Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Apolipoprotein O is mitochondrial and promotes lipotoxicity in heart
Annie Turkieh, … , Philippe Rouet, Fatima Smih
Annie Turkieh, … , Philippe Rouet, Fatima Smih
Published April 17, 2014
Citation Information: J Clin Invest. 2014;124(5):2277-2286. https://doi.org/10.1172/JCI74668.
View: Text | PDF
Research Article Cardiology

Apolipoprotein O is mitochondrial and promotes lipotoxicity in heart

  • Text
  • PDF
Abstract

Diabetic cardiomyopathy is a secondary complication of diabetes with an unclear etiology. Based on a functional genomic evaluation of obesity-associated cardiac gene expression, we previously identified and cloned the gene encoding apolipoprotein O (APOO), which is overexpressed in hearts from diabetic patients. Here, we generated APOO-Tg mice, transgenic mouse lines that expresses physiological levels of human APOO in heart tissue. APOO-Tg mice fed a high-fat diet exhibited depressed ventricular function with reduced fractional shortening and ejection fraction, and myocardial sections from APOO-Tg mice revealed mitochondrial degenerative changes. In vivo fluorescent labeling and subcellular fractionation revealed that APOO localizes with mitochondria. Furthermore, APOO enhanced mitochondrial uncoupling and respiration, both of which were reduced by deletion of the N-terminus and by targeted knockdown of APOO. Consequently, fatty acid metabolism and ROS production were enhanced, leading to increased AMPK phosphorylation and Ppara and Pgc1a expression. Finally, we demonstrated that the APOO-induced cascade of events generates a mitochondrial metabolic sink whereby accumulation of lipotoxic byproducts leads to lipoapoptosis, loss of cardiac cells, and cardiomyopathy, mimicking the diabetic heart–associated metabolic phenotypes. Our data suggest that APOO represents a link between impaired mitochondrial function and cardiomyopathy onset, and targeting APOO-dependent metabolic remodeling has potential as a strategy to adjust heart metabolism and protect the myocardium from impaired contractility.

Authors

Annie Turkieh, Céline Caubère, Manon Barutaut, Franck Desmoulin, Romain Harmancey, Michel Galinier, Matthieu Berry, Camille Dambrin, Carlo Polidori, Louis Casteilla, François Koukoui, Philippe Rouet, Fatima Smih

×

Figure 7

APOO induces apoptosis.

Options: View larger image (or click on image) Download as PowerPoint
APOO induces apoptosis.
(A) Positive correlation between APOO and BAX mR...
(A) Positive correlation between APOO and BAX mRNA levels in human atrial appendage samples (n = 48). (B and C) Bax/Bcl2 mRNA ratio (B) and caspase-3 activity (C) in WT (n = 15) and APOO-Tg (n = 16) mouse hearts. (D and E) Bax mRNA levels (D) and caspase-3 activity (E) in control cells, APOO cells, and APOO cells subsequently transfected with shAPOO. (F) Activity of caspase-3 in control and APOO-expressing cells incubated overnight with increasing concentrations of palmitate (n = 6). (G) Intracellular level of diglycerides in control and APOO cells (n = 4) with or without 12-hour incubation with 100 μM palmitate and/or 10 μM oleate. (H) Intracellular diglyceride/triglyceride ratio (DG/TG) in control and APOO cells (n = 4) with or without 12-hour incubation with 100 μM palmitate and/or 10 μM oleate. (I) Activity of caspase-3 in control and APOO cells (n = 6) with or without 12-hour incubation with 100 μM palmitate and/or 1 or 10 μM oleate. *P < 0.05, **P < 0.01, ***P < 0.001. Data represent mean ± SEM.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts