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including the airway, pancreas, intestine, and kidney. However, the motifs that localize CFTR to the apical membrane are
unknown. We report that the last 3 amino acids in the COOH-terminus of CFTR (T-R-L) comprise a PDZ-interacting
domain that is required for the polarization of CFTR to the apical plasma membrane in human airway and kidney
epithelial cells. In addition, the CFTR mutant, S1455X, which lacks the 26 COOH-terminal amino acids, including the
PDZ-interacting domain, is mispolarized to the lateral membrane. We also demonstrate that CFTR binds to ezrin-radixin-
moesin–binding phosphoprotein 50 (EBP50), an apical membrane PDZ domain–containing protein. We propose that
COOH-terminal deletions of CFTR, which represent about 10% of CFTR mutations, result in defective vectorial chloride
transport, partly by altering the polarized distribution of CFTR in epithelial cells. Moreover, our data demonstrate that
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Introduction
The cystic fibrosis transmembrane conductance regula-
tor (CFTR) is a member of the ATP-binding cassette fam-
ily and functions as a cAMP-activated chloride channel
that is polarized to the apical plasma membrane in
epithelial cells (1–3). Mutations in the CFTR gene lead
to the genetic disease cystic fibrosis (CF), a lethal auto-
somal recessive disorder affecting approximately 1 in
2,000 live births in Caucasians (4–6). CF is characterized
by high sweat Cl– concentration, pulmonary disease, and
pancreatic insufficiency, although many other organs
including the kidney, liver, heart, and organs of the
reproductive tract are also affected (4, 5). More than 800
different mutations have been identified within the
CFTR gene (7). Nearly 70% of individuals with CF are
homozygous for the CFTR-∆F508 mutation, which
accounts for approximately 90% of all mutant CFTR alle-
les (5). CFTR-∆F508 is a folding mutation that is
trapped in the endoplasmic reticulum and does not traf-
fic to the apical plasma membrane (8, 9). However,
CFTR-∆F508 retains function as a cAMP-activated Cl–

channel (10). Therefore, identification of strategies for
increasing anterograde trafficking of CFTR-∆F508
through the secretory pathway to the apical plasma
membrane, where it can function as a cAMP-activated
Cl– channel, would have important therapeutic implica-
tions for the treatment of CF. To devise strategies for

stimulating CFTR-∆F508 trafficking to the apical plas-
ma membrane, it is first necessary to identify the sorting
determinants that direct CFTR to the apical membrane
in polarized epithelial cells. However, nothing is known
about the motifs involved in directing the polarized
expression of CFTR in the apical plasma membrane.

The generation and maintenance of cell polarity are
crucial for vectorial solute and fluid transport in epithe-
lial cells and for the normal function of neurons (11–15).
Epithelial cells must asymmetrically distribute receptors,
transporters, ion channels, and lipids between the apical
and basolateral membranes to establish and maintain
polarity and function (11, 13, 14, 16). Neurons also must
asymmetrically distribute proteins between axons and
somatodendritic regions (12). In general, proteins sort-
ed to the apical membrane of epithelia are expressed in
the axons of neurons, whereas proteins sorted to the
basolateral membrane of epithelial are distributed to the
somatodendritic region of neurons (12). Polarization of
proteins to apical (axon) and basolateral membrane
(somatodendritic) domains is achieved by distinct sort-
ing or retention signals. Basolateral membrane sorting
signals reside in the cytoplasmic domains of transmem-
brane proteins and are composed of short peptide motifs
including tyrosine-dependent signals (i.e., NPXY or
YXXØ, where X is any amino acid and Ø is a large
hydrophobic amino acid such as leucine, isoleucine, or
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valine), tyrosine-independent signals, and dileucine-
based motifs (13, 14). Some integral membrane proteins
such as Na+-K+-ATPase (17, 18) and β1-integrin (19) are
not sorted preferentially to either the apical or basolat-
eral membrane from the trans-Golgi network but are
selectively retained and accumulated in the basolateral
membrane by interaction with the membrane-associat-
ed cytoskeleton. By contrast, less is known about the sig-
nals that sort and/or retain proteins in the apical (axon)
plasma membrane. Apical membrane sorting signals fre-
quently reside in transmembrane or extracellular
domains and are often composed of lipid or polysaccha-
ride groups. Three classes of apical membrane sorting
signals have been identified: glycosylphosphatidylinosi-
tol (GPI) membrane anchors, N- and O-linked polysac-
charides, and transmembrane domains (13, 14).

