Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The lymphatic vasculature revisited
Dontscho Kerjaschki
Dontscho Kerjaschki
Published March 3, 2014
Citation Information: J Clin Invest. 2014;124(3):874-877. https://doi.org/10.1172/JCI74854.
View: Text | PDF
Review Series

The lymphatic vasculature revisited

  • Text
  • PDF
Abstract

Lymphatic vessels constitute a ubiquitous countercurrent system to the blood vasculature that returns interstitial fluid, salts, small molecules, resorbed fat, and cells to the bloodstream. They serve as conduits to lymph nodes and are essential for multiple physiologic activities. However, they are also hijacked by cancer cells to establish initial lymph node metastases, as well as by infectious agents and parasites. Despite these obvious important functions in human pathologies, a more detailed understanding of the molecular mechanisms involved in the regulation of the lymphatic vasculature has trailed that of the blood vasculature for many years, mainly because critical specific characteristics of lymphatic endothelial cells were discovered only recently. In this Review series, several major aspects of the active and passive involvement of the lymphatic vasculature in human disease and physiology are presented, with a focus on translational findings.

Authors

Dontscho Kerjaschki

×

Figure 1

Basic design of the initial segment of the lymphatic microvasculature of the dermis.

Options: View larger image (or click on image) Download as PowerPoint
Basic design of the initial segment of the lymphatic microvasculature of...
The initial capillaries start as blind sacs. Their LECs form overlapping junctions, express large amounts of the membrane mucoprotein podoplanin (green), and release the chemokine CCL21. This attracts CCR7+ immune cells, such as dendritic cells and Tregs. The precollectors contain LECs with low amounts of podoplanin, and the LECs produce CCL27, which attracts inflammatory CCR10+ T lymphocytes. This precollector segment opens into the collecting vessels that are endowed with podoplanin-low endothelial cells and that form valves. Pericytes/mural cells partially cover the precollectors and completely ensheath collecting vessels.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts