Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Characterization of pandemic influenza immune memory signature after vaccination or infection
Olivia Bonduelle, … , Brigitte Autran, Behazine Combadiere
Olivia Bonduelle, … , Brigitte Autran, Behazine Combadiere
Published June 9, 2014
Citation Information: J Clin Invest. 2014;124(7):3129-3136. https://doi.org/10.1172/JCI74565.
View: Text | PDF
Research Article Immunology

Characterization of pandemic influenza immune memory signature after vaccination or infection

  • Text
  • PDF
Abstract

The magnitude, quality, and maintenance of immunological memory after infection or vaccination must be considered for future design of effective influenza vaccines. In 2009, the influenza pandemic produced disease that ranged from mild to severe, even fatal, illness in infected healthy adults and led to vaccination of a portion of the population with the adjuvanted, inactivated influenza A(H1N1)pdm09 vaccine. Here, we have proposed a multiparameter quantitative and qualitative approach to comparing adaptive immune memory to influenza 1 year after mild or severe infection or vaccination. One year after antigen encounter, severely ill subjects maintained high levels of humoral and polyfunctional effector/memory CD4+ T cells responses, while mildly ill and vaccinated subjects retained strong cellular immunity, as indicated by high levels of mucosal homing and degranulation markers on IFN-γ+ antigen-specific T cells. A principal component analysis distinguished 3 distinct clusters of individuals. The first group comprised vaccinated and mildly ill subjects, while clusters 2 and 3 included mainly infected individuals. Each cluster had immune memory profiles that differed in magnitude and quality. These data provide evidence that there are substantial similarities between the antiinfluenza response that mildly ill and vaccinated individuals develop and that this immune memory signature is different from that seen in severely ill individuals.

Authors

Olivia Bonduelle, Fabrice Carrat, Charles-Edouard Luyt, Catherine Leport, Anne Mosnier, Nora Benhabiles, Anne Krivine, Flore Rozenberg, Nora Yahia, Assia Samri, Dominique Rousset, Sylvie van der Werf, Brigitte Autran, Behazine Combadiere

×

Figure 3

Differential and similar mobilization of immune responses 1 year after A(H1N1)pdm09 vaccination or infection.

Options: View larger image (or click on image) Download as PowerPoint
Differential and similar mobilization of immune responses 1 year after A...
(A) PCA of the immune responses showed that the 57 subjects with complete data could be segregated on the basis of log10 influenza A(H1N1)pdm09–specific responses into 3 clusters: cluster 1 (n = 24; blue), cluster 2 (n = 8; red), and cluster 3 (n = 25; green). (B) The percentages of vaccinated subjects (white), mildly ill subjects (orange), and severely ill subjects (blue) for each cluster are summarized in the pie charts. (C) The radar chart presents the upper and lower 95% CIs of the means of each assay as indicated in linear scale, for cluster 1 (blue), cluster 2 (red), and cluster 3 (green). Statistical analyses used the Mann-Whitney U test, and statistical significance is indicated. **P < 0.01, ***P < 0.001, ****P < 0.0001.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts