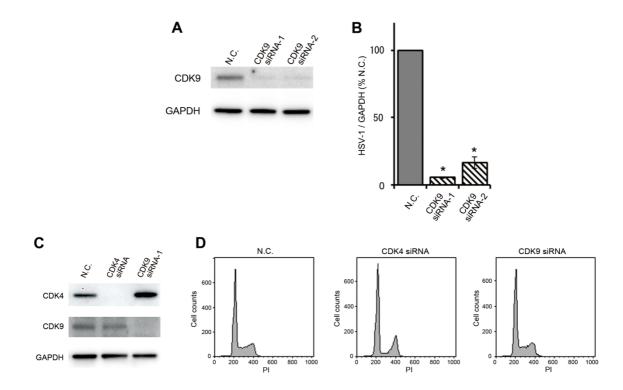
#### 1 SUPPLEMENTARY INFORMATION

 $\mathbf{2}$ 

# 3 Novel CDK9 Inhibitor Prevents Replication of Broad DNA Viruses

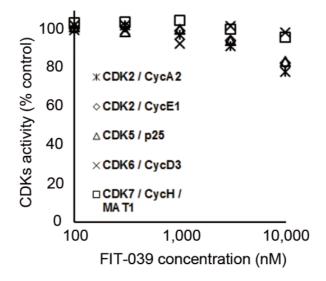
| 5  | Makoto Yamamoto, <sup>1,2,3</sup> Hiroshi Onogi, <sup>2</sup> Isao Kii, <sup>3</sup> Suguru Yoshida, <sup>4</sup> Kei Iida, <sup>3</sup> Hiroyuki |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 6  | Sakai, <sup>5</sup> Minako Abe, <sup>6</sup> Toshiaki Tsubota, <sup>3</sup> Nobutoshi Ito, <sup>6</sup> Takamitsu Hosoya, <sup>4</sup> &          |
| 7  | Masatoshi Hagiwara <sup>3</sup> *                                                                                                                 |
| 8  | *e-mail: hagiwara.masatoshi.8c@kyoto-u.ac.jp                                                                                                      |
| 9  |                                                                                                                                                   |
| 10 | <sup>1</sup> Department of Developmental and Regenerative Biology, Medical Research Institute,                                                    |
| 11 | Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510                                                                    |
| 12 | (Japan)                                                                                                                                           |
| 13 | <sup>2</sup> KinoPharma. Inc., 2-8-9 Sangenjaya, Setagaya-ku, Tokyo 154-0024 (Japan)                                                              |

- 14 <sup>3</sup>Department of Anatomy and Developmental Biology, Graduate School of Medicine,
- 15 Kyoto University, Yoshida-Konoe-cho, Sakyo-ku Kyoto, 606-8501 (Japan)
- 16 <sup>4</sup>Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering,


| 2  | (Japan)                                                                                      |
|----|----------------------------------------------------------------------------------------------|
| 3  | <sup>5</sup> Department of Viral Oncology, Institute for Virus Research Kyoto University, 53 |
| 4  | Shogoin Kawara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)                                         |
| 5  | <sup>6</sup> Laboratory of Structural Biology, Medical Research Institute, Tokyo Medical and |
| 6  | Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8510 (Japan)                         |
| 7  |                                                                                              |
| 8  | Supplementary Results: Supplementary Figures and legends: 1-9                                |
| 9  | Supplementary Tables: Supplementary Table and legends 1-7                                    |
| 10 | Supplementary Notes and References: Synthesis and Methods                                    |

Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Tokyo 101-0062

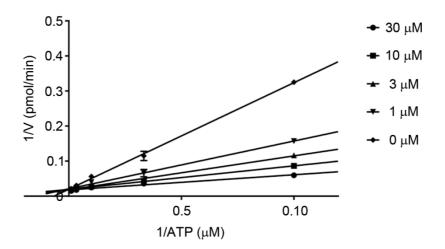
11


#### **1** Supplementary Results

#### 2 Supplementary Figure 1



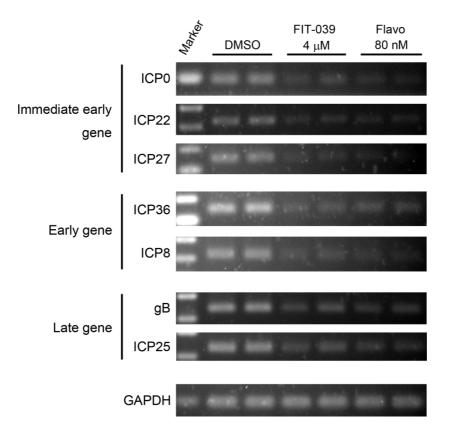
#### 3 Knockdown of CDK9 suppressed the replication of HSV-1.


(A) Knockdown of CDK9 by siRNA-1 and -2 (see Methods) in HeLa cells. Total cell 4  $\mathbf{5}$ lysates were subjected to Western blotting with antibodies against CDK9 and GAPDH. 6 (B) Replication of HSV-1 was suppressed in CDK9-knockdown HeLa cells. The 7 genomic DNA of HSV-1 replication was analyzed by real-time PCR. Scramble oligo 8 was used as a negative control (N.C.). Each point represents the average ± standard 9 deviation of the results from three experiments preformed in duplicate. Asterisks 10 indicate significant differences (\* P < 0.0001) versus N.C. as determined by the Student's t test (B). (C) Knockdown of CDK4 or CDK9 in HeLa cells by siRNAs. Total 11 12cell lysates were subjected to Western blotting with antibodies against CDK4, CDK9, 13and GAPDH. (D) Knockdown of CDK9 did not affect the cell cycle, compared to that 14of CDK4. Cells were stained with propidium iodide and analyzed by flow cytometry.



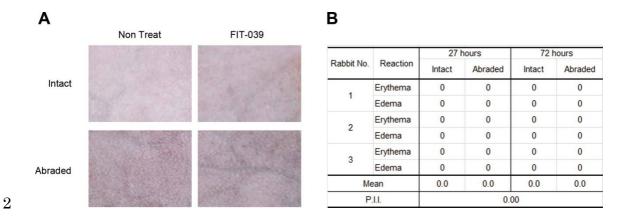
## 2 In vitro kinase assay of other CDKs

- 3 An increased amount of FIT-039 did not inhibit CDK2/cyclinA2, CDK2/cyclinE1,
- 4 CDK5/p25, CDK6/cyclinD3, and CDK7/cyclin/MAT1.


 $\mathbf{5}$ 

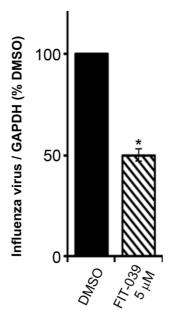


# 2 Double-reciprocal plots of FIT-039 against CDK9/CycT1


- 3 Double-reciprocal plots showing the competitive inhibition of ATP by FIT-039.
- 4 CDK9/CycT1 activity was measured at the indicated concentration of FIT-039 and ATP.
- 5 Reciprocal velocity was plotted *versus* 1/[ATP]. Km = 36.85  $\mu$ M, V<sub>max</sub> = 5.78 pmol/min,
- 6 and  $Ki = 5.23 \mu M$ .

7

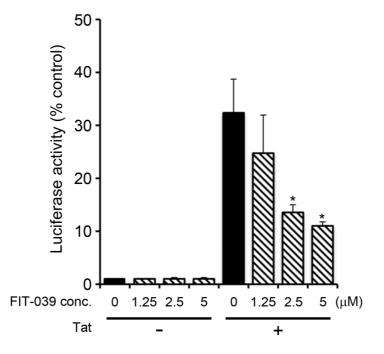



## 2 FIT-039 and flavopiridol inhibited the transcription of HSV-1 genes

FIT-039 and flavopiridol suppressed the transcription of the HSV-1 immediate-early
genes (ICP0, ICP22, and ICP27), early genes (ICP36 and ICP8), and late gene (gB and
ICP25). Attachment of HSV-1 to HeLa cells was allowed at 4 °C for 15 minutes, and the
cells were then incubated at 37 °C for 24 hours with the indicated compounds. The cells
were subjected to RT-PCR. Flavo: Flavopiridol.

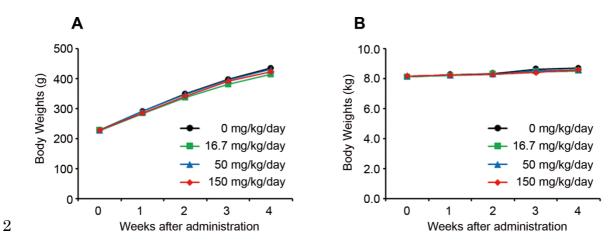


#### 3 Skin irritation test in rabbits


4 (A, B) The backs of rabbits were clipped and epidermal abrasions were performed with a sterile needle at one test site, while the opposite site remained intact. A total of 0.5 g of  $\mathbf{5}$ 6 FIT-039 was then applied to each site, which was then covered with a non-reactive cloth. 7Three rabbits were subjected to each experimental group. The test sites were examined 8 for dermal reactions 27 and 72 hours after the test article application (A) in accordance 9 with the FHSA-recommended Draize scoring criteria. The Primary Irritation Index 10 (P.I.I.) of FIT-039 was calculated to be 0.00; No irritation was observed on the skins of 11 rabbits (B).

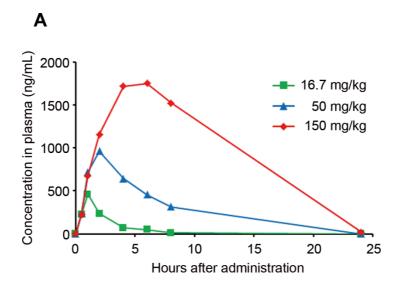


# 2 FIT-039 suppressed the replication of influenza virus H1N1


3 MDCK cells were infected with influenza virus H1N1 PR8 strain and treated with 5  $\mu$ M 4 FIT-039 for 48 hrs. Influenza virus H1N1 replication was analyzed by real-time PCR at 5  $\mu$ M of FIT-039. Each bar represents the average  $\pm$  standard deviation of the results 6 from three experiments preformed in duplicate. Asterisks indicate significant 7 differences (\* P < 0.005) versus the DMSO treatment as determined by the Student's t 8 test.

9




#### 2 **FIT-039** inhibited **HIV-TAT** induced transcription in a dose-dependent manner.

3 CV1 cells were co-transfected with hRL-tk, LTR-Luc, EGFP-C1, herring sperm DNA 4 and 3µg CMV4-Tat or CMV4-(no insert). hRL-tk (Promega) as an internal control.  $\mathbf{5}$ Medium was changed to each compound medium at the indicated concentrations 24 hr 6 after transfection. These cells were harvested 48 hr post-treatment. Luciferase and 7 renilla luciferase activity were measured by Luciferase Assay System (Promega). Each 8 bar represents the average  $\pm$  standard deviation of the results from three experiments preformed in duplicate. Asterisks indicate significant differences (\* P < 0.005) versus 9 10 the DMSO treatment as determined by the Student's t test.



#### 3 Four weeks repeated-dose oral toxicity studies in rats and dogs.

FIT-039 (16.7, 50 or 150 mg/kg) or the solvent (0.5% methylcellulose) were orally
administrated to male rats or dogs once a day for 28 days. Body weights and general
conditions were determined for 28 days from the first administration. Rats body weights
(A), dogs body weights (B).



#### 2 Oral absorbability of FIT-039 in rats.

3 FIT-039 (16.7, 50 or 150 mg/kg) were orally administrated to male rats. Oral 4 absorbability was determined at 0, 0.5, 1, 2, 4, 6, 8 and 24 hrs from the first 5 administration by LC/MS/MS.

6

 $\mathbf{7}$ 

# 1 Supplementary Tables

# 2 Supplementary Table 1

| Kinase                                                                                                                                               | % Inhibition                                                                                              | Kinase 9                                                                                                                      | % Inhibition                                                                                                                         | Kinase 9                                                                                                                                                                     | 6 Inhibition                                                                     | Kinase %                                                                                                                                                                 | Inhibition                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Abl                                                                                                                                                  | -2.0                                                                                                      | EphA3                                                                                                                         | 1.0                                                                                                                                  | MAPKAP-K2                                                                                                                                                                    | -6.0                                                                             | PKCe                                                                                                                                                                     | 25.0                                                                                     |
| Abl (E255K)                                                                                                                                          | -5.6                                                                                                      | EphA4                                                                                                                         | 2.0                                                                                                                                  | MAPKAP-K3                                                                                                                                                                    |                                                                                  | ΡΚϹζ                                                                                                                                                                     | -4.0                                                                                     |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               |                                                                                                                                      | MARK1                                                                                                                                                                        | 3.0                                                                              | РКСу                                                                                                                                                                     |                                                                                          |
| Abl (H396P)                                                                                                                                          | 10.0                                                                                                      | EphA5                                                                                                                         | 9.0                                                                                                                                  |                                                                                                                                                                              | 2.0                                                                              |                                                                                                                                                                          | 33.0                                                                                     |
| Abl (M351T)                                                                                                                                          | -1.0                                                                                                      | EphA6                                                                                                                         | 2.4                                                                                                                                  | MARK2                                                                                                                                                                        | 2.9                                                                              | РКСӨ                                                                                                                                                                     | 18.0                                                                                     |
| Abl (Q252H)                                                                                                                                          | -1.0                                                                                                      | EphA7                                                                                                                         | 27.0                                                                                                                                 | MARK3                                                                                                                                                                        | 3.2                                                                              | PKCı                                                                                                                                                                     | 3.0                                                                                      |
| Abl(T315I)                                                                                                                                           | -29.0                                                                                                     | EphA8                                                                                                                         | 1.0                                                                                                                                  | MARK4                                                                                                                                                                        | 3.1                                                                              | PKD1                                                                                                                                                                     | 0.0                                                                                      |
| Abl(Y253F)                                                                                                                                           | 1.0                                                                                                       | EphB1                                                                                                                         | 17.0                                                                                                                                 | MEK1                                                                                                                                                                         | -5.0                                                                             | PKD2                                                                                                                                                                     | -10.0                                                                                    |
| ACK1                                                                                                                                                 |                                                                                                           | EphB2                                                                                                                         |                                                                                                                                      | MELK                                                                                                                                                                         |                                                                                  | PKD3                                                                                                                                                                     |                                                                                          |
|                                                                                                                                                      | 5.0                                                                                                       |                                                                                                                               | 14.0                                                                                                                                 |                                                                                                                                                                              | 39.0                                                                             |                                                                                                                                                                          | 3.8                                                                                      |
| ALK                                                                                                                                                  | 39.0                                                                                                      | EphB3                                                                                                                         | 9.0                                                                                                                                  | Mer                                                                                                                                                                          | 25.0                                                                             | PKG1α                                                                                                                                                                    | 44.0                                                                                     |
| ALK4                                                                                                                                                 | 23.0                                                                                                      | EphB4                                                                                                                         | 11.0                                                                                                                                 | Met                                                                                                                                                                          | 6.0                                                                              | PKG1β                                                                                                                                                                    | 41.0                                                                                     |
| AMPK                                                                                                                                                 | 10.0                                                                                                      | ErbB4                                                                                                                         | -8.0                                                                                                                                 | MET(Y1235D)                                                                                                                                                                  | 11.3                                                                             | PKN1                                                                                                                                                                     | 77.4                                                                                     |
| AMPKa2/b1/g1                                                                                                                                         | 3.7                                                                                                       | Erk1                                                                                                                          | -2.1                                                                                                                                 | MGC42105                                                                                                                                                                     | 6.9                                                                              | PKR                                                                                                                                                                      | -1.7                                                                                     |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               |                                                                                                                                      |                                                                                                                                                                              |                                                                                  |                                                                                                                                                                          |                                                                                          |
| Arg                                                                                                                                                  | 2.0                                                                                                       | Erk5                                                                                                                          | 4.7                                                                                                                                  | MINK                                                                                                                                                                         | 8.0                                                                              | PLK1                                                                                                                                                                     | 17.9                                                                                     |
| ARK5                                                                                                                                                 | 11.0                                                                                                      | FAK                                                                                                                           | 27.0                                                                                                                                 | MKK6                                                                                                                                                                         | -1.0                                                                             | Plk3                                                                                                                                                                     | 5.0                                                                                      |
| ASK1                                                                                                                                                 | 0.0                                                                                                       | Fer                                                                                                                           | 32.0                                                                                                                                 | MKK7β                                                                                                                                                                        | -26.0                                                                            | PLK4                                                                                                                                                                     | 4.2                                                                                      |
| AurA/TPX2                                                                                                                                            | -3.0                                                                                                      | Fes                                                                                                                           |                                                                                                                                      | MLCK                                                                                                                                                                         | 13.0                                                                             | PRAK                                                                                                                                                                     |                                                                                          |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               | 23.0                                                                                                                                 |                                                                                                                                                                              |                                                                                  |                                                                                                                                                                          | 28.0                                                                                     |
| AurC                                                                                                                                                 | 0.8                                                                                                       | FGFR1                                                                                                                         | -8.0                                                                                                                                 | MLK1                                                                                                                                                                         | 16.0                                                                             | PRK2                                                                                                                                                                     | 17.0                                                                                     |
| Aurora-A                                                                                                                                             | 1.0                                                                                                       | FGFR1(V561M)                                                                                                                  | 2.0                                                                                                                                  | MLK2                                                                                                                                                                         | 8.8                                                                              | PrKX                                                                                                                                                                     | 12.0                                                                                     |
| Axl                                                                                                                                                  | 6.0                                                                                                       | FGFR2                                                                                                                         | 4.0                                                                                                                                  | MLK3                                                                                                                                                                         | 5.9                                                                              | PTK5                                                                                                                                                                     | 11.0                                                                                     |
| BMPR1A                                                                                                                                               | 1.1                                                                                                       | FGFR2(N549H)                                                                                                                  |                                                                                                                                      | MNK1                                                                                                                                                                         | 6.2                                                                              | Pyk2                                                                                                                                                                     |                                                                                          |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               | -3.0                                                                                                                                 |                                                                                                                                                                              |                                                                                  |                                                                                                                                                                          | 11.0                                                                                     |
| Bmx                                                                                                                                                  | -12.0                                                                                                     | FGFR3                                                                                                                         | -11.0                                                                                                                                | Mnk2                                                                                                                                                                         | 15.0                                                                             | QIK                                                                                                                                                                      | -3.3                                                                                     |
| BRAF                                                                                                                                                 | 6.5                                                                                                       | FGFR3(K650E)                                                                                                                  | 2.6                                                                                                                                  | MOS                                                                                                                                                                          | 6.7                                                                              | Ret                                                                                                                                                                      | -4.0                                                                                     |
| BRK                                                                                                                                                  | 12.0                                                                                                      | FGFR3(K650M)                                                                                                                  | 0.6                                                                                                                                  | MRCKa                                                                                                                                                                        | 2.0                                                                              | Ret (V804L)                                                                                                                                                              | 11.0                                                                                     |
| BRSK1                                                                                                                                                |                                                                                                           | FGFR4                                                                                                                         |                                                                                                                                      | MRCKB                                                                                                                                                                        |                                                                                  | RET(M918T)                                                                                                                                                               |                                                                                          |
|                                                                                                                                                      | 3.2                                                                                                       |                                                                                                                               | -15.0                                                                                                                                |                                                                                                                                                                              | 1.0                                                                              |                                                                                                                                                                          | 0.3                                                                                      |
| BRSK2                                                                                                                                                | 2.0                                                                                                       | Fgr                                                                                                                           | 24.0                                                                                                                                 | MSK1                                                                                                                                                                         | 63.0                                                                             | Ret(V804M)                                                                                                                                                               | 6.0                                                                                      |
| BTK                                                                                                                                                  | 2.0                                                                                                       | Flt1                                                                                                                          | 9.0                                                                                                                                  | MSK2                                                                                                                                                                         | 49.0                                                                             | RIPK2                                                                                                                                                                    | 20.0                                                                                     |
| BTK(R28H)                                                                                                                                            | 3.0                                                                                                       | Flt3                                                                                                                          | 63.0                                                                                                                                 | MSSK1                                                                                                                                                                        | 13.0                                                                             | ROCK-I                                                                                                                                                                   | 6.0                                                                                      |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               |                                                                                                                                      |                                                                                                                                                                              |                                                                                  |                                                                                                                                                                          |                                                                                          |
