Plasma fibronectin supports hemostasis and regulates thrombosis

Yiming Wang,1,2,3 Adlii Reheman,2 Christopher M. Spring,2 Jalil Kalantari,2,4 Alexandra H. Marshall,2 Alisa S. Wolberg,5 Peter L. Gross,4 Jeffrey I. Weitz,6 Margaret L. Rand,1,7 Deane F. Mosher,6 John Freedman,1,2,9 and Heyu Ni1,2,3,4,9

1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. 2Toronto Platelet Immunobiology Group and Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, Ontario, Canada. 3Canadian Blood Services, Toronto, Ontario, Canada. 4Department of Physiology, University of Toronto, Toronto, Ontario, Canada. 5Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. 6McMaster University and Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada. 7Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada. 8Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin, USA. 9Department of Medicine, University of Toronto, Toronto, Ontario, Canada.

Plasma fibronectin (pFn) has long been suspected to be involved in hemostasis; however, direct evidence has been lacking. Here, we demonstrated that pFn is vital to control bleeding in fibrinogen-deficient mice and in WT mice given anticoagulants. At the site of vessel injury, pFn was rapidly deposited and initiated hemostasis, even before platelet accumulation, which is considered the first wave of hemostasis. This pFn deposition was independent of fibrinogen, von Willebrand factor, β3 integrin, and platelets. Confocal and scanning electron microscopy revealed pFn integration into fibrin, which increased fibrin fiber diameter and enhanced the mechanical strength of clots, as determined by thromboelastography. Interestingly, pFn promoted platelet aggregation when linked with fibrin but inhibited this process when fibrin was absent. Therefore, pFn may gradually switch from supporting hemostasis to inhibiting thrombosis and vessel occlusion following the fibrin gradient that decreases farther from the injured endothelium. Our data indicate that pFn is a supportive factor in hemostasis, which is vital under both genetic and therapeutic conditions of coagulation deficiency. By interacting with fibrin and platelet β3 integrin, pFn plays a self-limiting regulatory role in thrombosis, suggesting pFn transfusion may be a potential therapy for bleeding disorders, particularly in association with anticoagulant therapy.

Introduction

Platelet accumulation and coagulation system activation are two key mechanisms required to stop bleeding (1–3). At the site of vascular injury, subendothelial matrix exposure initiates platelet adhesion, activation, and aggregation, which constitute the first wave of hemostasis (or primary hemostasis). Exposure of tissue factor and procoagulant cell membranes activates the coagulation cascade, a series of enzymatic reactions leading to the formation of a fibrin clot (i.e., the second wave of hemostasis or secondary hemostasis). However, if platelets and coagulation are inappropriately activated, thrombosis and vessel occlusion may occur, which can lead to life-threatening conditions, including myocardial infarction and stroke, the major causes of mortality and morbidity worldwide (4). A better understanding of the mechanisms underlying thrombosis is crucial for treatment and prevention of thrombotic and hemorrhagic disorders.

Fibronectin (Fn), a dimer of 250-kDa subunits, is a key component of the extracellular matrix and is required for embryonic development (5). Fn exists as plasma Fn (pFn) and cellular Fn. Unlike cellular Fn, which is produced by various cell types and deposits locally, pFn is synthesized in the liver and secreted into the blood, in which it circulates at a relatively high concentration (230–650 μg/ml) (6, 7). Both subunits of the Fn dimer contain N terminus fibrin and collagen-binding sites as well as a C terminus arginine-glycine-aspartic acid (RGD) motif (i.e., the integrin-binding site). The N terminus collagen-binding site may play a role in mediating the incorporation of pFn into the vessel wall (8, 9). Collagen, a major subendothelial matrix protein, can be easily exposed to blood components after the denudation of endothelial cells following injury. However, the efficiency of this pFn-collagen interaction under flow conditions and whether this process contributes to hemostasis in vivo have not been elucidated. The N terminus of pFn can also cross-link to the C terminus of the fibrin α chain by factor XIIIa (FXIIIa), thus enabling pFn incorporation into fibrin clots (10). Notably, Fn, fibrinogen (Fg), components of the coagulation cascade, and the type I Fn module (present 12 times in Fn and as single modules in several cascade components) arose together in evolution and are all vertebrate inventions (11–13). Despite these intriguing observations, there is no evidence supporting a significant contribution of pFn to blood coagulation. The C terminus RGD motif on pFn is also relevant to hemostasis; through binding to integrins on endothelial cells, fibroblasts, and adherent platelets, a pFn matrix can assemble on these cell surfaces (14–16), which may contribute to platelet accu-
controls the diameter of fibrin fibers, increases the mechanical strength of the clot, and is actively involved in thrombosis. Through switching its function in platelet aggregation, based on the presence or absence of fibrin (not VWF), pFn provides a self-limiting mechanism that prevents excessive platelet accumulation and vessel occlusion. These findings provide a solution for the controversy surrounding the function of pFn in hemostasis and establish pFn as a unique regulatory factor in thrombosis.

Results

pFn is a vital hemostatic factor in Fg deficiency. Conditional knockout of pFn in mice results in depletion of plasma pFn (>98%) in Cre‘ mice but not in Cre‘ controls (21, 25). Although a previous study with pFn single-deficient mice did not report significantly impaired hemostasis with a tail bleeding assay (21), we encountered markedly increased mortality due to severe bleeding in FG–/– Vwf–/– pFn–/– (TKO) mice (18 of 78, 23.1%) compared with that in their pFn+/- FG–/– Vwf–/– littermates (6 of 66, 9.1%, \(P < 0.05 \)) (Figure 1A and Table 1). Severe bleeding in pFn-depleted mice was observed several days after the pFn levels decreased, and most of the deaths occurred within 1 to 2 weeks of pFn depletion. Autopsy revealed severe subcutaneous and/or abdominal bleeding (Figure 1A). The tail bleeding time in TKO mice that survived the first month following pFn depletion was significantly longer than that in their pFn+/- FG–/– Vwf–/– littermates (Figure 1B). In half of the TKO mice (4 of 8), the bleeding did not stop spontaneously within the observed time, whereas most of the pFn+/- FG–/– Vwf–/– mice (10 of 11) achieved hemostasis spontaneously.

To determine whether the increased mortality after pFn depletion was due to an associated deficiency in Fg or VWF, we established 2 new strains of doubly deficient mice, FG–/– pFn+/- and Vwf–/– pFn+/- mice. There was no significant difference in blood cell counts or in the expression of major platelet surface adhesion molecules between pFn+/- and pFn+/- Cre‘ littermates (Supplemental Table 1 and Supplemental Figure 1; supplemental material available online with this article; doi:10.1172/JCI74630DS1). The mortality rate following pFn depletion was significantly higher in FG–/– pFn+/- mice than in pFn+/- FG–/– littermates (22.6% and 5.5%, respectively; \(P < 0.05 \)) (Table 1). Similar to the TKO mice, death was due to severe subcutaneous and/or abdominal bleeding. We found that tail bleeding time was also markedly prolonged in FG–/– pFn+/- mice compared with that in pFn+/- FG–/– littermates (Figure 1C), and half of the FG–/– pFn+/- mice did not stop bleeding spontaneously (7 of 14), while only 2 FG–/– mice bled beyond the observed time (2 of 11). Although there was no significant difference in the mortality rates of Vwf–/– pFn+/- and pFn+/- Vwf–/– littermates (Table 1), the tail bleeding time in Vwf–/– pFn+/- mice was significantly longer (Supplemental Figure 2). These results suggest that Fg, but not VWF, deficiency, was associated with the increased mortality after pFn depletion and that pFn is an essential hemostatic factor in Fg deficiency, and pFn contributes to hemostasis in VWF deficiency.

We next examined whether transfusion of purified pFn could ameliorate the severe bleeding phenotype in FG–/– pFn+/- mice. As a considerable amount of Fg contamination was found in commercial pFn and pFn purified from WT mice (Supplemental Figure 3B), pFn used in this study was purified from blood collected

Table 1. High mortality rate in mice with combined deficiencies of both Fg and pFn

<table>
<thead>
<tr>
<th>pFn+/- FG–/–</th>
<th>FG–/– pFn+/-</th>
<th>pFn+/- Vwf–/–</th>
<th>Vwf–/– pFn+/-</th>
<th>pFn+/- FG–/– Vwf–/–</th>
<th>TKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>53</td>
<td>57</td>
<td>51</td>
<td>66</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>5.5%</td>
<td>22.6%</td>
<td>1.8%</td>
<td>0%</td>
<td>9.1%</td>
<td>23.1%</td>
</tr>
</tbody>
</table>

Mortality rate was calculated 1 month after polyinonic-polycytidylic acid injection. \(* P < 0.05 \)}
pFn is important for hemostasis following treatment with anticoagulants. Anticoagulants, such as heparin and hirudin, have been widely used for prevention and treatment of thrombosis by inhibiting thrombin function and conversion of Fg to fibrin. In patients on anticoagulant therapy, major bleeding complications occur and are associated with increased mortality. Here, we found that after heparin treatment (20 U, i.p.) the tail bleeding time in pFn–/– mice was significantly prolonged compared with that in pFn+/+ littermates, and over half of the mice did not stop bleeding spontaneously (5 of 9) (Figure 1E). Likewise, recombinant hirudin also significantly prolonged the tail bleeding time in pFn–/– mice but not in pFn+/+ mice (Figure 1E). We next examined whether transfusion of pFn could prevent excessive bleeding after high-dose anticoagulant treatment. WT mice were given a high dose of heparin (200 U, i.p.) and then treated with either i.v. PBS or pFn. For all tail bleeding assays, 2 mm of the tip of the tail was severed. Bleeding time assay was terminated at 20 or 30 minutes, as indicated, and mice that bled beyond this end point were counted as 20 or 30 minutes, respectively. Data are presented as mean ± SEM. Individual symbols represent individual mice.

from FG–/– mice (Supplemental Figure 3, A and B). Compared with transfusion of 200 μl PBS or BSA solution, transfusion of the same volume of pFn solution (1.5 mg/ml, 200 μl) significantly shortened the tail bleeding time in FG–/– pFn–/– mice (Figure 1D). All of the mice transfused with pFn achieved hemostasis spontaneously within 20 minutes, whereas, even after 30 minutes, bleeding failed to stop in 3 of 6 mice transfused with PBS and in 2 of 7 mice transfused with BSA. This is strong evidence that pFn supports hemostasis in vivo and is a key survival factor in Fg deficiency.

pFn is a key hemostatic factor in deficiencies of Fg and blood coagulation. (A) Representative images of abdominal and subcutaneous bleeding in TKO mice. Red arrows show the bleeding site. (B) Tail bleeding time in WT, FG–/– Vwf–/–, and TKO mice. (C) Tail bleeding time in FG–/– and FG–/– pFn–/– mice. (D) Tail bleeding time in FG–/– pFn–/– mice transfused with 200 μl PBS, 1.5 mg/ml purified pFn, or BSA. (E) Tail bleeding time in pFn–/– mice and their WT (pFn+/+) littermates treated with i.p. injection of PBS, 20 U heparin, or 0.5 mg/kg recombinant hirudin (r-hirudin). Tail bleeding assay was performed 30 minutes after the injection. (F) Tail bleeding time in WT mice given high-dose heparin (200 U) and then transfused with PBS or pFn. For all tail bleeding assays, 2 mm of the tip of the tail was severed. Bleeding time assay was terminated at 20 or 30 minutes, as indicated, and mice that bled beyond this end point were counted as 20 or 30 minutes, respectively. Data are presented as mean ± SEM. Individual symbols represent individual mice.
pFn deposition is a hemostatic event preceding the classical first wave of hemostasis. It is widely accepted that platelet accumulation at the site of injury comprises the initial wave of hemostasis. Although we observed severe bleeding in the FG–/– pFn–/– mice, we previously and paradoxically found that depletion of pFn in FG–/– Vwf–/– mice enhances thrombus formation and stability (25). Thus, the life-threatening hemorrhage that we observed was likely not caused by a defect in platelet accumulation. To begin to explore the unique contributions of pFn to hemostasis, we examined the distribution of pFn at the site of vascular injury.

Using a laser injury cremaster arterial intravital microscopy model (25–27), we observed rapid deposition of fluorescently labeled pFn at sites of vessel injury in WT mice, whereas no BSA deposition was observed (Figure 2, A and B, and Supplemental Video 1). Interestingly, pFn deposited even prior to significant platelet accumulation (i.e., the classical first wave of hemostasis) (Figure 2A and Supplemental Video 1). Deposition of pFn was primarily found at the base of the growing hemostatic plug, which extended from the vessel wall into the bottom part of the hemostatic plug adjacent to the vessel wall, colocalizing with approximately 45% (44.1% ± 3.4%) of the hemostatic plug (Figure 2A). pFn fluorescence intensity at the site of injury reduced as the platelet thrombi dissociated (Figure 2C). Importantly, pFn fluorescence in the thrombi gradually decreased as the thrombi extended into the vessel lumen, such that pFn was almost undetectable on the apical surface of the thrombi (Figure 2A). These findings suggest that in WT mice there is a gradient of pFn from the vessel wall (high pFn) to the apex of the thrombus (little or undetectable).

This process was further observed in WT mice under a laser scanning confocal microscope in a FeCl3 injury mesenteric thrombosis model (18, 25). To exclude the possibility that the early detection of pFn in the previous cremaster arterial model was caused by greater microscope sensitivity for Alexa Fluor 488, we switched the labeling of pFn and platelets to Alexa Fluor 647 and DyLight 488, respectively. 3D reconstruction of the confocal images revealed that 5 minutes after FeCl3 injury, the entire luminal side of the injured vessel wall (artery and vein) had been covered with a layer of deposited pFn (Figure 2D and Supplemental Video 2). In both veins and arteries, platelets accumulated on top of the pFn layer, indicating that pFn deposition occurred prior to platelet accumulation. This observation was consistent in all 5 mice studied; platelet fluorescence was only detectable on the luminal side, on top of the pFn layer already deposited.

We then studied whether pFn deposition persists in the absence of Fg and VWF using the laser injury cremaster arterial thrombosis model. As observed in the WT mice, the rapid deposition of fluorescently labeled pFn at sites of vessel injury in FG–/– Vwf–/– mice occurred prior to significant platelet accumulation (Figure 2E and Supplemental Video 1). Deposition of pFn was also primarily found at the base of the growing hemostatic plug. While platelet accumulation reached its maximum and began to dissociate at approximately 1.5 minutes, pFn continued to deposit and reached a plateau at approximately 3.5 minutes. The fluorescence intensity of pFn at the site of injury did not decrease as the platelets dissociated from the hemostatic plug (Figure 2F), and the amount of pFn deposition in FG–/– Vwf–/– mice was similar to that in WT mice during the 4-minute observation (P > 0.05, Supplemental Figure 4). These observations suggest that, in the absence of Fg and VWF, pFn can also deposit on the vessel wall prior to significant platelet accumulation but does not significantly incorporate into the growing platelet plug as compared with the WT mice.