Recent studies have demonstrated that PDZ domains,
which are named for 3 proteins in which this domain
was first described (PSD-95, Dlg, and ZO-1), play an
essential role in determining cell polarity (20). PDZ
domains are modular 70–90 amino acid domains in
proteins that bind to short peptide sequences at the
COOH-termini of other proteins, called PDZ-interact-
ing domains (20–23). PDZ domain–PDZ-interacting
domain interaction localizes some proteins to the baso-
lateral plasma membrane (20, 24–27). A role for PDZ
domains in the localization of proteins to the apical
membrane is also emerging (28, 29). Recently, we and
others reported that the COOH-terminal amino acids
of CFTR (T-R-L) are highly conserved and comprise a
PDZ-interacting domain that binds to PDZ domains in
ezrin-radixin-moesin–binding phosphoprotein 50
(EBP50), a protein that is polarized to the apical mem-
brane in MDCK and other epithelial cells (30–32).
Because recent studies implicate PDZ domains in the
polarization of proteins to the apical membrane (28,
29), and because nothing is known about the signals
that determine the apical polarization of CFTR, the
objective of the present study was to test the hypothesis
that the PDZ-interacting domain (T-R-L) in CFTR func-
tions as an apical membrane polarization signal.
Toward these ends, we made chimeric constructs in
which the green fluorescent protein (GFP) was linked to
either wild-type (wt) CFTR or CFTR with truncations in
the COOH-terminus (i.e., CFTR-∆TRL or CFTR-
S1455X) and expressed these proteins in polarized kid-
ney epithelial cells (MDCK) and human bronchial
epithelial cells (16HBE14o-). We report that the PDZ-
interacting domain of CFTR is required for the polar-
ization of CFTR to the apical plasma membrane. In
addition, the CFTR mutation S1455X, which lacks the
26 COOH-terminal amino acids including the PDZ-
interacting domain, is mispolarized to the lateral mem-
brane. We also demonstrate that CFTR binds to EBP50,
an apical membrane PDZ domain–containing protein.
We propose that COOH-terminal deletions of CFTR
result in defective vectorial chloride transport in epithe-
lial cells in part by altering the polarized distribution of
CFTR. In addition, our data demonstrate that PDZ-
interacting domains and PDZ domain–containing pro-
teins play a key role in the apical polarization of ion
channels in epithelial cells.

Methods
Fusion constructs. pGFP-CFTR encoding enhanced GFP
fused to the NH2-terminus of wt-CFTR, was constructed
as described (33). Previously, we demonstrated that addi-
tion of GFP to the NH2-terminus of CFTR had no effect
on CFTR localization, trafficking, or function (33). More-
over, others have shown that GFP has no effect on the
biosynthesis or degradation of CFTR (34). As described
later here, COOH-terminal deletion constructs of CFTR
were generated by PCR-based mutagenesis. PCR primers
were designed using Oligo v4.04 Primer Analysis Software
(Plymouth, Minnesota, USA) and synthesized by the Dart-
mouth College Molecular Biology Core Facility (Hanover,
New Hampshire, USA). Automated DNA sequence analy-
sis of PCR products and deletion constructs was per-
formed using the ABI PRISM Dye Terminator Cycle
Sequencing Ready Reaction Kit (Perkin Elmer Corp., Nor-
walk, Connecticut, USA) to confirm the desired deletion
and to verify that base misincorporation did not occur
during PCR. pGFP-CFTR-∆TRL encodes a GFP-CFTR
fusion protein lacking the 3 COOH-terminal amino acids.
Oligonucleotide primers (sense 5′ TAA ACC TAC CAA
GTC AAC CAA ACC ATA C 3′ and antisense 5′ CGA TAT
CAT CTA ATC TTG CAT CTC TTC TTC TGT CTC CTC
3′) were used to amplify a 923-bp fragment from pGFP-
CFTR plasmid DNA (underlined sequences in the anti-
sense primer correspond to an artificial EcoRV site
appended to facilitate cloning; bold sequences correspond
to the introduced CFTR premature stop codon). The PCR
product was electrophoretically separated on 1% low melt-
ing point agarose gel (Life Technologies, Gaithersburg,
Maryland, USA), gel-purified using the Wizard PCR Preps
DNA Purification System (Promega Corp., Madison, Wis-
consin, USA), and subcloned into the pCR 2.1 vector using
the TA Cloning Kit (Invitrogen, San Diego, California,
USA). After sequence analysis, the PCR product was
excised from pCR 2.1 using BstX1 and EcoRV and sub-
cloned into pGFP-CFTR. pGFP-CFTR-S1455X encodes a
GFP-CFTR fusion protein lacking the 26 CFTR COOH-
terminal amino acids due to mutation of codon 1455
(which encodes serine) to a premature stop codon.
Oligonucleotide primers (sense 5′ GCC AAC AGA AGG
TAA ACC TAC CAA GTC AAC CAA ACC ATA C 3′ and
antisense 5′ CGA TAT C TCA GTT CCG GTG GGG AAA
GAG C 3′) were used to amplify an 866-bp fragment from
pGFP-CFTR (underlined sequences in the antisense
primer correspond to an artificial EcoRV site appended to
facilitate cloning; bold sequences correspond to the intro-
duced CFTR premature stop codon). After sequence
analysis, the PCR product was excised from pCR 2.1 using
BstX1 and EcoRV and subcloned into pGFP-CFTR. pHA-
EBP50 encodes mouse EBP50 tagged with the hemagglu-
tinin (HA) epitope at the NH2-terminus and was con-
structed as described elsewhere (32).

Cell culture and transfection. MDCK type I cells stably
expressing GFP-CFTR fusion proteins were grown at
33˚C on Transwell permeable filter supports (Corning
Inc., Corning, New York, USA) as described previously
(33). COS-7 cells were obtained from the American Type
Tissue Collection (CRL-1651; Rockville, Maryland, USA)
and grown on tissue culture-treated polystyrene flasks
in DMEM (JRH Biosciences, Lenexa, Kansas, USA) con-
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taining 0.37% sodium bicarbonate, 10% FBS (Hyclone,
Logan, UT), 50 U/mL penicillin, 50 mg/mL strepto-
mycin, and 2 mM L-glutamine (Life Technologies) in 5%
CO2-balanced air at 37°C. Human airway epithelial cells
(16HBE14o-), expressing low levels of endogenous wt-
CFTR, a generous gift of D. Gruenert (University of Cal-
ifornia at San Francisco, San Francisco, California, USA),
were grown on VPM-coated Millicell PCF permeable fil-
ter supports (Millipore Corp., Bedford, Massachusetts,
USA) in MEM with Earle’s salts containing 10% FBS, 50
U/mL penicillin, 50 mg/mL streptomycin, and 2 mM L-
glutamine. COS-7 cells and 16HBE14o- cells were tran-
siently transfected using lipofectamine (Life Technolo-
gies) following the manufacturer’s instructions.

Immunofluorescence microscopy. Cells were fixed and
stained for the tight junction protein ZO-1, the lateral
membrane marker protein Na+-K+-ATPase, or biotiny-
lated surface membrane proteins as described previous-
ly (33). HA-tagged EBP50 was immunolocalized by indi-
rect immunofluorescence using anti-HA mAb 12CA5.
Cells were fixed in 3% paraformaldehyde for 20 minutes
at room temperature, washed in PBS, and permeabilized
with 0.2% NP-40 for 15 minutes. After washing in PBS,
nonspecific binding sites were blocked with PBS/10%
normal goat serum (NGS; DAKO Corp., Carpinteria,
California, USA) for 30 minutes. Cells were stained with
1:500 anti-HA mAb in PBS/5% NGS, washed with
PBS/1% BSA, and incubated with 1:100 goat anti-mouse
Texas Red secondary antibody (Molecular Probes Inc.,
Eugene, Oregon, USA) in PBS/1% NGS. Cells were
washed and mounted in 90% glycerol/10% PBS contain-
ing 10 mg/mL n-propyl gallate to retard fading. Cells
were imaged by confocal microscopy as described (33).

Selective cell-surface biotinylation and coimmunoprecipita-
tion. Selective apical and basolateral membrane biotiny-
lations were performed on at least 3 separate clones for
wt and mutant CFTR as described (33). All steps were
performed at 4°C. For coimmunoprecipitation, COS-7
cells were solubilized in lysis buffer (50 mM Tris HCl [pH
8.0], 150 mM NaCl, and 1% Triton X-100, containing the
Complete Protease Inhibitor cocktail [Boehringer
Mannheim, Indianapolis, Indiana, USA]) for 15–20 min-
utes. Cells were disrupted mechanically, and lysates were
spun at 14,000 g for 4 minutes at 4°C to pellet insoluble
material. One tenth of cell supernatant volumes, defined
as total cell lysates, were removed for analysis of total cell
GFP-CFTR and HA-EBP50 content by SDS-PAGE.
Remaining supernatants were precleared with a 50%
slurry of Protein A-agarose beads (Pierce Chemical Co.,
Rockford, Illinois, USA) for 1–2 hours at 4°C with end-
over-end rotation. Beads were pelleted by brief centrifu-
gation (15 seconds at 14,000 g). GFP-CFTR fusion pro-
teins were immunoprecipitated with 5 µg polyclonal
GFP antibody (CLONTECH Laboratories Inc., Palo Alto,
California, USA) or 5 µg nonimmune IgG control rabbit
antibody (DAKO) for 3–4 hours at 4°C with end-over-
end rotation. Antibody-antigen complexes were precipi-
tated with Protein A-agarose beads and incubated for
2–3 hours at 4°C with end-over-end rotation. Beads were
pelleted by brief centrifugation as already described here,
washed (3 times) with lysis buffer, and rotated end-over-
end for 5 minutes at 4°C. Immunoprecipitated proteins

were eluted from beads with SDS sample buffer (0.24 M
Tris HCl [pH 8.9], 16% glycerol, 0.008% bromophenol
blue, 5.6% SDS, and 80 mM of freshly prepared DTT) at
95°C for 5 minutes.

SDS-PAGE and Western blotting. Proteins were separated
by SDS-PAGE and electrophoretically transferred to
PVDF membranes as described elsewhere (33). GFP-
CFTR fusion proteins were detected on membranes
blocked with 5% nonfat dry milk in TBS/0.02% Tween-
20 using monoclonal GFP antibody (1:1,000; CLON-
TECH) or monoclonal CFTR COOH-terminal antibody
(1:1,000; Genzyme Pharmaceuticals, Cambridge, Massa-
chusetts, USA) followed by anti-mouse HRP (1:5,000;
Amersham Life Sciences Inc., Arlington Heights, Illinois,
USA). HA-EBP50 was detected on membranes blocked
with Superblock (Pierce Chemical Co.) supplemented
with 0.02% Tween-20 using biotinylated anti-HA mAb
12CA5 (1:200; Boehringer-Mannheim) followed by neu-
travidin-HRP (1:80,000; Pierce Chemical Co.). Both HA
antibody and neutravidin-HRP were prepared in
Superblock containing 0.02% Tween-20.

In MDCK cells stably expressing GFP-CFTR-∆TRL and
GFP-wt-CFTR, but not in untransfected parental cells, the
GFP mAb recognized 2 bands with relative molecular
masses of approximately 210–240 kDa. These bands rep-
resent core glycosylated (210-kDa band B) and mature gly-
cosylated (240-kDa band C) GFP-CFTR as described pre-
viously (33). In cells expressing GFP-CFTR-S1455X, the
GFP mAb recognized 2 bands with relative molecular
masses of approximately 210 and 240 kDa. As expected, an
antibody that recognizes an epitope corresponding to the
last 4 amino acids of CFTR (35, 36) only labeled GFP-wt-
CFTR and did not detect GFP-CFTR-∆TRL or GFP-CFTR-
1455X. These observations confirm that the GFP-CFTR-
∆TRL and GFP-CFTR-1455X cDNAs encode truncated
CFTR proteins lacking COOH-terminal amino acids.

Semiquantitative confocal microscopy. In 16HBE14o- cells,
GFP-CFTR expression was too low to perform domain
selective cell-surface biotinylation to quantitate apical ver-
sus basolateral membrane distribution. Thus, we exam-
ined the relative distribution of GFP-CFTR fluorescence
in the apical and lateral membranes by semiquantitative
confocal microscopy. GFP fluorescence was quantitated
in randomly acquired confocal micrograph xz vertical sec-
tions as described previously, with minor modifications
(37). Using NIH Image software (version 1.57; National
Institutes of Health, Bethesda, Maryland, USA), a box (∼ 2-
µm wide and encompassing the length of apical or lateral
membranes) was drawn over the region to be measured,
and pixel counts within the boxed region were deter-
mined. The transition between apical and lateral mem-
branes was identified by staining monolayers for the tight
junction protein ZO-1. Pixel intensity histograms were
evaluated to ensure that GFP fluorescence was within the
linear range (0–254). In stable transfectants, apical to
basolateral polarity ratios (R) were calculated using the
following formula: R = (a–c)/[(bl–c)/2 + (br–c)/2] where a
corresponds to pixel counts in the apical membrane
region, bl corresponds to pixel counts in the left lateral
membrane region, br corresponds to pixel counts in the
right lateral membrane region, and c corresponds to back-
ground pixel counts in the nucleus. Lateral membrane

The Journal of Clinical Investigation | November 1999 | Volume 104 | Number 10 1355



measurements were divided by 2 when adjacent cells, with
opposing lateral surfaces, displayed GFP fluorescence.
The denominator was not divided by 2 in measurements
of transiently transfected cells, because only single GFP-
positive cells were observed. GFP fluorescence was gener-
ally not observed in the basal membrane that was exclud-
ed from analyses. A similar method has previously been
used to quantitate the apical to basolateral polarity ratios
of Na+-K+-ATPase and H+-K+-ATPase subunits (37). In sta-
bly transfected MDCK cells, we obtained similar results
using domain selective cell-surface biotinylation and
semiquantitative confocal microscopy to determine the
ratio of apical to basolateral expression of CFTR (Table 1).

Results
To determine whether the COOH-terminal PDZ-inter-
acting domain (T-R-L) is important for the polarization
of CFTR to the apical membrane of epithelial cells, we
stably expressed GFP-wt-CFTR, GFP-CFTR-∆TRL, or
GFP-CFTR-1455X in MDCK cells. Examination of GFP-
wt-CFTR localization by immunofluorescence confocal
microscopy demonstrated that GFP-wt-CFTR was polar-
ized to the apical plasma membrane (Figure 1a). The ratio
of GFP-wt-CFTR in the apical versus the basolateral plas-
ma membrane was 7.5 ± 2.3 as determined by domain-
selective cell-surface biotinylation (Figure 1c; Table 1). By
contrast, examination of GFP-CFTR-∆TRL localization
by immunofluorescence confocal microscopy demon-
strated that GFP-CFTR-∆TRL was not polarized to either
the apical or basolateral plasma membranes (Figure 1b).
The ratio of GFP-CFTR-∆TRL in the apical versus the
basolateral membrane was 0.6 ± 0.3 (P < 0.001 versus wt-
CFTR; Table 1) as determined by domain-selective cell-
surface biotinylation (Figure 1c). Similar results were
obtained in human airway epithelial cells (16HBE14o-;
Table 1). Examination of GFP-wt-CFTR distribution in
16HBE14o- cells by immunofluorescence confocal
microscopy demonstrated that wt-CFTR was polarized to
the apical plasma membrane. By contrast, GFP-CFTR-
∆TRL was not polarized to either the apical or basolater-
al plasma membrane in 16HBE14o- cells. The ratio of
GFP-wt-CFTR in the apical versus the basolateral mem-
brane of 16HBE14o- cells was 3.6 ± 0.6, whereas the ratio
of GFP-CFTR-∆TRL in the apical versus the basolateral
membrane was 0.7 ± 0.1 (P < 0.001 versus wt-CFTR; Table
1). Thus, the PDZ-interacting domain (T-R-L) is required
for the apical polarization of CFTR in kidney (MDCK)
and human airway epithelial cells (16HBE14o-).

Approximately 10% of all mutations in CFTR result in
the deletion of the COOH-terminal region including the
PDZ-interacting domain. Because deletion of 61 or fewer
amino acids in the COOH-terminus of CFTR does not
alter cAMP-stimulated Cl– permeability (38, 39), the
mechanism whereby these mutations cause CF is unclear.
Accordingly, we examined the cellular distribution of the
COOH-terminal truncation mutant, S1455X, which
lacks the COOH-terminal 26 amino acids including the
PDZ-interacting domain (40). Patients with CFTR-
S1455X have defective Cl– transport in sweat ducts (40).
Examination of GFP-CFTR-S1455X localization by
immunofluorescence confocal microscopy demonstrat-
ed that CFTR-S1455X was polarized to the lateral plasma
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Figure 1
The COOH-terminal PDZ-interacting domain (TRL) is required for
polarization of CFTR to the apical membrane. (a) Confocal fluores-
cence micrograph (xz plane) of MDCK cells stably expressing GFP-wt-
CFTR in the apical membrane. (b) Confocal fluorescence micrograph
(xz plane) of MDCK cells stably expressing GFP-CFTR-∆TRL in the api-
cal and lateral membranes. GFP fluorescence is green, and ZO-1, a
protein in tight junctions that separates apical and basolateral mem-
brane domains, is red. Scale bar = 10 µm. AP = location of apical
membrane; BL = location of basal membrane. (c) Western blot of
cells expressing wt-CFTR or CFTR-∆TRL. Selective cell-surface biotiny-
lation of the apical (AP) or basolateral membrane (BL). Whereas
GFP-wt-CFTR was expressed primarily in the apical membrane (ratio
of apical/basolateral membrane expression = 7.5), GFP-CFTR-∆TRL
was expressed nearly equally in the apical and basolateral membranes
(ratio of apical/basolateral membrane expression = 0.6). Mature, gly-
cosylated GFP-wt-CFTR band C is approximately 240 kDa. *High
molecular weight form of CFTR that has been reported previously (33,
37). (d) Selective biotinylation of the apical membrane. (e) Selective
biotinylation of the basolateral membrane. Biotin was detected with
streptavidin-Texas-red as described (33). Images in d and e demon-
strate that in our experiments, tight junctions were intact and the
biotin regent applied to the apical membrane did not have access to
CFTR present on the basolateral membrane and vice versa. In addi-
tion, the absence of core-glycosylated GFP-wt-CFTR (band B) in sur-
face biotinylated samples indicates that cell integrity was not com-
promised and that biotin was not accessible to the endoplasmic
reticulum and cis-Golgi apparatus, where core glycosylated CFTR
band B is located.



membrane of kidney (MDCK) and human airway epithe-
lial cells (16HBE14o-; Figure 2 and Table 1). GFP-CFTR-
S1455X colocalized with the lateral membrane protein
Na+-K+-ATPase (Figure 2d). Moreover, the ratio of GFP-
CFTR-S1455X in the apical versus the basolateral plasma
membrane was 0.2 ± 0.1 as determined by domain-selec-
tive cell-surface biotinylation (Table 1). These results con-
firm that the COOH-terminus of CFTR is required for
the apical polarization of CFTR in kidney (MDCK) and
human airway epithelial cells (16HBE14o-). That CFTR-
S1455X was expressed primarily in the basolateral mem-
brane, whereas CFTR-∆TRL was equally distributed in
the apical and basolateral plasma membranes, suggests
that some basolateral targeting information is sup-
pressed or inactive in CFTR-∆TRL (see Discussion).

We and others recently reported that the PDZ
domain–containing protein EBP50, which is expressed in
MDCK and human airway epithelial cells, binds to the
PDZ-interacting domain of CFTR as determined by yeast
2-hybrid analysis and in vitro pulldown assays (30–32).
However, interaction and colocalization of CFTR and
EBP50 in vivo have not been reported. To determine
whether EPB50 interacts with and colocalizes with GFP-
wt-CFTR in vivo, and whether the PDZ-interacting
domain of CFTR is required for interaction and colocal-
ization with EBP50, we coexpressed EBP50 with GFP-wt-
CFTR, GFP-CFTR-∆TRL, or GFP-CFTR-S1455X in
MDCK and COS cells. Examination of GFP-wt-CFTR
and EBP50 by immunofluorescence confocal microscopy
demonstrated that GFP-wt-CFTR and EBP50 colocalized
to the apical plasma membrane of MDCK cells (Figure 3,
a–c). However, GFP-CFTR-∆TRL, which was expressed
equally in the apical and lateral membranes, only partial-
ly colocalized with EBP50 that was expressed in the api-
cal plasma membrane. Colocalization of GFP-CFTR-
∆TRL was evident in the apical but not in the lateral
membranes (Figure 3, d–f). By contrast, examination of
GFP-CFTR-S1455X location by immunofluorescence
confocal microscopy demonstrated that GFP-CFTR-
S1455X did not colocalize with EBP50. GFP-CFTR-
S1455X was polarized to the lateral plasma membrane,
whereas EBP50 was polarized to the apical plasma mem-
brane (Figure 3, g–i).