| CaMKI                                                                                                                                                | -5.0                                                                                                      | Flt3(D835Y)                                                                                                                   | 66.0                                                                                                                                 | MST1                                                                                                                                                                         | 9.0                                                                              | ROCK-II                                                                                                                                                                  | 16.0                                                                                     |
| CaMKIIβ                                                                                                                                              | 40.0                                                                                                      | Flt4                                                                                                                          | 26.0                                                                                                                                 | MST2                                                                                                                                                                         | 13.0                                                                             | Ron                                                                                                                                                                      | 4.0                                                                                      |
| CaMKIIy                                                                                                                                              | 30.0                                                                                                      | Fms                                                                                                                           | 6.0                                                                                                                                  | MST3                                                                                                                                                                         | 2.0                                                                              | Ros                                                                                                                                                                      | 22.0                                                                                     |
| CaMKIIδ                                                                                                                                              |                                                                                                           | FRK                                                                                                                           | 1.3                                                                                                                                  | MST4                                                                                                                                                                         | 5.1                                                                              | Rse                                                                                                                                                                      |                                                                                          |
|                                                                                                                                                      | 30.0                                                                                                      |                                                                                                                               |                                                                                                                                      |                                                                                                                                                                              |                                                                                  |                                                                                                                                                                          | -32.0                                                                                    |
| CaMKIV                                                                                                                                               | 4.0                                                                                                       | Fyn                                                                                                                           | 1.0                                                                                                                                  | MuSK                                                                                                                                                                         | 17.0                                                                             | Rsk1                                                                                                                                                                     | 12.0                                                                                     |
| CaMKIδ                                                                                                                                               | -4.0                                                                                                      | GCK                                                                                                                           | 4.0                                                                                                                                  | NDR1                                                                                                                                                                         | -0.1                                                                             | Rsk2                                                                                                                                                                     | 5.0                                                                                      |
| CDC7                                                                                                                                                 | 2.5                                                                                                       | GRK5                                                                                                                          | 2.0                                                                                                                                  | NEK1                                                                                                                                                                         | -4.3                                                                             | Rsk3                                                                                                                                                                     | 39.0                                                                                     |
| CDK3/cyclinE                                                                                                                                         | 12.0                                                                                                      | GRK6                                                                                                                          | 3.0                                                                                                                                  | NEK11                                                                                                                                                                        | 30.0                                                                             | Rsk4                                                                                                                                                                     | -26.0                                                                                    |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               |                                                                                                                                      |                                                                                                                                                                              |                                                                                  |                                                                                                                                                                          |                                                                                          |
| CDK4                                                                                                                                                 | 1.8                                                                                                       | GRK7                                                                                                                          | -1.0                                                                                                                                 | NEK2                                                                                                                                                                         | -55.0                                                                            | SAPK2a                                                                                                                                                                   | 1.0                                                                                      |
| CGK2                                                                                                                                                 | 37.3                                                                                                      | GSK3a                                                                                                                         | 74.9                                                                                                                                 | NEK3                                                                                                                                                                         | 6.0                                                                              | SAPK2a(T106M)                                                                                                                                                            | -4.0                                                                                     |
| CHK1                                                                                                                                                 | -3.0                                                                                                      | GSK3β                                                                                                                         | 79.0                                                                                                                                 | NEK4                                                                                                                                                                         | -0.5                                                                             | SAPK2b                                                                                                                                                                   | 0.0                                                                                      |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               |                                                                                                                                      |                                                                                                                                                                              |                                                                                  |                                                                                                                                                                          |                                                                                          |
| CHK2                                                                                                                                                 | 6.0                                                                                                       | Haspin                                                                                                                        | 77.0                                                                                                                                 | NEK6                                                                                                                                                                         | -1.0                                                                             | SAPK3                                                                                                                                                                    | -10.0                                                                                    |
| CHK2(I157T)                                                                                                                                          | 6.0                                                                                                       | Hck                                                                                                                           | 14.0                                                                                                                                 | NEK7                                                                                                                                                                         | -1.0                                                                             | SAPK4                                                                                                                                                                    | -7.0                                                                                     |
| CHK2(R145W)                                                                                                                                          | 0.0                                                                                                       | HER2                                                                                                                          | -12.6                                                                                                                                | NEK9                                                                                                                                                                         | 1.0                                                                              | SGK                                                                                                                                                                      | 3.0                                                                                      |
| CK1a                                                                                                                                                 | -3.5                                                                                                      | HER4                                                                                                                          | -1.0                                                                                                                                 | NLK                                                                                                                                                                          |                                                                                  | SGK2                                                                                                                                                                     |                                                                                          |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               |                                                                                                                                      |                                                                                                                                                                              | 30.0                                                                             |                                                                                                                                                                          | -1.0                                                                                     |
| CK1e                                                                                                                                                 | -1.2                                                                                                      | HGK                                                                                                                           | 13.2                                                                                                                                 | NuaK1                                                                                                                                                                        | 7.2                                                                              | SGK3                                                                                                                                                                     | 4.0                                                                                      |
| CK1γ1                                                                                                                                                | 1.0                                                                                                       | HIPK1                                                                                                                         | 2.0                                                                                                                                  | p70S6K                                                                                                                                                                       | 77.0                                                                             | SIK                                                                                                                                                                      | 4.0                                                                                      |
| CK1y2                                                                                                                                                | 3.0                                                                                                       | HIPK2                                                                                                                         | 4.0                                                                                                                                  | p70S6Kb                                                                                                                                                                      | 48.7                                                                             | SLK                                                                                                                                                                      | 1.6                                                                                      |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               |                                                                                                                                      |                                                                                                                                                                              |                                                                                  |                                                                                                                                                                          |                                                                                          |
| CK1γ3                                                                                                                                                | 8.0                                                                                                       | HIPK3                                                                                                                         | 6.0                                                                                                                                  | PAK1                                                                                                                                                                         | 0.7                                                                              | Snk                                                                                                                                                                      | 8.0                                                                                      |
| CK1δ                                                                                                                                                 | -10.0                                                                                                     | HIPK4                                                                                                                         | 35.1                                                                                                                                 | PAK2                                                                                                                                                                         | 13.0                                                                             | SPHK1                                                                                                                                                                    | -7.7                                                                                     |
| CK2                                                                                                                                                  | 2.0                                                                                                       | IGF-1R                                                                                                                        | 17.0                                                                                                                                 | PAK3                                                                                                                                                                         | 50.0                                                                             | Src(1-530)                                                                                                                                                               | 3.0                                                                                      |
| CK2a1/b                                                                                                                                              | 0.0                                                                                                       | IKKe                                                                                                                          | -5.2                                                                                                                                 | PAK4                                                                                                                                                                         | 8.0                                                                              | Src(T341M)                                                                                                                                                               | 11.0                                                                                     |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               |                                                                                                                                      |                                                                                                                                                                              |                                                                                  |                                                                                                                                                                          |                                                                                          |
| CK2a2                                                                                                                                                | -11.0                                                                                                     | ΙΚΚα                                                                                                                          | -28.0                                                                                                                                | PAK5                                                                                                                                                                         | 0.0                                                                              | SRM                                                                                                                                                                      | -17.4                                                                                    |
| cKit                                                                                                                                                 | 5.0                                                                                                       | ΙΚΚβ                                                                                                                          | -4.0                                                                                                                                 | PAK6                                                                                                                                                                         | -7.0                                                                             | SRPK1                                                                                                                                                                    | 6.0                                                                                      |
| cKit(D816H)                                                                                                                                          | 7.0                                                                                                       | IR                                                                                                                            | 17.0                                                                                                                                 | PAR-1Bα                                                                                                                                                                      | 13.0                                                                             | SRPK2                                                                                                                                                                    | -1.0                                                                                     |
| cKit(D816V)                                                                                                                                          |                                                                                                           | IRAK1                                                                                                                         |                                                                                                                                      | PASK                                                                                                                                                                         |                                                                                  | STK33                                                                                                                                                                    |                                                                                          |
|                                                                                                                                                      | 0.0                                                                                                       |                                                                                                                               | 28.0                                                                                                                                 |                                                                                                                                                                              | 15.0                                                                             |                                                                                                                                                                          | 14.0                                                                                     |
| cKit(V560G)                                                                                                                                          | -1.0                                                                                                      | IRAK4                                                                                                                         | 4.0                                                                                                                                  | PBK                                                                                                                                                                          | 9.0                                                                              | Syk                                                                                                                                                                      | 6.0                                                                                      |
| cKit(V654A)                                                                                                                                          | 0.0                                                                                                       | IRR                                                                                                                           | 74.0                                                                                                                                 | PDGFRa(T674I)                                                                                                                                                                | 9.4                                                                              | TAK1                                                                                                                                                                     | -13.0                                                                                    |
| CLK2                                                                                                                                                 | 34.8                                                                                                      | ITK                                                                                                                           | -2.2                                                                                                                                 | PDGFRa                                                                                                                                                                       | -7.0                                                                             | TAK1-TAB1                                                                                                                                                                | 7.1                                                                                      |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               |                                                                                                                                      |                                                                                                                                                                              |                                                                                  |                                                                                                                                                                          |                                                                                          |
| CLK3                                                                                                                                                 | 18.0                                                                                                      | Itk                                                                                                                           | 10.0                                                                                                                                 | PDGFRa(D842V)                                                                                                                                                                | 12.0                                                                             | TAO1                                                                                                                                                                     | -2.0                                                                                     |
| COT                                                                                                                                                  | 7.0                                                                                                       | JAK2                                                                                                                          | -5.0                                                                                                                                 | PDGFRa(V561D)                                                                                                                                                                | 36.0                                                                             | TAO2                                                                                                                                                                     | 1.0                                                                                      |
| c-RAF                                                                                                                                                | 5.0                                                                                                       | JAK3                                                                                                                          | 0.0                                                                                                                                  | PDGFRβ                                                                                                                                                                       | -2.0                                                                             | TAO3                                                                                                                                                                     | 14.0                                                                                     |
| CRIK                                                                                                                                                 | 3.5                                                                                                       | JNK1a1                                                                                                                        | 0.0                                                                                                                                  | PDHK2                                                                                                                                                                        | 11.5                                                                             | TBK1                                                                                                                                                                     | 9.0                                                                                      |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               |                                                                                                                                      |                                                                                                                                                                              |                                                                                  |                                                                                                                                                                          |                                                                                          |
| CSK                                                                                                                                                  | 20.0                                                                                                      | JNK2a2                                                                                                                        | 3.0                                                                                                                                  | PDHK4                                                                                                                                                                        | -0.5                                                                             | TEC                                                                                                                                                                      | 1.6                                                                                      |
| cSRC                                                                                                                                                 | -6.0                                                                                                      | JNK3                                                                                                                          | 1.0                                                                                                                                  | PDK1                                                                                                                                                                         | -8.0                                                                             | Tie2                                                                                                                                                                     | -8.0                                                                                     |
| CTK                                                                                                                                                  | 2.1                                                                                                       | KDR                                                                                                                           | 1.0                                                                                                                                  | PEK                                                                                                                                                                          | -1.3                                                                             | Tie2(R849W)                                                                                                                                                              | 12.0                                                                                     |
| DAPK1                                                                                                                                                | 4.0                                                                                                       | KIT(T670I)                                                                                                                    | 4.3                                                                                                                                  | PGK                                                                                                                                                                          | 10.8                                                                             | Tie2(Y897S)                                                                                                                                                              | 15.0                                                                                     |
|                                                                                                                                                      |                                                                                                           |                                                                                                                               |                                                                                                                                      | PHKG1                                                                                                                                                                        |                                                                                  |                                                                                                                                                                          |                                                                                          |
| DAPK2                                                                                                                                                | 17.0                                                                                                      | Lck                                                                                                                           | 18.0                                                                                                                                 |                                                                                                                                                                              | 2.1                                                                              | TLK2                                                                                                                                                                     | -7.0                                                                                     |
|                                                                                                                                                      | -4.0                                                                                                      | LIMK1                                                                                                                         | 12.0                                                                                                                                 | PHKG2                                                                                                                                                                        | 4.9                                                                              | TNK1                                                                                                                                                                     | 3.2                                                                                      |
| DCAMKL2                                                                                                                                              |                                                                                                           | LKB1                                                                                                                          | -3.0                                                                                                                                 | PhKy2                                                                                                                                                                        | -1.0                                                                             | TrkA                                                                                                                                                                     | 38.0                                                                                     |
| DCAMKL2<br>DDR1                                                                                                                                      | 7.2                                                                                                       |                                                                                                                               |                                                                                                                                      |                                                                                                                                                                              |                                                                                  | TrkB                                                                                                                                                                     | 41.0                                                                                     |
| DDR1                                                                                                                                                 | 7.2                                                                                                       |                                                                                                                               | 34.0                                                                                                                                 | PIK3CA/PIK3R1                                                                                                                                                                | 1.6                                                                              |                                                                                                                                                                          |                                                                                          |
| DDR1<br>DDR2                                                                                                                                         | 7.2                                                                                                       | LOK                                                                                                                           | 34.0                                                                                                                                 | PIK3CA/PIK3R1                                                                                                                                                                | 1.6                                                                              |                                                                                                                                                                          |                                                                                          |
| DDR1<br>DDR2<br>DLK                                                                                                                                  | 7.2<br>18.0<br>-1.4                                                                                       | LOK<br>LTK                                                                                                                    | 6.8                                                                                                                                  | Pim-1                                                                                                                                                                        | 64.0                                                                             | TRKC                                                                                                                                                                     | 13.7                                                                                     |
| DDR1<br>DDR2<br>DLK<br>DMPK                                                                                                                          | 7.2<br>18.0<br>-1.4<br>-1.0                                                                               | LOK<br>LTK<br>Lyn                                                                                                             | 6.8<br>-1.0                                                                                                                          | Pim-1<br>Pim-2                                                                                                                                                               |                                                                                  | TRKC<br>TSSK1                                                                                                                                                            |                                                                                          |
| DDR1<br>DDR2<br>DLK                                                                                                                                  | 7.2<br>18.0<br>-1.4<br>-1.0                                                                               | LOK<br>LTK                                                                                                                    | 6.8                                                                                                                                  | Pim-1                                                                                                                                                                        | 64.0<br>43.0                                                                     | TRKC<br>TSSK1                                                                                                                                                            | 13.7<br>6.0                                                                              |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1                                                                                                                 | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0                                                                      | LOK<br>LTK<br>Lyn<br>LYNb                                                                                                     | 6.8<br>-1.0<br>1.7                                                                                                                   | Pim-1<br>Pim-2<br>Pim-3                                                                                                                                                      | 64.0<br>43.0<br>27.0                                                             | TRKC<br>TSSK1<br>TSSK2                                                                                                                                                   | 13.7<br>6.0<br>5.0                                                                       |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1<br>DYRK1B                                                                                                       | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9                                                              | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2                                                                                           | 6.8<br>-1.0<br>1.7<br>4.9                                                                                                            | Pim-1<br>Pim-2<br>Pim-3<br>PKA                                                                                                                                               | 64.0<br>43.0<br>27.0<br>28.0                                                     | TRKC<br>TSSK1<br>TSSK2<br>TTK                                                                                                                                            | 13.7<br>6.0<br>5.0<br>-16.1                                                              |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1<br>DYRK1B<br>DYRK2                                                                                              | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9<br>46.0                                                      | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2<br>MAP2K3                                                                                 | 6.8<br>-1.0<br>1.7<br>4.9<br>7.3                                                                                                     | Pim-1<br>Pim-2<br>Pim-3<br>PKA<br>PKBα                                                                                                                                       | 64.0<br>43.0<br>27.0<br>28.0<br>8.0                                              | TRKC<br>TSSK1<br>TSSK2<br>TTK<br>Txk                                                                                                                                     | 13.7<br>6.0<br>5.0<br>-16.1<br>12.0                                                      |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1<br>DYRK1B                                                                                                       | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9                                                              | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2                                                                                           | 6.8<br>-1.0<br>1.7<br>4.9                                                                                                            | Pim-1<br>Pim-2<br>Pim-3<br>PKA                                                                                                                                               | 64.0<br>43.0<br>27.0<br>28.0                                                     | TRKC<br>TSSK1<br>TSSK2<br>TTK                                                                                                                                            | 13.7<br>6.0<br>5.0<br>-16.1<br>12.0                                                      |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1<br>DYRK1B<br>DYRK2<br>DYRK3                                                                                     | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9<br>46.0<br>72.1                                              | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2<br>MAP2K3<br>MAP2K4                                                                       | 6.8<br>-1.0<br>1.7<br>4.9<br>7.3<br>10.0                                                                                             | Pim-1           Pim-2           Pim-3           PKA           PKBα           PKBβ                                                                                            | 64.0<br>43.0<br>27.0<br>28.0<br>8.0<br>4.0                                       | TRKC<br>TSSK1<br>TSSK2<br>TTK<br>Txk<br>TyK2                                                                                                                             | 13.7<br>6.0<br>5.0<br>-16.1<br>12.0<br>1.2                                               |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1<br>DYRK1B<br>DYRK2<br>DYRK3<br>eEF-2K                                                                           | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9<br>46.0<br>72.1<br>13.0                                      | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2<br>MAP2K3<br>MAP2K4<br>MAP2K5                                                             | 6.8<br>-1.0<br>1.7<br>4.9<br>7.3<br>10.0<br>7.9                                                                                      | Pim-1           Pim-2           Pim-3           PKA           PKBα           PKBβ           PKBγ                                                                             | 64.0<br>43.0<br>27.0<br>28.0<br>8.0<br>4.0<br>7.0                                | TRKC<br>TSSK1<br>TSSK2<br>TTK<br>Txk<br>TYK2<br>ULK3                                                                                                                     | 13.7<br>6.0<br>5.0<br>-16.1<br>12.0<br>1.2<br>-7.0                                       |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1<br>DYRK1B<br>DYRK2<br>DYRK3<br>eEF-2K<br>EGFR                                                                   | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9<br>46.0<br>72.1<br>13.0<br>-4.0                              | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2<br>MAP2K3<br>MAP2K4<br>MAP2K5<br>MAP2K6                                                   | 6.8<br>-1.0<br>1.7<br>4.9<br>7.3<br>10.0<br>7.9<br>5.6                                                                               | Ріт-1<br>Ріт-2<br>Ріт-3<br>РКА<br>РКВа<br>РКВа<br>РКВβ<br>РКВβ                                                                                                               | 64.0<br>43.0<br>27.0<br>28.0<br>8.0<br>4.0<br>7.0<br>12.0                        | TRKC<br>TSSK1<br>TSSK2<br>TTK<br>Txk<br>TYK2<br>ULK3<br>VRK2                                                                                                             | 13.7<br>6.0<br>5.0<br>-16.1<br>12.0<br>1.2<br>-7.0<br>3.0                                |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1<br>DYRK1B<br>DYRK2<br>DYRK3<br>eEF-2K                                                                           | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9<br>46.0<br>72.1<br>13.0                                      | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2<br>MAP2K3<br>MAP2K4<br>MAP2K5                                                             | 6.8<br>-1.0<br>1.7<br>4.9<br>7.3<br>10.0<br>7.9                                                                                      | Pim-1           Pim-2           Pim-3           PKA           PKBα           PKBβ           PKBγ                                                                             | 64.0<br>43.0<br>27.0<br>28.0<br>8.0<br>4.0<br>7.0                                | TRKC<br>TSSK1<br>TSSK2<br>TTK<br>Txk<br>TYK2<br>ULK3                                                                                                                     | 13.7<br>6.0<br>5.0<br>-16.1<br>12.0<br>1.2<br>-7.0<br>3.0                                |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1<br>DYRK1B<br>DYRK2<br>DYRK3<br>eEF-2K<br>EGFR<br>EGFR<br>EGFR                                                   | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9<br>46.0<br>72.1<br>13.0<br>-4.0<br>4.0                       | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2<br>MAP2K3<br>MAP2K4<br>MAP2K5<br>MAP2K6<br>MAP2K7                                         | 6.8<br>-1.0<br>1.7<br>4.9<br>7.3<br>10.0<br>7.9<br>5.6<br>10.8                                                                       | Ріт-1<br>Ріт-2<br>Ріт-3<br>РКА<br>РКВа<br>РКВа<br>РКВβ<br>РКВγ<br>РКСµ<br>РКСр1                                                                                              | 64.0<br>43.0<br>27.0<br>28.0<br>8.0<br>4.0<br>7.0<br>12.0<br>5.7                 | TRKC<br>TSSK1<br>TSSK2<br>TTK<br>Txk<br>TYK2<br>ULK3<br>VRK2<br>WEE1                                                                                                     | 13.7<br>6.0<br>5.0<br>-16.1<br>12.0<br>1.2<br>-7.0<br>3.0<br>-2.7                        |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1<br>DYRK1B<br>DYRK2<br>DYRK3<br>eEF-2K<br>EGFR<br>EGFR(L858R)<br>EGFR(L858R)                                     | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9<br>46.0<br>72.1<br>13.0<br>-4.0<br>4.0<br>3.0                | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2<br>MAP2K3<br>MAP2K4<br>MAP2K4<br>MAP2K5<br>MAP2K6<br>MAP2K7<br>MAP3K1                     | 6.8           -1.0           1.7           4.9           7.3           10.0           7.9           5.6           10.8           6.4 | Pim-1           Pim-2           Pim-3           PKKA           PKBφ           PKBβ           PKCμ           PKCb1           PKCb2                                            | 64.0<br>43.0<br>27.0<br>28.0<br>8.0<br>4.0<br>7.0<br>12.0<br>5.7<br>-7.1         | TRKC<br>TSSK1<br>TSSK2<br>TTK<br>TXk<br>TYK2<br>ULK3<br>VRK2<br>WEE1<br>WNK1                                                                                             | 13.7<br>6.0<br>5.0<br>-16.1<br>12.0<br>1.2<br>-7.0<br>3.0<br>-2.7<br>0.8                 |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1<br>DYRK1B<br>DYRK2<br>DYRK3<br>eEF-2K<br>EGFR(L85R)<br>EGFR(L85R)<br>EGFR(L85R)                                 | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9<br>46.0<br>72.1<br>13.0<br>-4.0<br>4.0<br>3.0<br>14.0        | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2<br>MAP2K3<br>MAP2K4<br>MAP2K4<br>MAP2K5<br>MAP2K6<br>MAP2K6<br>MAP2K7<br>MAP3K1<br>MAP3K2 | 6.8<br>1.0<br>1.7<br>4.9<br>7.3<br>10.0<br>7.9<br>5.6<br>10.8<br>6.4<br>4.2                                                          | Pim-1           Pim-3           PKBα           PKBβ           PKBγ           PKCµ           PKCb1           PKCb2           PKCα                                             | 64.0<br>43.0<br>27.0<br>28.0<br>8.0<br>4.0<br>7.0<br>12.0<br>5.7<br>-7.1<br>21.0 | TRKC           TSSK1           TSSK2           TTK           Tvk           ULK3           VRK2           WEE1           WNK1                                             | 13.7<br>6.0<br>5.0<br>-16.1<br>12.0<br>1.2<br>-7.0<br>3.0<br>-2.7<br>0.8<br>22.0         |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1<br>DYRK1B<br>DYRK2<br>DYRK3<br>eEF-2K<br>EGFR<br>EGFR(L858R)<br>EGFR(L858R)                                     | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9<br>46.0<br>72.1<br>13.0<br>-4.0<br>4.0<br>3.0                | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2<br>MAP2K3<br>MAP2K4<br>MAP2K4<br>MAP2K5<br>MAP2K6<br>MAP2K7<br>MAP3K1                     | 6.8           -1.0           1.7           4.9           7.3           10.0           7.9           5.6           10.8           6.4 | Pim-1           Pim-2           Pim-3           PKKA           PKBφ           PKBβ           PKCμ           PKCb1           PKCb2                                            | 64.0<br>43.0<br>27.0<br>28.0<br>8.0<br>4.0<br>7.0<br>12.0<br>5.7<br>-7.1         | TRKC<br>TSSK1<br>TSSK2<br>TTK<br>TXk<br>TYK2<br>ULK3<br>VRK2<br>WEE1<br>WNK1                                                                                             | 13.7<br>6.0<br>5.0<br>-16.1<br>12.0<br>1.2<br>-7.0<br>3.0<br>-2.7<br>0.8                 |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DMPK<br>DYRK1B<br>DYRK2<br>DYRK3<br>eEF-2K<br>EGFR(L358R)<br>EGFR(L358R)<br>EGFR(L358R)                               | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9<br>46.0<br>72.1<br>13.0<br>-4.0<br>4.0<br>3.0<br>14.0<br>4.0 | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2<br>MAP2K3<br>MAP2K4<br>MAP2K4<br>MAP2K5<br>MAP2K6<br>MAP2K6<br>MAP2K7<br>MAP3K1<br>MAP3K2 | 6.8<br>1.0<br>1.7<br>4.9<br>7.3<br>10.0<br>7.9<br>5.6<br>10.8<br>6.4<br>4.2<br>8.4                                                   | Pim-1           Pim-3           PKBα           PKBβ           PKBγ           PKCµ           PKCb1           PKCb2           PKCα                                             | 64.0<br>43.0<br>27.0<br>8.0<br>4.0<br>12.0<br>5.7<br>-7.1<br>21.0<br>15.0        | TRKC           TSSK1           TSSK2           TTK           Tvk           ULK3           VRK2           WEE1           WNK1                                             | 13.7<br>6.0<br>5.0<br>-16.1<br>12.0<br>1.2<br>-7.0<br>3.0<br>-2.7<br>0.8<br>22.0<br>13.0 |
| DDR1<br>DDR2<br>DLK<br>DMPK<br>DRAK1<br>DYRK1B<br>DYRK3<br>eEF-2K<br>EGFR<br>EGFR(L858R)<br>EGFR(L858R)<br>EGFR(L858R)<br>EGFR(L790M)<br>EGFR(T790M) | 7.2<br>18.0<br>-1.4<br>-1.0<br>-16.0<br>74.9<br>46.0<br>72.1<br>13.0<br>-4.0<br>4.0<br>3.0<br>14.0        | LOK<br>LTK<br>Lyn<br>LYNb<br>MAP2K2<br>MAP2K3<br>MAP2K3<br>MAP2K4<br>MAP2K6<br>MAP2K6<br>MAP2K7<br>MAP3K1<br>MAP3K2<br>MAP3K3 | 6.8<br>1.0<br>1.7<br>4.9<br>7.3<br>10.0<br>7.9<br>5.6<br>10.8<br>6.4<br>4.2                                                          | Pim-1           Pim-2           Pim-3           PKA           PKBβ           PKBβ           PKCμ           PKCb1           PKC2           PKC2           PKC2           PKC2 | 64.0<br>43.0<br>27.0<br>28.0<br>8.0<br>4.0<br>7.0<br>12.0<br>5.7<br>-7.1<br>21.0 | TRKC           TSSK1           TSSK2           TTK           Tk           TYK2           ULK3           VRK2           WEE1           WNK1           WNK2           WNK3 | 13.7<br>6.0<br>5.0<br>-16.1<br>12.0<br>1.2<br>-7.0<br>3.0<br>-2.7<br>0.8<br>22.0         |

3

# 4 Large panel of kinase screening of FIT-039

5 Kinase inhibitory activity of FIT-039 (10 µM) against kinome were screened by Merck

6 Millipore's KinaseProfiler service (Merck Millipore) and Profiling Srevices

7 (Carmabiosciences).

# 1 Supplementary Table 2

 $\mathbf{2}$ 

| ltom          | Dose (mg/kg/day, 14 days) |                  | ltom            | Dose (mg/kg/     | Dose (mg/kg/day, 14 days) |  |  |
|---------------|---------------------------|------------------|-----------------|------------------|---------------------------|--|--|
| Item          | 0                         | 1000             | Item            | 0                | 1000                      |  |  |
| AST (U/L)     | 78.8 ± 4.5                | 72.0 ± 5.7       | WBC (x 10^2/µL) | 106.0 ± 7.1      | 124.5 ± 4.9               |  |  |
| ALT (U/L)     | $36.0 \pm 4.2$            | 34.0 ± 11.3      | RBC (x 10^4/mL) | $618.5 \pm 12.0$ | 663.0 ± 91.9              |  |  |
| γGTP (U/L)    | ND                        | ND               | Hb (g/dL)       | $13.7 \pm 0.2$   | $13.0 \pm 0.0$            |  |  |
| T-BIL (mg/dL) | $0.04 \pm 0.01$           | $0.03 \pm 0.00$  | HT (%)          | $41.6 \pm 0.3$   | 41.7 ± 1.8                |  |  |
| CRE (mg/dL)   | $0.21 \pm 0.02$           | $0.20 \pm 0.01$  | MCV (fL)        | 67.5 ± 2.1       | $63.5 \pm 6.4$            |  |  |
| BUN (mg/dL)   | $14.6 \pm 0.1$            | 15.8 ± 1.4       | MCH (pg)        | $22.5 \pm 0.7$   | $20.0 \pm 2.8$            |  |  |
| GLU (mg/dL)   | 187.6 ± 7.6               | $182.0 \pm 22.6$ | MCHC (%)        | $33.0 \pm 0.0$   | $31.0 \pm 1.4$            |  |  |
| TP (g/dL)     | $5.6 \pm 0.4$             | $6.4 \pm 0.1$    | PLT (x 10^4/mL) | 98.7 ± 8.3       | 123.9 ± 11.0              |  |  |
| ALB (g/dL)    | $4.1 \pm 0.3$             | $4.4 \pm 0.2$    |                 |                  |                           |  |  |
| Ca (mEq/L)    | $10.7 \pm 0.6$            | $11.0 \pm 0.4$   |                 |                  |                           |  |  |
| Na (mEq/L)    | $141.4 \pm 0.6$           | $141.5 \pm 3.5$  |                 |                  |                           |  |  |
| K (mEq/L)     | $5.0 \pm 0.3$             | $5.1 \pm 0.7$    |                 |                  |                           |  |  |
| CI (mEq/L)    | $102.0 \pm 1.5$           | $101.0 \pm 1.4$  |                 |                  |                           |  |  |

3

## 4 Hematology tests in the 2-week repeated-dose oral toxicity study in rats

Hematology tests were performed on day 28 in the 2-week repeated-dose oral toxicity
study (Fig. 3G). No significant difference was observed in any testing item between
FIT-039 and the solvent.

| Kinase | Inhibitory effect (%) | Phenotypes                                                                                                                                              | Reference |
|--------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| GSK3b  | 79.0                  | embryonic lethal                                                                                                                                        | (1)       |
| PKN1   | 77.4                  | autoantibody production<br>glomerulonephritis                                                                                                           | (2)       |
| Haspin | 77.0                  | not reported                                                                                                                                            |           |
| p70s6k | 77.0                  | growth retardation                                                                                                                                      | (3)       |
| DYRK1B | 74.9                  | no abnormal phenotype detected                                                                                                                          | (4)       |
| GSK3a  | 74.9                  | decreased percent body fat<br>incerased lean body mass<br>improved glucose tolerance<br>increaced liver glucogen level<br>increaced insulin sensitivity | (5)       |
| IRR    | 74.0                  | no abnormal phenotype detected                                                                                                                          | (6)       |
| DYRK3  | 72.1                  | no abnormal phenotype detected                                                                                                                          | (7)       |

# 1 Supplementary Table 3: Knockout phenotypes of target kinases of FIT-039

 $\mathbf{2}$ 

## 1 Supplementary Table 4

|        |                     | Dose                     | Bace  | - pair substit | ution type | Frar | meshift type |
|--------|---------------------|--------------------------|-------|----------------|------------|------|--------------|
|        |                     | (μg/plate)               | TA100 | TA1535         | WP2 uvrA   | TA98 | TA1537       |
|        |                     | 0                        | 143   | 14             | 27         | 28   | 11           |
|        |                     | 313                      | 123   | 17             | 26         | 24   | 10           |
|        |                     | 625                      | 116   | 12             | 24         | 26   | 7            |
| 00 i   | FIT-039             | 1250                     | 124   | 13             | 28         | 24   | 7            |
| S9 mix |                     | 2500                     | 124   | 17             | 23         | 25   | 11           |
| (+)    |                     | 5000                     | 116   | 12             | 22         | 23   | 6            |
|        | Positive<br>control | Chemical                 | AF-2  | SA             | AF-2       | AF-2 | 9AA          |
|        |                     | Dose (µg/plate)          | 0.01  | 0.5            | 0.01       | 0.1  | 80           |
|        |                     | Number of colonies/plate | 462   | 456            | 98         | 503  | 358          |
|        | FIT-039             | 0                        | 116   | 12             | 33         | 40   | 17           |
|        |                     | 313                      | 134   | 11             | 40         | 40   | 10           |
|        |                     | 625                      | 130   | 12             | 33         | 35   | 10           |
| 00     |                     | 1250                     | 130   | 15             | 39         | 39   | 9            |
| S9 mix |                     | 2500                     | 135   | 12             | 36         | 32   | 9            |
| (-)    |                     | 5000                     | 156   | 9              | 37         | 32   | 11           |
|        | Positive            | Chemical                 | 2AA   | 2AA            | 2AA        | 2AA  | 2AA          |
|        |                     | Dose (µg/plate)          | 1     | 2              | 10         | 0.5  | 2            |
|        | control             | Number of colonies/plate | 1027  | 364            | 739        | 401  | 292          |

## 2 Mutagenicity test in bacteria (Ames test)

Bacterium Salmonella strains and Escherichia coli strain were pre-incubated with
FIT-039 or positive control compounds with or without S9mix. These mixtures were
spread on agar plates and incubated for 48 hours. The number of colonies were counted,
and mutagenicity was assessed. No increases in mutated colony counts were recognized
in any strain, regardless of the presence or absence of the S9mix. These results indicate
that FIT-039 did not cause any chromosomal aberrations.

#### 1 Supplementary Table 5

 $\mathbf{2}$ 

|           |                 | Dose (mg/kg/day) |                 |
|-----------|-----------------|------------------|-----------------|
| ltem      | 0               | 500              | 2000            |
| PCE (%)   | 48.90 ± 1.83    | 49.50 ± 1.20     | 49.37 ± 2.37    |
| MNPCE (%) | $0.02 \pm 0.03$ | $0.04 \pm 0.04$  | $0.05 \pm 0.06$ |

3

#### 4 Mutagenicity test in mice (Micronucleus test)

 $\mathbf{5}$ FIT-039 (500 or 2000 mg/kg) or the solvent (polyethylenegrycol #400) were orally 6 administrated to male CD1 mice once a day for 2 days. Sis mice were assigned to each 7 experimental group. Their bone marrow cells were collected at the femur 24 hours after 8 the final administration, and the emergence of micronucleated polychromatic 9 erythrocytes (MNPCE) and ratio of polychromatic erythrocytes in erythrocytes (PCE%) 10 were examined. No significant differences were observed in the percentages of PCE or 11 MNPCE between the FIT-039 or the solvent. These results indicate that FIT-039 does 12not exhibit any genotoxicity or bone marrow cell toxicity.

# 1 Supplementary Table 6: Quantitative PCR primer sequences

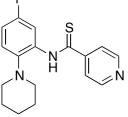
# $\mathbf{2}$

| RNA       | Sequence                      |                               |                                      |  |  |
|-----------|-------------------------------|-------------------------------|--------------------------------------|--|--|
| KINA      | Forward Primer                | Reverse Primer                | Probe                                |  |  |
| HSV-1     | 5' CGCATCAAGACCACCTCCTC 3'    | 5' GCTCGCACCACGCGA 3'         | 5' TGGCAACGCGGCCCAAC 3'              |  |  |
| HSV-2     | 5' CGCATCAAGACCACCTCCTC 3'    | 5' GCTCGCACCACGCGA 3'         | 5' CGGCGATGCGCCCCAG 3'               |  |  |
| HAdV-5    | 5' GACATGACTTTTGAGGTGGA 3'    | 5' TCGATGATGCCGCGGTG 3'       | 5' CCCATGGAYGAGCCCACCCT 3'           |  |  |
| HAdV-19   | 5' GCCGAGAAGGGCGTGCGCAGGTA 3' | 5' TACGCCAACTCCGCCCACGCGCT 3' |                                      |  |  |
| Infulenza | 5' GGACTGCAGCGTAGACGCTT 3     | 5' CATCCTGTTGTATATGAGGCCCAT 3 | 5' CTCAGTTATTCTGCTGGTGCACTTGCCA 3    |  |  |
| GAPDH     | 5' CTCCCCACACATGCACTTA 3'     | 5' CCTAGTCCCAGGGCTTTGATT 3'   | 5' AAAAGAGCTAGGAAGGACAGGCAACTTGGC 3' |  |  |

# 1 Supplementary Table 7: RT- PCR primer sequences

| RNA         |                            | Sequence                       |
|-------------|----------------------------|--------------------------------|
| KINA        | Forward Primer             | Reverse Primer                 |
| HSV-1 ICP0  | 5' ATACACATGGCCCCTTTGAC 3' | 5' GTCCCTGTGTGTTTGTTGTG 3'     |
| HSV-1 ICP22 | 5' CAGCCTTGGAGTCTGAGGTC 3' | 5' GTGGGGGAATGTCGTCATAA 3'     |
| HSV-1 ICP27 | 5' GGCGACTGACATTGATATGC 3' | 5' GGGTCTTCCATGTCCTCGT 3'      |
| HSV-1 ICP36 | 5' TACCCGAGCCGATGACTTAC 3' | 5' AAGGCATGCCCATTGTTATC 3'     |
| HSV-1 ICP8  | 5' AGCTCGTCCGTGTACGTCTT 3' | 5' CCCTCGGTAACGACCAGATA 3'     |
| HSV-1 gB    | 5' GGACACGAAACCGAAGAAGA 3' | 5' ATGCCCTCCGTGTAGTTCTG 3'     |
| HSV-1 ICP25 | 5' CTCGATACCTGGAACGAGGA 3' | 5' CGTGGAAGAAACGAGAGAGC 3'     |
| HAdV-5 E1A  | 5' TACGGGGGACCCAGATATTA 3' | 5' CAGGCTCAGGTTCAGACACA 3'     |
| GAPDH       | 5' ACGGATTTGGTCGTATTGGG 3' | 5' GTAGTTGAGGTCAATGAAGGGGTC 3' |

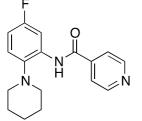
 $\mathbf{2}$ 


# 1 Supplementary Notes

# 2 Synthesis FIT-039, FIA-348, FIA-002, FIT-047, and FIA-017

# 3 Synthesis of small chemicals

| 4  | All chemical reagents used were commercial grade and were used as received.                    |
|----|------------------------------------------------------------------------------------------------|
| 5  | Amides (FIT-039, FIA-348, FIA-002, FIT-047, and FIA-017) were prepared from the                |
| 6  | corresponding amines as described previously (H. Onogi, M. Hagiwara, T. Hosoya, M.             |
| 7  | Yamamoto, Y. Nonaka, T. Hiramatsu, Aniline derivative having anti-DNA virus activity,          |
| 8  | WO 2009/020198). Analytical thin-layer chromatography (TLC) was performed on                   |
| 9  | precoated (0.25 mm) silica gel plates (Merck Chemicals, Silica Gel 60 $F_{254}$ , Cat. No.     |
| 10 | 1.05715). Column chromatography was conducted using silica gel (Kanto Chemical Co.,            |
| 11 | Inc., Silica Gel 60N, spherical neutral, particle size 40–50 $\mu$ m, Cat. No. 37563-85 or     |
| 12 | particle size 63–210 $\mu$ m, Cat. No. 37565-85). Melting points (Mp) were measured with       |
| 13 | a Opti Melt MPA100 (Stanford Research Systems) and were uncorrected. <sup>1</sup> H spectra    |
| 14 | were obtained with a Bruker AVANCE 400 spectrometer or Bruker AVANCE 500                       |
| 15 | spectrometer at 400 or 500 MHz, respectively. <sup>13</sup> C NMR spectra were obtained with a |
| 16 | Bruker AVANCE 500 spectrometer at 126 MHz. <sup>19</sup> F NMR spectrum was obtained with      |


| 1  | a Bruker AVANCE 400 spectrometer at 376 MHz. CDCl <sub>3</sub> (Acros Organics, Cat. No.                                                         |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | 368651000) was used as a solvent to obtain NMR spectra. Chemical shifts ( $\delta$ ) were                                                        |
| 3  | given in parts per million (ppm) downfield from (CH <sub>3</sub> ) <sub>4</sub> Si ( $\delta$ 0.00 for <sup>1</sup> H NMR in                     |
| 4  | CDCl <sub>3</sub> ) as an internal reference, or $\alpha$ , $\alpha$ , $\alpha$ -trifluorotoluene ( $\delta$ 63.0 ppm for <sup>19</sup> F NMR in |
| 5  | $CDCl_3$ ) as an external standard with coupling constants (J) in hertz (Hz). The                                                                |
| 6  | abbreviations s, d, t, q, m, and br signify singlet, doublet, triplet, quartet, multiplet, and                                                   |
| 7  | broad, respectively. IR spectra were measured by diffuse reflectance method on a                                                                 |
| 8  | Shimadzu IRPrestige-21 spectrometer attached to a DRS-8000A with absorption bands                                                                |
| 9  | given in cm <sup>-1</sup> . High-resolution mass spectra (HRMS) were measured on a Bruker                                                        |
| 10 | micrOTOF mass spectrometer under positive electrospray ionization (ESI <sup><math>+</math></sup> ) conditions                                    |
| 11 | at Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University.                                                            |
| 12 |                                                                                                                                                  |
| 13 | N-[5-Fluoro-2-(1-piperidinyl)phenyl]isonicotinthioamide (FIT-039)                                                                                |
|    | F                                                                                                                                                |



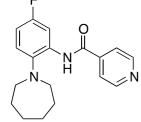
15 Mp 181–184 °C (decomp.); TLC  $R_f$  0.49 (*n*-hexane/dichloromethane/ethyl acetate =

3/5/2); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  1.58–1.76 (m, 6H, 3CH<sub>2</sub>), 2.83 (t, 4H, *J* = 5.0 Hz,

| 1  | $2CH_2$ ), 6.95 (ddd, 1H, $J = 2.8$ , 8.0, 8.0 Hz, aromatic), 7.24 (dd, 1H, $J = 5.6$ , 8.0 Hz,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | aromatic), 7.70–7.74 (AA'BB', 2H, aromatic), 8.74–8.78 (AA'BB', 2H, aromatic), 9.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3  | (dd, 1H, $J = 2.8$ , 10.8 Hz, aromatic), 11.13 (s, 1H, NH); <sup>13</sup> C NMR (CDCl <sub>3</sub> , 126 MHz) $\delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4  | 23.7 (1C), 27.0 (2C), 54.3 (2C), 107.0 (d, 1C, $J^2_{C-F} = 29.9$ Hz), 112.7 (d, 1C, $J^2_{C-F} = 29.9$ Hz) |
| 5  | 22.8 Hz), 120.2 (2C), 122.2 (d, 1C, $J_{C-F}^3 = 9.5$ Hz), 135.6 (d, 1C, $J_{C-F}^3 = 12.0$ Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6  | 140.3 (d, 1C, $J_{C-F}^4 = 2.8$ Hz), 149.5 (1C), 150.5 (2C), 159.2 (d, 1C, $J_{C-F}^1 = 243$ Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7  | 191.8 (1C); <sup>19</sup> F NMR (CDCl <sub>3</sub> , 376 MHz) $\delta$ –113.4 (ddd, $J$ = 5.6, 8.0, 10.8 Hz); IR (KBr,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8  | cm <sup>-1</sup> ) 733, 760, 937, 1229, 1449, 1517, 1599, 2826, 3206; HRMS (ESI <sup>+</sup> ) <i>m</i> /z 338.10981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9  | $([M+Na]^+, C_{17}H_{18}FN_3NaS^+ $ requires 338.10977).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 11 | <i>N-</i> [5-Fluoro-2-(1-piperidinyl)phenyl]isonicotinamide (FIA-348)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | E Contraction of the second seco                                                                                                                                                                                                                                            |



13 Mp 115–116 °C; TLC  $R_f$  0.40 (*n*-hexane/ethyl acetate = 1/1); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400


14 MHz)  $\delta$  1.62–1.69 (m, 2H, CH<sub>2</sub>), 1.70–1.78 (br, 4H, 2CH<sub>2</sub>), 2.75–2.83 (br, 4H, 2CH<sub>2</sub>),

15 6.81 (ddd, 1H, *J* = 2.8, 8.8, 10.8 Hz, aromatic), 7.18 (dd, 1H, *J* = 5.6, 8.8 Hz, aromatic),

16 7.71–7.74 (AA'BB', 2H, aromatic), 8.34 (dd, 1H, *J* = 2.8, 10.8 Hz, aromatic), 9.14–9.17

| 1 | (AA'BB', 2H, aromatic), 9.83 (s, 1H, NH); $^{13}$ C NMR (CDCl <sub>3</sub> , 126 MHz) $\delta$ 23.8 (1C),              |
|---|------------------------------------------------------------------------------------------------------------------------|
| 2 | 27.2 (2C), 54.2 (2C), 106.7 (d, 1C, $J^2_{C-F}$ = 29.0 Hz), 110.5 (d, 1C, $J^2_{C-F}$ = 22.7 Hz),                      |
| 3 | 120.7 (2C), 122.0 (d, 1C, $J_{C-F}^3 = 8.8 \text{ Hz}$ ), 134.3 (d, 1C, $J_{C-F}^3 = 12.6 \text{ Hz}$ ), 138.6 (d, 1C, |
| 4 | $J_{C-F}^4 = 2.5$ Hz), 141.8 (1C), 150.9 (2C), 160.0 (d, 1C, $J_{C-F}^1 = 243$ Hz), 162.7 (1C); <sup>19</sup> F        |
| 5 | NMR (CDCl <sub>3</sub> , 376 MHz) $\delta$ –114.5 (ddd, $J$ = 5.6, 10.8, 10.8 Hz); IR (KBr, cm <sup>-1</sup> ) 681,    |
| 6 | 1159, 1265, 1495, 1524, 1605, 1682, 2936, 3306; HRMS (ESI <sup>+</sup> ) <i>m</i> /z 322.13150                         |
| 7 | $([M+Na]^+, C_{17}H_{18}FN_3NaO^+ $ requires 322.13261).                                                               |

9 N-[5-Fluoro-2-(1-hexahydro-1*H*-azepinyl)phenyl]isonicotinamide (FIA-002)



10 11 Mp 135–136 °C; TLC  $R_f$  0.50 (*n*-hexane/ethyl acetate = 1/2); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 12 MHz)  $\delta$  1.61–1.82 (br, 8H, 4CH<sub>2</sub>), 2.97–3.07 (br, 4H, 2CH<sub>2</sub>), 6.80 (ddd, 1H, J = 2.0, 8.1, 13 8.1 Hz, aromatic), 7.19 (dd, 1H, J = 5.8, 8.1 Hz, aromatic), 7.74–7.77 (AA'BB', 2H, 14 aromatic), 8.33 (dd, 1H, J = 2.0, 10.4 Hz, aromatic), 8.82–8.85 (AA'BB', 2H, aromatic), 15 9.93 (s, 1H, NH); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz)  $\delta$  27.1 (2C), 30.1 (2C), 57.7 (2C), 106.8 16 (d, 1C,  $J^2_{C-F}$  = 29.0 Hz), 111.1 (d, 1C,  $J^2_{C-F}$  = 22.7 Hz), 121.0 (2C), 124.0 (d, 1C,  $J^3_{C-F}$  1 = 10.0 Hz), 134.6 (d, 1C,  $J_{C-F}^3 = 11.3$  Hz), 141.2 (d, 1C,  $J_{C-F}^4 = 2.5$  Hz), 142.2 (1C), 2 151.1 (2C), 160.2 (d, 1C,  $J_{C-F}^1 = 242$  Hz), 163.1 (1C); <sup>19</sup>F NMR (CDCl<sub>3</sub>, 376 MHz)  $\delta$  – 3 114.5 (ddd, J = 5.8, 8.1, 10.4 Hz); IR (KBr, cm<sup>-1</sup>) 681, 872, 1244, 1271, 1444, 1520, 4 1603, 1682, 2853, 2926, 3300; HRMS (ESI<sup>+</sup>) m/z 336.14815 ([M+Na]<sup>+</sup>, 5  $C_{18}H_{20}FN_3NaO^+$  requires 336.14826). 6

7 N-[5-Fluoro-2-(1-hexahydro-1*H*-azepinyl)phenyl]isonicotinthioamide (FIT-047)
F
N
N
N
8

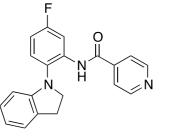
9 Mp 131–133 °C; TLC  $R_f$  0.46 (*n*-hexane/dichloromethane/ethyl acetate = 2/5/3); <sup>1</sup>H

10 NMR (CDCl<sub>3</sub>, 400 MHz) δ 1.64–1.75 (m, 8H, 4CH<sub>2</sub>), 2.99–3.04 (m, 4H, 2CH<sub>2</sub>), 6.94

11 (ddd, 1H, J = 2.9, 8.7, 8.7 Hz, aromatic), 7.25 (dd, 1H, J = 5.5, 8.7 Hz, aromatic), 7.69–

12 7.74 (AA'BB', 2H, aromatic), 8.73–8.78 (AA'BB', 2H, aromatic), 9.27 (dd, 1H, *J* = 2.9,

13 10.8 Hz, aromatic), 11.2 (s, 1H, NH); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) δ 26.8 (2C), 29.9


14 (2C), 57.7 (2C), 106.8 (d, 1C,  $J^2_{C-F} = 29.0$  Hz), 113.1 (d, 1C,  $J^2_{C-F} = 22.7$  Hz), 120.5

15 (2C), 124.0 (d, 1C,  $J^{3}_{C-F} = 10.0 \text{ Hz}$ ), 135.8 (d, 1C,  $J^{3}_{C-F} = 12.6 \text{ Hz}$ ), 142.7 (d, 1C,  $J^{4}_{C-F}$ 

16 = 2.5 Hz), 150.0 (1C), 150.7 (2C), 159.2 (d, 1C,  $J^{1}_{C-F}$  = 243 Hz), 192.1 (1C); <sup>19</sup>F NMR

(CDCl<sub>3</sub>, 376 MHz) δ –113.5 (ddd, J = 5.5, 8.7, 10.8 Hz); IR (KBr, cm<sup>-1</sup>) 731, 812, 1155,
 1364, 1354, 1447, 1514, 1597, 2926, 3175; HRMS (ESI<sup>+</sup>) m/z 352.12365 ([M+Na]<sup>+</sup>,
 C<sub>18</sub>H<sub>20</sub>FN<sub>3</sub>NaS<sup>+</sup> requires 352.12542).

5 *N*-[5-Fluoro-2-(1-indolinyl)phenyl]isonicotinamide (FIA-017)



6

7 Mp 150–151 °C; TLC  $R_f$  0.28 (*n*-hexane/ethyl acetate = 1/1); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500

8 MHz) δ 3.18–3.24 (m, 2H, CH<sub>2</sub>), 3.57–3.68 (br, 1H, CH<sub>2</sub>), 3.78–3.88 (br, 1H, CH<sub>2</sub>),

9 6.30 (d, 1H, J = 7.5 Hz, aromatic), 6.87 (dd, 1H, J = 7.5, 7.5 Hz, aromatic), 6.91 (ddd,

10 1H, J = 1.0, 8.0, 8.0 Hz, aromatic), 7.06 (dd, 1H, J = 7.5, 7.5 Hz, aromatic), 7.26–7.29

11 (m, 2H, aromatic), 7.51–7.54 (AA'BB', 2H, aromatic), 8.46 (dd, 1H, J = 3.0, 10.5 Hz,

- 12 aromatic), 8.73–8.75 (AA'BB', 2H, aromatic), 9.04 (br s, 1H, NH); <sup>13</sup>C NMR (CDCl<sub>3</sub>,
- 13 126 MHz)  $\delta$  29.1 (1C), 56.1 (1C), 107.7 (d, 1C,  $J^2_{C-F}$  = 29.0 Hz), 109.5 (1C), 111.9 (d,

14 1C,  $J^2_{C-F} = 23.1$  Hz), 120.4 (1C), 120.6 (2C), 125.1 (1C), 125.8 (d, 1C,  $J^3_{C-F} = 9.6$  Hz),

15 127.6 (1C), 130.5 (1C), 131.2 (d, 1C,  $J^{4}_{C-F} = 2.1$  Hz), 136.4 (d, 1C,  $J^{3}_{C-F} = 12.5$  Hz),

1 141.5 (1C), 150.5 (1C), 150.9 (2C), 161.0 (d, 1C,  $J^{1}_{C-F} = 246$  Hz), 163.2 (1C); <sup>19</sup>F NMR 2 (CDCl<sub>3</sub>, 376 MHz)  $\delta$  –111.8 (ddd, J = 6.0, 8.0, 10.5 Hz); IR (KBr, cm<sup>-1</sup>) 748, 1258, 3 1454, 1524, 1605, 1682, 2932, 3348; HRMS (ESI<sup>+</sup>) m/z 356.11645 ([M+Na]<sup>+</sup>, 4  $C_{20}H_{16}FN_{3}NaO^{+}$  requires 356.11696).



#### 1 Methods

#### 2 In vitro kinase assay for ATP competitive analysis

3 The ATP competitive analysis were assayed in a reaction mixture, containing CDK9/cyclinT1, 8 mM MOPS-NaOH (pH 7.0), 0.2 mM EDTA, 100 µM 4 KTFCGTPEYLAPEVRREPRILSEEEQEMFRDFDYIADWC, 10 mM MgAcetate and  $\mathbf{5}$ 6  $[\gamma$ -33P-ATP]. The reaction is initiated by the addition of the MgATP mix. ATP and 7 FIT-039 concentrations were 1-1000 µM and 0.003-30 µM, respectively. After 8 incubation for 40 minutes at room temperature, the reaction is stopped by the addition 9 of 3% phosphoric acid solution. 10 µL of the reaction is then spotted onto a P30 10 filtermat and washed three times for 5 minutes in 75 mM phosphoric acid and once in 11 methanol prior to drying and scintillation counting. This assay was commissioned to 12Millipore.

13

#### 14 In vitro kinase assay and IC<sub>50</sub> determination

15 The assay protocols of each kinase (CDK2/CycA2, CDK2/CycE1, CDK4CycD3,
16 CDK5/p25, CDK6/CycD3, CDK7/CycH/MAT1 and CDK9/CycT1) have been

| 1  | published                    | on                           | the                       | CarnaBiosciences                | website                          |
|----|------------------------------|------------------------------|---------------------------|---------------------------------|----------------------------------|
| 2  | (http://www.ca               | rnabio.com/eng               | lish/index.html).         | Kinase activities we            | re measured by a                 |
| 3  | mobility shift a             | assay(8). Comp               | ounds were disso          | olved in DMSO and d             | iluted in a half-log             |
| 4  | scale for use ir             | $1 \text{IC}_{50}$ determina | tions. The DMS            | O solution was diluted          | l in assay buffer to             |
| 5  | yield a final of             | concentration of             | f 1% DMSO fo              | or each compound. K             | inase assays were                |
| 6  | performed usin               | ng ATP at conce              | ntrations of the <i>I</i> | Km values for each kin          | ase. The inhibition              |
| 7  | of kinase activ              | ity by each com              | pound was calcu           | lated as follows: inhib         | ition (%) = [1–(A–               |
| 8  | B)/(C–B)) × 1                | 00, where A is               | the response w            | ith the compound, B             | is the background                |
| 9  | response with l              | kinase, and C is             | the response wit          | h vehicle (1% DMSO)             | ). The IC <sub>50</sub> value of |
| 10 | each compoun                 | d was calculated             | d by interpolation        | on on a log-concentrati         | on-response curve                |
| 11 | fitted with a fo             | our-parameter lo             | ogistic equation.         | The pIC <sub>50</sub> values we | re given as -log10               |
| 12 | (IC <sub>50</sub> ) values(9 | ).                           |                           |                                 |                                  |

# 14 Large panel of kinase screening

15 Kinase inhibitory activity of FIT-039 (10 μM) against kinome were screened by Merck
16 Millipore's KinaseProfiler service (Merck Millipore) and Profiling Services

| 1  | (Carnabiosciences). These assay protocols of each service have been published on the      |
|----|-------------------------------------------------------------------------------------------|
| 2  | Merck Millipore website (http://www.millipore.com/techpublications/tech1/pf3036) and      |
| 3  | the Carnabiosciences website (http://www.carnabio.com/english/index.html),                |
| 4  | respectively.                                                                             |
| 5  |                                                                                           |
| 6  | Influenza H1N1 infectious assay                                                           |
| 7  | MDCK cells were infected with influenza H1N1 (PR8 strain) with chemical compounds.        |
| 8  | Influenza H1N1-infected cells were incubated for 48 hr, following which total RNA was     |
| 9  | extracted using Sepasol RNA-I Super (NACALAI TESQUE, INC.). Reverse                       |
| 10 | transcription was performed with PrimeScript Reverse Transcriptase (Takara Bio, Inc.),    |
| 11 | using random primer. Influenza H1N1 and cellular GAPDH were quantitative by               |
| 12 | real-time PCR. Analyses were performed using FastStart Universal Probe Master             |
| 13 | (ROX) (Roche Applied Science). PCR was performed with an initial denaturation             |
| 14 | reaction at 95 °C for 1 min, and then amplified with 40 cycles of 95 °C for 30 sec, 60 °C |
| 15 | for 30 sec, 72 °C for 30 sec. The amplification was monitored on Step One Plus            |

16 (Applied Biosystems, Inc.). The primers used are shown in Supplementary Table 6.

| 2  | HIV-TAT promoter assay                                                                           |
|----|--------------------------------------------------------------------------------------------------|
| 3  | LTR-Luc consists of the long termimal repeat (LTR; 8454nt-(9000nt)-20nt) from HIV-1              |
| 4  | clone NL43 (U26942) cloned into pGL3-basic (Promega). pCMV4-tat consist of the tat               |
| 5  | cDNA (5208-5422 jointed to 7747-7792) from HIV-1 clone NL43 cloned into insert to                |
| 6  | pCMV4(10).                                                                                       |
| 7  | CV1 cells were plated 2 x 10^5 cells / 6 cm dish and co-transfected with 0.5                     |
| 8  | $\mu g$ of hRL-tk, $1\mu g$ LTR-Luc, $0.5\mu g$ EGFP-C1, $5\mu g$ herring sperm DNA and $3\mu g$ |
| 9  | CMV4-Tat or CMV4-(no insert) by calcium phosphate transfection method. hRL-tk                    |
| 10 | (Promega) as an internal control. Medium was changed to each compound medium 24                  |
| 11 | hr after transfection. These cells were harvested 48 hr post-treatment by passive lysis          |
| 12 | buffer. Luciferase and renilla luciferase activity were measured by Luciferase Assay             |
| 13 | System (Promega).                                                                                |
| 14 |                                                                                                  |
|    |                                                                                                  |

# 15 Skin irritation test

16 The rabbit skin irritation test was performed at Drug Safety Testing Center Co., Ltd.

| 1 | The backs of rabbits were clipped and epidermal abrasions were performed with a               |
|---|-----------------------------------------------------------------------------------------------|
| 2 | sterile needle at one test site, while the opposite site remained intact. A total of 0.5 g of |
| 3 | FIT-039 was then applied to each site, which was then covered with a non-reactive cloth.      |
| 4 | Three rabbits were assigned to each experimental group. The test sites were examined          |
| 5 | for dermal reactions 27 and 72 hours after the test article application in accordance with    |
| 6 | the FHSA-recommended Draize scoring criteria(11). The Primary Irritation Index                |
| 7 | (P.I.I.) of FIT-039 was calculated.                                                           |

## 9 Ames test

| 10 | The Ames test was performed at Hatano Research Institute, Food and Drug Safety       |
|----|--------------------------------------------------------------------------------------|
| 11 | Center. Bacterium Salmonella strains (TA100, TA1535, TA98, and TA1537) and           |
| 12 | Escherichia coli strain (WP2 uvrA) were pre-incubated with FIT-039 or 4 positive     |
| 13 | control compounds (AF2: 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide, SA: sodium azide, |
| 14 | 9AA: 9-aminoacridine, and 2AA: 2-aminoanthracene), with or without rat liver extract |
| 15 | (S9mix), which was used to examine the effect of the metabolized compounds. These    |
| 16 | mixtures were spread on agar plates and incubated for 48 hours. The colonies were    |

- 1 counted and mutagenicity was judged.
- $\mathbf{2}$

# 3 Micronucleus test

| 4  | The micronucleus test was performed at New Drug Development Research Center, Inc.      |
|----|----------------------------------------------------------------------------------------|
| 5  | FIT-039 (500 or 2000 mg/kg) or the solvent (polyethylenegrycol #400) were orally       |
| 6  | administrated to male CD1 mice once a day for 2 days. Sis mice were assigned to each   |
| 7  | experimental group. Their bone marrow cells were collected at the femur 24 hours after |
| 8  | the final administration, and the emergence of micronucleated polychromatic            |
| 9  | erythrocytes (MNPCE) and ratio of polychromatic erythrocytes in erythrocytes (PCE%)    |
| 10 | were examined.                                                                         |
| 11 |                                                                                        |
| 12 | Four-week repeat-dose oral toxicity study in rats and dogs                             |
| 13 | These studies were performed at Biotoxtech Co., Ltd Male SD rat (4 weeks old) and      |
| 14 | male beagle dogs (6 months old) were purchased from CHARLES RIVER                      |
| 15 | LABORATORIES JAPAN, Inc and BEIJING MARSHALL BIOTECHNOLOGY Co.,                        |

16 Ltd., China, respectively. FIT-039 (16.7, 50 or 150 mg/kg) or the solvent (0.5%

methylcellulose) was orally administrated to these animals once a day for 28 days. Ten
 rats were assigned to each experimental group. Body weights and general conditions
 were determined for 28 days from the first administration.

4

#### 5 Oral absorbability study in rat

6 These studies were performed at Biotoxtech Co., Ltd.. Male SD rat (4 weeks old) were 7 purchased from CHARLES RIVER LABORATORIES JAPAN, Inc. FIT-039 (16.7, 50 8 or 150 mg/kg) or the solvent (0.5% methylcellulose) was orally administrated to these 9 animals. Three rat were assigned to each experimental group. Venous blood samples 10 were collected at 0, 0.5, 1, 2, 4, 6, 8 and 24 hrs from the first administration. These 11 blood samples were deproteinized, and then measured by LC/MS/MS (Prominence; 12 SHIMADZU Co., Ltd, API4000; AB Sciex, Pte. Ltd.).

#### **1** SUPPLEMENTARY REFERENCE

- Hoeflich, K.P., Luo, J., Rubie, E.A., Tsao, M.S., Jin, O., and Woodgett,
   J.R. 2000. Requirement for glycogen synthase kinase-3beta in cell
   survival and NF-kappaB activation. *Nature* 406:86-90.
- 2. $\mathbf{5}$ Yasui, T., Sakakibara-Yada, K., Nishimura, T., Morita, K., Tada, S., Mosialos, G., Kieff, E., and Kikutani, H. 2012. Protein kinase N1, a 6 7 cell inhibitor of Akt kinase, has a central role in quality control of U8 germinal center formation. Proc Natl Acad Sci S A109:21022-21027. 9
- Shima, H., Pende, M., Chen, Y., Fumagalli, S., Thomas, G., and Kozma,
   S.C. 1998. Disruption of the p70(s6k)/p85(s6k) gene reveals a small
   mouse phenotype and a new functional S6 kinase. *EMBO J* 17:6649-6659.
- Leder, S., Czajkowska, H., Maenz, B., De Graaf, K., Barthel, A., Joost,
   H.G., and Becker, W. 2003. Alternative splicing variants of dual
   specificity tyrosine phosphorylated and regulated kinase 1B exhibit
   distinct patterns of expression and functional properties. *Biochem J* 372:881-888.
- MacAulay, K., Doble, B.W., Patel, S., Hansotia, T., Sinclair, E.M.,
   Drucker, D.J., Nagy, A., and Woodgett, J.R. 2007. Glycogen synthase
   kinase 3alpha-specific regulation of murine hepatic glycogen
   metabolism. *Cell Metab* 6:329-337.
- 6. Kitamura, T., Kido, Y., Nef, S., Merenmies, J., Parada, L.F., and Accili,
  D. 2001. Preserved pancreatic beta-cell development and function in
  mice lacking the insulin receptor-related receptor. *Mol Cell Biol* 21:5624-5630.
- Bogacheva, O., Bogachev, O., Menon, M., Dev, A., Houde, E., Valoret,
   E.I., Prosser, H.M., Creasy, C.L., Pickering, S.J., Grau, E., et al. 2008.
   DYRK3 dual-specificity kinase attenuates erythropoiesis during
   anemia. J Biol Chem 283:36665-36675.
- 8. Kinoshita, T., Miyano, N., Nakai, R., Yokota, K., Ishiguro, H., and
  Tada, T. 2008. Protein purification and preliminary crystallographic

analysis of human Lyn tyrosine kinase. Protein Expr Purif
 58:318-324.

- 3 9. Kitagawa, D., Yokota, K., Gouda, M., Narumi, Y., Ohmoto, H.,
  4 Nishiwaki, E., Akita, K., and Kirii, Y. 2013. Activity-based kinase
  5 profiling of approved tyrosine kinase inhibitors. *Genes Cells*6 18:110-122.
- Nishimura, A., Ono, T., Ishimoto, A., Dowhanick, J.J., Frizzell, M.A.,
  Howley, P.M., and Sakai, H. 2000. Mechanisms of human
  papillomavirus E2-mediated repression of viral oncogene expression
  and cervical cancer cell growth inhibition. *J Virol* 74:3752-3760.
- 11 11. Gilman, M.R., Evans, R.A., and Desalva, S.J. 1978. Influence of
  Concentration, Exposure Duration, and Patch Occlusivity Upon
  Rabbit Primary Dermal Irritation Indexes. *Drug Chem Toxicol*14 1:391-400.
- 15
- 16