Using confocal microscopy, marked pFn deposition was also observed in the FeCl3 injury mesenteric thrombosis model in FG–/– Vwf–/– mice (Figure 2G and Supplemental Video 2). Platelets accumulated on top of the pFn layer, indicating that pFn deposition occurred prior to platelet accumulation. We confirmed that early pFn deposition occurred in injured cremaster and mesenteric vessels in FG–/– mice (Figure 3, A and B) and β3 integrin–deficient (IgIIIβ3–/–) mice (Figure 3, C and D, and Supplemental Videos 1 and 2). Furthermore, after antibody-induced depletion of platelets in WT mice (28), similar deposition of pFn was observed on the injured vessel wall (Supplemental Figure 4C). pFn fluorescence was clearly visible at the site of injury 60 minutes after laser injury, even after the platelet thrombus dissociated from the vessel wall (Figure 3E), suggesting that pFn was incorporated into the subendothelial matrix.

After heparin treatment, minimal platelet accumulation was observed 5 minutes after injury, yet pFn deposition on the injured vessel wall remained similar to that in untreated WT controls (Figure 3F). Considering that most pFn+/− (but not pFn−/−) mice treated with the same dose of heparin achieved hemostasis within 5 minutes in the tail bleeding assay (Figure 1E), these data suggest that a major contribution of pFn in controlling bleeding following anticoagulant treatment.

Collagen is a major subendothelial matrix protein and can bind to the N terminus of pFn (8), but this process has not been well studied under flow conditions. Here, we found rapid deposition of pFn on collagen within 40 seconds when purified pFn was perfused over a collagen-coated surface under arterial shear rate, while no deposition of BSA was observed (Supplemental Figure 4D and Supplemental Video 3). This observation demonstrated that collagen could mediate the rapid and efficient deposition of pFn.
pFn reinforces the mechanical strength of fibrin clots. pFn can be covalently linked to fibrin by thrombin-activated FXIIIa and becomes incorporated into the fibrin clot (10). Using thromboelastography (TEG), fibrin clots formed in whole blood or platelet-poor plasma (PPP) from pFn+/+ mice were significantly stronger than those formed in whole blood or PPP from pFn–/– littermates (Figure 4, A and B), although the rates of clot formation were similar in both groups (Supplemental Figure 5, A and B). The decrease in clot strength was not due to difference in Fg concentration (Supplemental Figure 6). Reintroduction of pFn into pFn–/– whole blood ameliorated the defect in clot strength (Figure 4C). Compared with adding PBS or BSA controls, the reintroduction of pFn to a final concentration of 300 μg/ml raised the maximum amplitude (MA) in pFn–/– blood to about 60% (Figure 4C). These findings suggest that pFn supports hemostasis not only through deposition at the injured vessel wall but also by enhancing the strength of the fibrin network.

pFn controls the diameter of fibrin fibers. We then studied the formation of the pFn-fibrin network in vitro. Fluorescently labeled murine pFn, which was purified from FG−/− mice, was actively recruited to the fibrin network formed in mouse PPP, resulting in thicker fibrin fibers compared with those in BSA-treated PPP (Figure 4D and Supplemental Figure 5C). Using scanning electron microscopy, we found that addition of 330 μg/ml pFn to pFn−/− mouse PPP significantly increased fibrin fiber diameter compared with addition of PBS alone (113.6 ± 2.8 nm and 69.4 ± 0.6 nm, respectively, P < 0.01) (Figure 4, E and F). Consistent with this, the diameter of fibrin fibers formed in PPP from pFn+/+ mice was significantly larger than that formed in PPP from pFn−/− mice (Figure 4, H and I).

To examine whether pFn also controls the diameter of human fibrin fibers, a gelatin column was used to remove endogenous pFn from human PPP. Human pFn, BSA, or PBS were then added to the pFn-depleted PPP. We found that, as in the mouse PPP, pFn was actively recruited into the fibrin network (Figure 5A). After addition of 330 μg/ml human pFn, the diameter of fibrin fibers increased from 90.7 ± 2.8 nm to 147.2 ± 10.0 nm (P < 0.01, Figure 5, B and C). Consistent with the increased fiber diameter, fiber density decreased in the presence of pFn in both mouse and human plasma (Figure 4, G and J, and Figure 5D). These findings suggest that pFn modulates fibrin clot structure by enhancing the lateral aggregation of the fibrin protofibrils.

Non-fibrin-linked soluble pFn decreases platelet aggregation and thrombosis. The role of pFn in platelet aggregation remains controversial (29–32). Our earlier study showed that fibrin is required for the retention of pFn on the platelet surface (rendering pFn insoluble) (23). In the absence of Fg, platelet pFn content increases...
3- to 5-fold (17, 18). In our current study, we first found that in FG−/− mice this pool of pFn decreased aggregation of gel-filtered platelets (Figure 6A). In Vwf−/− mice, in which Fg was present, pFn enhanced aggregation of gel-filtered platelets induced by thrombin (which converts the platelet-released Fg to fibrin). However, when thrombin receptor-activating peptide (TRAP; AYPGKF, a potent PAR4-activating peptide) and collagen (neither of which convert Fg to fibrin) were used as an agonist in the same preparation of gel-filtered platelets, pFn attenuated platelet aggregation (Figure 6, B and C). ADP-induced platelet aggregation in Vwf−/−
in pFn+/+ littermate controls (Figure 6E). This demonstrated that the pFn contributes to platelet aggregation and suggested that fibrin plays a critical role in switching pFn from an inhibitory to a supportive role in platelet aggregation.

We next studied the role of pFn in thrombosis in FG–/– mice. Consistent with our previous observation in TKO mice (25), depletion of pFn in FG–/– mice enhanced thrombus formation in the ex vivo perfusion chamber model (Figure 6, F and G) and in vivo in the laser injury cremaster arterial thrombosis model (Figure 6, H and I). pFn therefore inhibits thrombus formation in mice lacking Fg (i.e., absence of Fg/fibrin).

Discussion

pFn was discovered as a protein that copurifies with Fg. It circulates in plasma in abundance and possesses the potential to assemble into fibrils that associate with various cell types, including platelets. Although it has long been suspected that pFn may play a role in the arrest of bleeding, its role in hemostasis has yet to be established. Here, we report an assessment of the role of pFn in hemostasis and thrombosis. We have demonstrated for the first time that, when fibrin formation is impaired, pFn is an essential survival factor; i.e., pFn is crucial for hemostasis in both FG–/– mice and in WT mice given anticoagulants. We found that pFn rapidly deposits onto the injured vessel wall, even prior to the classically recognized first wave of hemostasis, and remains at the site of injury. Through incorporation into the fibrin network, pFn controls the diameter of fibrin fibers and promotes the stability of the hemostatic plug. Interestingly, while pFn enhances platelet aggregation in the presence of fibrin, it inhibits platelet aggregation and thrombus formation in the absence of fibrin. This interaction with fibrin endows pFn with the capacity to switch from supporting hemostasis to inhibiting thrombosis/vessel occlusion, based on the fibrin gradient, in which fibrin decreases as it gets farther from the injured endothelium. These data establish pFn as an important hemostatic factor in Fg and coagulation deficiencies and a unique self-limiting regulator in thrombosis.

Current theory holds that platelet accumulation constitutes the first wave of hemostasis, and hemostatic events occurring before the platelet wave have not yet been adequately exposed. We have indicated that deposition of pFn at the site of injury is a key initial hemostatic process that occurs even earlier than the conventional first wave of hemostasis. These findings indicate the existence of a previously unrecognized “Fn” or “protein” wave of hemostasis before the classical platelet wave. While stable platelet plug formation usually requires sufficient time for platelets to adhere, activate, and aggregate, pFn and likely other plasma proteins accumulate on the subendothelial matrix immediately after injury. Importantly, the early deposited pFn can be noncova-
lently or covalently (via FXIIIa) linked to collagen (8), and the integrins on subendothelial cells and on the adhered platelets are able to assemble pFn into a matrix (14–16). Therefore, the deposition of pFn at the site of injury is likely a well-orchestrated matrix formation process that is crucial for the maintenance of vessel integrity. Together with FXIIIa and likely also protein disulfide isomerases (33), the initially deposited pFn may serve as a substrate to recruit other key proteins in hemostatic plug formation.

Figure 6. Role of pFn in platelet aggregation and thrombus formation in the presence or absence of fibrin.

(A) Thrombin-induced (0.2 U/ml) FG−/− pFn−/− and FG−/− gel-filtered platelet aggregation. (B) Thrombin-induced (0.2 U/ml) or TRAP-induced (500 μM) Vwf−/− pFn−/− and Vwf−/− gel-filtered platelet aggregation. (C) Collagen-induced (20 μg/ml) Vwf−/− pFn−/− and Vwf−/− gel-filtered platelet aggregation. (D) ADP-induced (20 μM) Vwf−/− pFn−/− and Vwf−/− platelet aggregation in PRP. (E) Thrombin-induced (0.2 U/ml) pFn+/+ and pFn−/− gel-filtered platelet aggregation. All representative tracings of platelet aggregation are shown from at least 3 independent experiments. (F) Thrombus formation in a collagen-coated perfusion chamber infused with blood from FG−/− pFn−/− mice and their pFn+/+ FG−/− littermates (shear rate = 1,800 s⁻¹). Images were taken with a confocal microscopy after infusion for 3 minutes. Grid in the image represents 10 μm. (G) Thrombus volume measured 3 minutes after infusion. n = 5 in each group. (H) Thrombus formation in FG−/− pFn+/+ mice and their pFn−/− FG−/− littermates observed in the laser-induced cremaster arterial thrombosis model. The curves represent pFn or platelet mean fluorescent intensity, and the shaded regions represent SEM. (I) The total area under the curve (AUC) was greater in FG−/− pFn−/− mice than in FG−/− mice. n = 5 in each group. Data are presented as mean ± SEM.
In addition to free pFn in the blood plasma, during hemostatic plug formation, platelets may serve as a transporter of pFn. Accumulating platelets carry and release their pFn content specifically at the injury site, which may markedly increase the local concentration of pFn. The released pFn may be directly organized on the activated platelet surface into a matrix to support hemostasis. This portion of platelet-transported pFn is likely to be more important for the maintenance of hemostasis in Fg deficiency, because we previously found that the pFn content in platelets increased 3- to 5-fold in both \(FG^{-/-}\) mice and in patients with hypofibrinogenemia (18, 23, 24) as a result of increased uptake of pFn via the \(\beta3\) integrin in the absence of Fg competition (17). The deposited pFn on the vessel wall may induce more platelet adhesion through a GPIb-pFn interaction (34), which could lead to more pFn release from the platelets. Therefore, the platelet-transported pFn further magnifies the initial “Fn” wave. Future investigation focusing on this “Fn” or “protein” wave of hemostasis will bring new insights into the initiation and maintenance of hemostasis.

In addition to local deposition and matrix formation at the site of injury, we demonstrated that pFn also contributes to hemostasis through its incorporation into clots. The effect of pFn on the mechanical characteristics of fibrin clots has been controversial. Addition of pFn to a reconstituted Fg solution resulted in increased clot shear modulus and turbidity (35, 36); however, other studies proposed that pFn may block fibrin polymerization, leading to prolonged clotting time, decreased turbidity (37), and reduced elasticity (38). This discrepancy is likely due to the methodology; all of these studies used reconstituted Fg solution rather than natural plasma, and the purity of reagents used was variable. The major challenge is to isolate pure pFn. pFn used in almost all of the previous studies was purified from healthy human subjects or WT mice and was therefore almost certainly contaminated with Fg or fibrin (Supplemental Figure 3B). Using pFn-deficient plasma and pFn purified from \(FG^{-/-}\) mice, we were able to study, for the first time, the function of pFn in a natural plasma environment without Fg or fibrin contamination. We demonstrate that pFn increases the diameter of fibrin fibers and strengthens the fibrin clot, mainly by enhancing lateral aggregation and increasing fiber diameter. The mechanical and structural defects in \(pFn^{-/-}\) fibrin clots are similar to those of a reported fibrin mutant deficient in lateral aggregation (39), suggesting that pFn enhances clot strength through enhancing lateral aggregation of fibrin protofibrils.

The role of pFn in platelet aggregation has been intensely debated for decades. While pFn has been shown to inhibit ionophore A23187- and collagen-induced platelet aggregation (29, 30), monoclonal antibodies against Fn inhibited platelet aggregation mediated by these agonists (31, 32). It has also been reported that pFn corrected a platelet aggregation defect in Ehlers-Danlos syndrome (a connective tissue disorder), although the mechanism is yet unclear (40). In our experiments, we found that thrombin-induced aggregation of gel-filtered platelets was significantly stronger in \(pFn^{-/-}\) platelets than in \(pFn^{+/+}\) platelets (Figure 6E), although it is difficult to distinguish the difference in platelet aggregation between platelets from \(pFn^{-/-}\) mice and \(pFn^{+/+}\) littermates induced either by ADP in PRP or TRAP and collagen in gel-filtered platelets. The inconsistency of the responses is likely due to different levels of fibrin generated during the sampling and in vitro experimental processes. Using our unique \(FG^{-/-}\) pFn-/- mouse (absence of fibrin) and \(VWF^{-/-}\) pFn-/- mouse (minimal incidental fibrin generation due to low FVIII activity) strains, we minimized the incidental fibrin generation and demonstrated that the effect of pFn on platelet aggregation and thrombosis is dependent on the presence or absence of fibrin.
The 2 RGD motifs on the pFn dimer are in close proximity, rendering them unlikely to be easily accessed by integrins from 2 platelets. When the N terminus of pFn cross-links with fibrin, the large pFn-fibrin complex may then be able to bind to platelets at RGD motifs on pFn and/or fibrin. The multiple integrin-binding sites enable the pFn-fibrin complex to bridge integrins on 2 or more platelets to support platelet aggregation. However, in the absence of fibrin (e.g., afibrinogenemia, anticoagulant therapy) or at the top of the thrombi, where fibrin is undetectable (Figure 7A), pFn binds to platelet surface integrins and prevents their interaction with other more potent ligands, such as Fg and other prothrombotic ligands (18, 22, 25, 41, 42), and inhibits platelet aggregation.

The hemostatic process after a mild injury in vivo only leads to limited local activation of platelets and the coagulation system, without jeopardizing downstream blood supply (27, 43). Based on our results demonstrating the dual role of pFn, we propose a novel model to explain the fine balance between maintenance of hemostasis and prevention of vessel occlusion. Consistent with a previous in vivo study (26), we found that a large amount of fibrin is generated close to the injured vessel wall (Figure 7, A and B). Therefore, pFn deposited at the base of the hemostatic plug can be cross-linked with fibrin. Moreover, the collagen, pFn, and fibrin at the base of the thrombi further enhance the ability of activated platelets to assemble pFn (44–46). Conversely, the deposited pFn further supports extracellular matrix formation, fibrin network formation, and platelet aggregation. Unlike the abundance of fibrin adjacent to the injured vessel wall, as the thrombus extends into the vessel lumen, the generation of fibrin gradually decreases (Figure 7, A and B). In the absence of fibrin, the soluble pFn at the apical part of thrombi plays a solely inhibitory role, suppressing excessive thrombosis and downstream ischemia.

In contrast to a mild injury, when a severe trauma to the vessel occurs (e.g., severed vessels), a large amount of thrombin is generated from multiple sites of the injured vessel wall, so that even at the top of the growing thrombi, there is likely a sufficient amount of thrombin to initiate fibrin formation (Figure 7C). Continuous fibrin-pFn cross-linking at the top of the growing thrombi promotes the formation of an occlusive thrombus (or hemostatic plug) and helps to stop blood loss efficiently. Therefore, pFn appears to be a sensor for the degree of vascular injury and modulates the magnitude of the hemostatic response depending on the severity of injury.

Maintenance of such a pFn-mediated hemostatic balance may be crucial for the treatment of thrombotic and hemorrhagic diseases. First, the current anticoagulant and thrombolytic therapies are associated with a high incidence of life-threatening bleeding complications, which approaches 10% in patients receiving high-dose anticoagulants (47). Therefore, it will be important to study whether intravenous pFn transfusion could simultaneously maintain hemostasis and prevent vessel occlusion in patients with heart attack and stroke. Second, there is considerable variation of pFn level in the human population (20). Notably, congenital low pFn (about 50% of normal pFn level) has been reported in a family (48). Although these variations in pFn level do not cause an overt bleeding phenotype under normal conditions, it may be of importance to study whether low pFn level is associated with excessive hemorrhage after trauma and surgery. It will also be important to investigate the relationship of pFn level (e.g., low pFn level in patients with acute liver failure or severe cirrhosis) with bleeding complications associated with anticoagulant therapy. Furthermore, given that pFn is a major intrinsic component of many blood products, the role of pFn in blood transfusion, especially its potential hemostatic and antithrombotic benefit in transfusion recipients, requires further study.

In summary, we have identified a new “Fn” or “protein” wave that occurs even earlier than the well-accepted first wave of hemostasis (i.e., platelet accumulation). We have also placed pFn as a component in the final steps of the coagulation cascade as a key factor that controls lateral aggregation of fibrin fibers. Moreover, we provided an explanation as to why the roles of pFn were previously controversial by demonstrating that it indeed has opposite effects (i.e., inhibitive and supportive) on platelet aggregation and identified that fibrin dictates the pFn functional switch. Further clinical investigation may lead to the development of pFn transfusion as a unique therapeutic strategy to control bleeding and modulate thrombosis.

Methods

Further details are available in the Supplemental Methods.

Materials. DyLight 649 and DyLight 488 fluorescent labeled anti-GPIIb antibodies and JON/A (antibody against mouse-activated GPIIbIIIa) were purchased from Emfret Analytics. Alexa Fluor 488 and Alexa Fluor 647 protein labeling kits were purchased from Life Technologies Inc. Human Fg was purchased from Sigma-Aldrich. Recombinant hirudin was provided by Jawed Fareed at Loyola University, Chicago, Illinois, USA.

Mice. pFn^{−/−} conditional knockout mice (Fn^{−/−} Cre⁺) and control littermates (Fn^{−/−} Cre[−]) were originally generated in the laboratory of Reinhard Fässler (Max Planck Institute of Biochemistry, Martinsried, Germany) (21). Vwf^{−/−} pFn^{−/−} and Fg^{−/−} pFn^{−/−} mice were generated by breeding female pFn conditional knockout (Fn^{−/−} Cre⁺) mice with male Vwf^{−/−} mice or male Fg^{−/−} mice, respectively. Genotype was detected by polymerase chain reaction and confirmed by Western blot. pFn depletion was induced by 3 i.p. injections of 250 μg polyniconic-polycyclitid acid (Sigma-Aldrich) into Cre[−] and Cre⁺ littermates at 2-day intervals. pFn depletion in the plasma and platelets was confirmed by Western blot.

Bleeding time. The bleeding time assay was modified from the procedure previously described (49). After anesthetizing 6- to 8-week-old mice with 2.5% tribromoethanol (0.015 ml/g) and maintaining them at 37°C with a heating pad, the tip of the tail (2 mm) was amputated with a sharp scalpel. In most Vwf^{−/−} and Vwf^{+/−} pFn^{−/−} mice, tail bleeding did not stop within 20 minutes of severing the tail tip. Therefore, instead of cutting the tail, one of the tail veins was punctured 4 cm from the tip of the tail. The injured tail was immediately placed into warm PBS maintained at 37°C, and the bleeding time was recorded from the time of injury until 10 seconds after bleeding had ceased. Bleeding time assay was terminated at 20 minutes, and mice that bled beyond this end point were counted as 20 minutes. For mice transfused with 200 μl PBS, pFn, or BSA, we extended the end point of the tail bleeding assay to 30 minutes.