To test the hypothesis that EBP50 and CFTR interact
via the COOH-terminal PDZ-interacting domain of
CFTR in vivo, we coexpressed EBP50 with GFP-wt-
CFTR, GFP-CFTR-∆TRL, or GFP-CFTR-S1455X in COS

cells and determined whether CFTR and EBP50 could be
coimmunoprecipitated. EBP50 coimmunoprecipitated
with GFP-wt-CFTR but not with GFP-CFTR-∆TRL (Fig-
ure 4) or GFP-S1455X. These observations demonstrate
that CFTR-EBP50 coimmunoprecipitation requires the
COOH-terminal PDZ-interacting domain of CFTR.
Taken together, these observations suggest that the
polarized expression of CFTR at the apical membrane
requires the PDZ-interacting domain of CFTR and may
involve interaction with EBP50.

Discussion
We have demonstrated that the last 3 amino acids in the
COOH-terminus of CFTR (T-R-L) comprise a PDZ-inter-
acting domain that is required for the polarization of
CFTR to the apical plasma membrane in human airway
and kidney epithelial cells. Our data also suggest that the
polarization of CFTR to the apical plasma membrane
involves interaction with an apical membrane PDZ
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Table 1
Deletion of the PDZ-interacting domain of CFTR abrogates its apical
polarization

Cell line wt-CFTR CFTR-∆TRL CFTR-S1455X

MDCK (Biotinylation) 7.5 ± 2.3 0.6A ± 0.3 0.2A ± 0.1
MDCK (Confocal) 3.0 ± 0.4 0.6A ± 0.1 0.1A ± 0.1
16HBE14o- (Confocal) 3.6 ± 0.6 0.7A ± 0.1 0.1A ± 0.1

Data are expressed as the ratio of CFTR expressed in the apical versus the basolater-
al plasma membrane. The polarized expression of CFTR was determined by selective,
cell-surface biotinylation or by semiquantitative, confocal microscopy as described in
Methods. Similar results were obtained in MDCK cells using both methods, validat-
ing the semiquantitative confocal microscopy approach. Data are expressed as mean
± SEM. ASignificantly different from wt-CFTR in the same cell line (P < 0.001).

Figure 2
Confocal fluorescence micrographs (xz plane) of cells expressing GFP-wt-
CFTR or GFP-CFTR-S1455X. GFP fluorescence is green, and ZO-1, a pro-
tein in tight junctions that separates apical and basolateral membrane
domains, is red. (a) GFP-wt-CFTR is located in the apical membrane of
MDCK cells. (b) GFP-CFTR-S1455X is located in the lateral membrane
of MDCK cells. (c) GFP-CFTR-S1455X is located in the lateral membrane
of 16HBE14o- cells. (d) GFP-CFTR-S1455X (left panel in green) colocal-
izes with Na+-K+-ATPase (middle panel in red) in the lateral membrane
(right panel is a merge of red and green channels, yellow-orange indicates
colocalization). GFP-wt-CFTR is expressed in the apical membrane of
16HBE14o- cells (image not shown). Note that some GFP-CFTR-S1455X
is expressed in an intracellular compartment. Scale bars = 10 µm. AP =
location of apical membrane; BL = location of basal membrane.



domain–containing protein such as EBP50, although we
cannot exclude the possibility that CFTR may interact
with PDZ domains in other proteins such as CFTR-asso-
ciated ligand (CAL) (41, 42). Thus, we propose that
COOH-terminal deletions of CFTR, which represent
about 10% of CFTR mutations and cause severe CF phe-
notypes, may result in defective vectorial chloride trans-
port in part by altering the polarized distribution of
CFTR in epithelial cells. Moreover, our data support the
emerging concept that interaction between PDZ domains
and PDZ-interacting domains plays a key role in the api-
cal polarization of ion channels in epithelial cells.

Interaction between PDZ domains and the PDZ-inter-
acting domain located in the COOH-terminus of many
proteins has been shown to be required for their polar-
ized expression in epithelial cells. For example, in
Caenorhabditis elegans, the receptor tyrosine kinase let-23
contains a PDZ-interacting domain and is localized to
the lateral membrane by direct interaction with the PDZ
domain–containing lin-7/lin-2/lin-10 complex (24, 27).
Mutations in the PDZ domain of lin-7 causes let-23 to
redistribute from the lateral to the apical membrane (24,
27). Lin-10 is also required for basolateral localization of
GLR-1 glutamate receptors in C. elegans (26). In mam-
malian cells, the proteoglycan syndecan contains a PDZ-
interacting domain and is localized to the lateral mem-
brane by CASK, the mammalian homologue of lin-2 (43).
Deletion of the syndecan COOH-terminus results in non-
polarized expression to apical and basolateral mem-
branes (44). Thus, interactions between PDZ-interacting
domains and lin-7/lin-2/lin-10 homologs may be a gen-
eral mechanism for basolateral polarization in epithelial
cells. A role for PDZ domains in determining the polar-
ization of proteins to the apical membrane is also emerg-

ing. For example, a splice variant of the voltage-gated K+

channel Kv3.2a, which contains a COOH-terminal PDZ-
interacting domain-like sequence, is polarized to the api-
cal membrane (29). By contrast, a splice variant that
deletes the COOH-terminal PDZ-interacting domain-like
sequence of Kv3.2a is polarized to the basolateral mem-
brane (29). In addition, the neuronal GABA-3 transporter
(GAT-3) contains a COOH-terminal, PDZ-interacting
domain-like sequence and is polarized to the apical mem-
brane (28). Deletion of the 3 COOH-terminal amino
acids disrupts the apical polarization of GAT-3 and
results in nonpolarized expression in apical and basolat-
eral domains (28). Thus, our results are consistent with
the emerging view that interaction between PDZ
domains and PDZ-interacting domains is involved in the
polarized expression of ion channels and other transport
proteins in the apical plasma membrane of epithelia.

