broad expression of Pd1h in multiple lineages of hematopoietic cells, Flies and colleagues found no difference in the composition of any lineage of PD-1H–expressing cells, ruling out a major role for PD-1H in hematopoiesis and T cell development. Compared with their WT littermates, Pd1h–/– mice exhibited an increased frequency of activated T cells as they aged. This result is consistent with an overall T cell inhibitory function of PD-1H. Furthermore, Pd1h–/– mice had enhanced susceptibility to concanavalin A-induced hepatitis, but had greater resistance to ectopically transplanted glioma, especially after radiotherapy.

Using purified T cells from WT and Pd1h–/– mice, Flies and colleagues clearly demonstrated that T cells lacking PD-1H are more responsive to cognate antigen and surrogate T cell receptor ligands. In addition, the enhanced activation of T cells by Pd1h–/– APCs suggests that PD-1H on APCs inhibits T cells regardless of their Pd1h genotype. Therefore, PD-1H is a coinhibitory molecule regardless of its cellular distribution. Together, these results pave the way for immune modulation by anti–PD-1H antibodies for autoimmune diseases and transplantation as described in this issue (11) and previously by Flies et al. (6).

Remainning questions
The data reported to date on PD-1H have raised intriguing issues in relation to its fundamental mechanism of immune recognition, receptor, and function of unique intracellular domain.

First, in relation to the issue of immune recognition, Flies et al. mixed T cells and APCs from WT and Pd1h–/– mice and showed that PD-1H on both T cells and APCs can suppress T cell activation (11). Because T cells both express and respond negatively to PD-1H, it is easy to envision a suppressive T cell/T cell interaction directly through PD-1H (Figure 1A). This potentially direct T cell/T cell interaction is very different from the known mechanisms of T cell crosstalk, including those that mediate both immunological help and immune suppression, which are based solely on modification of APCs (Figure 1B). Th cells help induce costimulatory activity on APCs (12, 13). Conversely, Tregs suppress T cell activation by ripping off costimulatory molecules from APCs (14). A general mechanism for direct T cell/T cell suppression was previously invoked (15), but proof of such an interaction has eluded immunologists. With the identification of PD-1H as a coinhibitor that is abundantly expressed on activated T cells, it is not hard to envision that PD-1H on neighboring T cells enables them to tune each other’s response to cognate antigen (Figure 1A). Such a tuning mechanism can also be extended into interactions between PD-1H–expressing T cells and APCs (Figure 1A).

The second unresolved issue is the nature of the PD-1H receptor. The elevated expression of Pd1h–/– T cells to PD-1H as reported by Flies and colleagues, along with the data from Wang et al. demonstrating that recombinant VISTA-Fc robustly inhibits T cell activation, suggests that both T cells and APCs have a PD-1H/VISTA recep-
Cryptococcosis: a model for the understanding of infectious diseases

John R. Perfect

Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, USA.

The increase in immunosuppressed patient populations has correlated with a rise in clinical fungal infections, including cryptococcosis. Patient outcome following Cryptococcus infection is linked to initial fungal burden in cerebrospinal fluid (CSF) and fungal clearance following treatment; however, the role of the pathogen in disease prognosis is poorly defined. In this issue of the JCI, Sabiti and colleagues have directly correlated phenotypic traits of Cryptococcus neoformans with clinical outcome of infected patients. A better understanding of both the host and pathogen contributions to disease etiology will provide more options for targeted treatment strategies.

Clinical impact
Cryptococcosis, which results from infection by Cryptococcus neoformans and Cryptococcus gattii, exploded onto the clinical scene in three major outbreaks. In 1978, Kauffman and Blumer marked the first outbreak as the “awakening giant of mycology” (1). The frequency of cryptococcosis rose in concert with an enlarging immunosuppressed population as the result of advanced medical therapies for serious underlying diseases. The rapid increase in cryptococcosis was the “canary in the coal mine” sentinel finding for the fragility of immunosuppressed patients and our lack of precision in manipulating the immune system. The second major outbreak occurred in the mid-1980s as the immunosuppressed HIV pandemic gripped the world, with the number of patients affected and the effects of the virus on immunity reflected in the appearance of an incredible number of cryptococcal cases, estimated at 1 million per year worldwide (2). The third major outbreak of cryptococcosis occurred around 2000 in the Pacific Northwest as the result of C. gattii infections. This outbreak has challenged our understanding of new recombiant (hypervirulent) strains (3) and of the potential influences of climate on changing fungal ecology. Cryptococcus has become a “new-age” pathogen that reaches every level of clini-