Preparation of plasma, platelets, and pFn. Mouse plasma and platelets were prepared as previously described (18, 22, 25, 50–52). For pFn-fibrin clot formation in vitro, blood was drawn from inferior vena cava with a 25-gauge needle and immediately mixed with 3.2%
sodium citrate (1:9, vol/vol). pFn was isolated from FG-/- mice using gelatin-sepharose chromatography. The purity of pFn was evaluated by SDS-PAGE analysis. The presence of contaminating Fg was detected by Western blotting using a rabbit anti-human Fg antibody that also detected mouse Fg (American Diagnostica).

Intravital microscopy. The laser-induced cremaster arterial thrombosis model was performed as previously described (25, 26, 53, 54). Alexa Fluor 488-labeled pFn (5 μg) and DyLight 649 anti-GPib antibodies (1 μg per 1 g body weight) were injected through the jugular vein cannula prior to injury. For detection of fibrin formation, an Alexa Fluor 488-labeled mouse anti-human fibrin IIb chain antibody (2 μg per g body weight, Accurate Chemical) was injected prior to laser injury. Multiple independent injuries were induced on cremaster arterioles using an Olympus BX51W1 microscope equipped with a pulsed nitrogen dye laser. The dynamic deposition of pFn onto the injured vessel wall and the formation of the hemostatic plug were captured and analyzed using Slidebook software (Intelligent Imaging Innovations).

Confocal microscopy. FeCl₃-induced mesenteric arterial thrombosis was produced as was previously described (18, 55, 56). After initiation of FeCl₃ injury, pFn deposition and thrombus formation were recorded using a Zeiss LSM 700 confocal laser scanning microscope (Zeiss). pFn (5 μg, i.v.) was labeled with Alexa Fluor 647 fluorescent dye, and platelets were labeled with Dylight 488 anti-GPib antibodies (1 μg per 1 g body weight). The confocal data were analyzed using ZEN 2010 software (Zeiss), and 3D reconstruction of the images was produced using Imaris x64 (Bitplane). The same microscopy and software settings were applied in all experiments.

TEG. Blood obtained from the inferior vena cava of mice using a 25-gauge needle was immediately mixed with 3.2% sodium citrate at a 9:1 ratio. Whole blood and PPP were tested in a TEG 5000 Analyzer (Hemoscope).

pFn-fibrin network formation in vitro. pFn-fibrin network formation in vitro was evaluated as previously described (57). For experiments with human plasma, human PPP was added to the gelatin column. The column pass-through contained minimal amounts of pFn, as determined by Western blot analysis. pFn-depleted human PPP was used to assess human pFn-fibrin network formation in vitro.

Statistics. Data are presented as mean ± SEM. Statistical significance was assessed by the Student’s unpaired (2-tailed) t test or the χ² test with Yates’ correction. P < 0.05 was considered statistically significant. For statistical analysis of anticoagulant-treated mice (all of which could not stop bleeding), 95% confidence interval of bleeding time in the control group (which could stop bleeding) was calculated for the determination of statistical significance.

Study approval. All animal studies were approved by the Animal Care Committee of St. Michael’s Hospital. All experimental procedures using human plasma were approved by the Research Ethics Board of St. Michael’s Hospital. Human blood samples were drawn from antecubital veins of healthy volunteers after they provided informed consent according to guidelines provided by the Research Ethics Board of St. Michael’s Hospital.

Acknowledgments

We thank Reinhard Fässler for providing the pFn conditional knockout mice and for his valuable suggestions and comments during manuscript preparation. We thank Jay L. Degen and Denisa D. Wagner for providing the FG- and Vnφ-deficient mice, respectively. We thank Henry Hong and Audrey Darabie for their assistance with scanning electron microscopy. We thank Pingguo Chen, Xi Lei, Xin Fu, and Emily C. Reddy for their assistance and valuable comments during the manuscript preparation. This work was supported by the Canadian Institutes of Health Research (CIHR, MOP 119540), Heart and Stroke Foundation of Canada (Ontario), and the CIHR team grant in venous thromboembolism. Equipment funds were from the Canada Foundation for Innovation, Canadian Blood Services, and St. Michael’s Hospital. Y. Wang is a recipient of a PhD graduate fellowship from Canadian Blood Services and a Meredith and Malcolm Silver Scholarship in Cardiovascular Studies.

Address correspondence to: Heyu Ni, Department of Laboratory Medicine and Pathobiology, Department of Physiology, and Department of Medicine, University of Toronto and Canadian Blood Services, St. Michael’s Hospital, Room 420, LKSKI – Keenan Research Centre for Biomedical Science, 209 Victoria Street, Toronto, Ontario, Canada, MSB 1W8. Phone: 416.847.1738; E-mail: nih@smh.ca.

Some of the data from this manuscript have been orally presented at the Hot topics’ talk at the 2012 Gordon Research Conference: Hemostasis, Waterville Valley, New Hampshire, USA, July 22–27, 2012; XXIV congress of the ISTH, Amsterdam, Netherlands, June 29–July 4, 2013; and the 52nd annual meeting of the American Society of Hematology, Orlando, Florida, USA, December 4–7, 2010.

The Journal of Clinical Investigation