Our results are consistent with the view that EBP50, or
another PDZ domain–containing protein such as CAL
(41, 42), may play a key role in the polarization of CFTR
to the apical plasma membrane in epithelial cells. Dele-
tion of the PDZ-interacting domain of CFTR abrogated
colocalization of CFTR and EBP50 to the apical mem-
brane and eliminated coimmunoprecipitation of EBP50
and CFTR. Interaction of CFTR with EBP50 may medi-
ate the polarized expression of CFTR to the apical plas-
ma membrane by several mechanisms. First, upon sort-
ing to the apical plasma membrane, CFTR may be
retained or anchored by binding to PDZ domains. Sim-
ilar mechanisms mediate the polarized expression of
Na+-K+-ATPase and β1-integrin in the basolateral mem-
brane, where interaction with the actin-based cytoskele-
ton retains these proteins in the basolateral membrane
(17–19). In some cell lines, Na+-K+-ATPase is sorted from

1358 The Journal of Clinical Investigation | November 1999 | Volume 104 | Number 10

Figure 3
Deletion of the PDZ-interacting domain of CFTR abrogates colocalization of CFTR and EBP50. Confocal fluorescence micrographs (xz plane) of
MDCK cells coexpressing: (a–c) EBP50 and wt-CFTR, (d–e) EBP50 and CFTR-∆TRL, and (g–i) EBP50 and CFTR-S1455X. GFP-CFTR is green (a, d,
g), EBP50 is red (b, e, h), and the merged red and green images are shown in c, f, and i. Colocalization of EBP50 and GFP-CFTR is orange-yellow in
c and f. Note that some GFP-CFTR-S1455X and GFP-CFTR-∆TRL are expressed in an intracellular compartment (d and g). Also note that only some
cells express EBP50 because EBP50 is transiently expressed in approximately 10% of cells. Scale bar = 10 µm. AP = location of apical membrane; BL
= location of basal membrane.



the trans-Golgi network to both the apical and basolat-
eral membrane: however, the Na+-K+-ATPase that is sort-
ed to the apical membrane is rapidly endocytosed and
degraded, whereas the Na+-K+-ATPase sorted to the baso-
lateral membrane is retained and accumulates in this
membrane via its interaction with the actin-based
cytoskeleton, thereby leading to basolateral polarization
(17). Second, EBP50, or another PDZ domain–contain-
ing protein such as CAL, may facilitate anterograde traf-
ficking of CFTR along the secretory pathway from the
endoplasmic reticulum to the Golgi to the apical plasma
membrane. This view is supported by the recent obser-
vation that CFTR associates with CAL in the trans-Golgi
network (42) and that the PDZ-interacting domain of
pro–TGF-α is required for its efficient trafficking along
the secretory pathway and for its expression at the plas-
ma membrane (45). Moreover, the COOH-most termi-
nal amino acids of several proteins are required for the
efficient export of the proteins from the endoplasmic
reticulum and/or the trafficking of these proteins to the
plasma membrane (46, 47). Third, the PDZ-interacting
domain may be a apical sorting determinant that directs
the trafficking of CFTR from the trans-Golgi network to
the apical membrane. In the present study, we observed
that approximately 30% of total cellular GFP-wt-CFTR
was expressed in the plasma membrane, whereas only
1–3% of total cellular GFP-CFTR-∆TRL and GFP-
S1455X was expressed in the plasma membrane. These
observations are consistent with all 3 hypothesis pre-
sented here. Interestingly, elimination of EBP50-CFTR
interaction abrogates the apical polarization of CFTR
but does not alter the apical localization of EBP50 (Fig-
ure 3). Thus, it is possible that PDZ domain–containing
proteins stabilize CFTR in the apical membrane and/or
direct the trafficking of CFTR to the apical membrane.
However, elucidation of the mechanism whereby the
PDZ-interacting domain of CFTR directs its apical
polarization requires additional study.

EBP50, like other PDZ domain–containing proteins,
may organize 3-dimensional macromolecular signaling
complexes at the apical plasma membrane of epithelial
cells, thereby linking CFTR with regulatory kinases such
as protein kinase A, ezrin (a protein kinase A anchoring
protein that binds to actin [48]), phosphatases, and
other apical membrane ion channels, such as outwardly
rectifying chloride channels (ORCC), the epithelial sodi-
um channel (ENaC), and the epithelial K+ channel
(ROMK), which functionally interact with CFTR (49).
According to this view, disruption of PDZ
domain–CFTR interaction would result in defective reg-
ulation of CFTR by kinases and phosphatases and abro-
gation of CFTR regulation of ENaC, ORCC, and ROMK.
Additional studies are required to determine whether
CFTR-EBP50 interaction is required for CFTR to regu-
late the function of other proteins and to be regulated by
kinases and phosphatases.

Although the polarization of CFTR-S1455X is dramat-
ically different from wt-CFTR, this mutation does not
cause CF, as pulmonary and pancreatic function appear
to be normal; however, CFTR-S1455X results in elevated
sweat chloride concentration (40). Because CFTR-S1455X
is a functionally normal Cl– channel, we conclude that

defective Cl– transport in sweat ducts is most likely due to
the mispolarization of CFTR-S1455X to the lateral rather
than the apical plasma membrane. We speculate that the
relatively small fraction of CFTR-S1455X expressed at the
apical membrane may be sufficient to sustain pulmonary
and pancreatic function, but not sweat duct function. In
addition, the fact that CFTR-S1455X was polarized to the
lateral membrane, whereas CFTR-∆TRL was equally dis-
tributed between the apical and basolateral plasma mem-
branes, suggests that some basolateral sorting informa-
tion is suppressed in CFTR-∆TRL. Deletion of the last 26
amino acids of CFTR may unmask suppressed basolater-
al sorting motifs such as the tyrosine-based motif (amino
acids 1424–1427) or the dileucine motif (amino acids
1430–1431). Because sorting determinants are position
dependent and hierarchical, deletion of the last 26 amino
acids in CFTR may unmask the tyrosine and/or dileucine
motifs, such that 1 or both of these motifs direct CFTR-
S1455X to the lateral membrane (13, 14).
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Figure 4
Coimmunoprecipitation of EBP50 and CFTR. EBP50 was coexpressed
with GFP-wt-CFTR or GFP-CFTR-∆TRL in COS-7 cells. Immunoprecipi-
tation was conducted with a polyclonal GFP antibody (to immunopre-
cipitate CFTR) or a nonspecific, control IgG antibody and blots were
probed with monoclonal GFP (to detect CFTR) or an anti-HA antibody
to detect HA-tagged EBP50, as indicated. Cell lysates were probed for
the expression of CFTR and EBP50. Top 2 blots show immunoprecipita-
tions. Bottom 2 blots show cell lysates. Neither EBP50 nor CFTR was
immunoprecipitated when a nonspecific, control IgG from nonimmune
rabbit serum was used. CFTR immunoprecipitation efficiency was simi-
lar in all samples, and cell lysates expressed equivalent levels of EBP50
and CFTR fusion proteins. Thus, results cannot be attributed to differ-
ential protein expression. Similar results were obtained when EBP50 was
immunoprecipitated and the blots probed with a GFP antibody to iden-
tify CFTR (data not shown). Mature glycosylated GFP-wt-CFTR band C
is approximately 240 kDa. The higher molecular weight band of CFTR has
been reported (33, 36).



Several classes of mutations in CFTR have been iden-
tified, including those that affect protein synthesis (class
I); protein folding, processing, and export from the
endoplasmic reticulum to the plasma membrane (class
II); regulation by ATP and protein kinase A (class III); ion
conductance (class IV); stability or abundance of mRNA
and protein (class V); and regulation of other ion chan-
nels (class VI) (5). Because deletion of the COOH-termi-
nus of CFTR (e.g., up to 61 amino acids) does not affect
the ability of cAMP to activate CFTR-mediated Cl– cur-
rents (38, 39), yet causes severe CF, we speculate that
mutations that delete the COOH-terminus of CFTR,
including the PDZ-interacting domain, may abrogate
vectorial Cl– transport in part by disrupting CFTR polar-
ization to the apical membrane. Indeed, in MDCK cells
stably expressing GFP-CFTR-∆TRL or GFP-CFTR-
S1455X, we observed that CPT-cAMP–stimulated,
transepithelial Cl– secretion was not different from
parental, untransfected MDCK cells. By contrast, as
reported previously, MDCK cells stably expressing GFP-
wt-CFTR manifest significantly higher rates of CPT-
cAMP–stimulated transepithelial Cl– secretion compared
with parental untransfected MDCK cells (33). Thus,
mutations that delete the COOH-terminus may consti-
tute a new class of CFTR mutations (class VII) that cause
defective Cl– secretion because COOH-terminal truncat-
ed CFTR is mispolarized to the lateral membrane. Addi-
tional studies on other COOH-terminal deletions of
CFTR are required to support this hypothesis.

Our observation that COOH-terminal truncations
abrogate CFTR polarization in epithelial cells may have
important implications for CFTR gene therapy. Recent-
ly, it was proposed that COOH-terminal truncations of
CFTR, which increase transfection efficiency, may be
useful for human gene therapy (39). However, because
COOH-terminal deletions of CFTR affect its polarized
distribution in epithelial cells, it must be considered that
these deletion constructs may not lead to improved api-
cal membrane expression compared with wt-CFTR in
polarized epithelial cells in vivo.

In summary, we report that the last 3 amino acids in
the COOH-terminus of CFTR (T-R-L) comprise a PDZ-
interacting domain that is required for the polarization
of CFTR to the apical plasma membrane in human air-
way and kidney epithelial cells. Our data also suggest
that apical polarization of CFTR involves interaction
with EBP50, or some other PDZ domain–containing
protein such as CAL. We propose that COOH-terminal
deletions of CFTR, which represent about 10% of CFTR
mutations, may result in defective vectorial chloride
transport in part by altering the polarized distribution
of CFTR in epithelial cells. Moreover, our data demon-
strate that PDZ-interacting domains and PDZ
domain–containing proteins play a key role in the apical
polarization of ion channels in epithelial cells.
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