Supplemental Online Material

For

An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1

Mattia Bonsignori^{1,2}, Kevin Wiehe^{1,2}, Sebastian K. Grimm³, Rebecca Lynch⁴, Guang Yang⁵, Daniel M. Kozink^{1,2}, Florence Perrin^{1,2}, Abby J. Cooper^{1,2}, Kwan-Ki Hwang^{1,2}, Xi Chen^{1,2}, Mengfei Liu⁶, Krisha McKee⁴, Robert J. Parks^{1,2}, Joshua Eudailey¹, Minyue Wang¹, Megan Clowse², Lisa G. Criscione-Schreiber², M. Anthony Moody^{1,7}, Margaret E. Ackerman³, Scott D. Boyd⁸, Feng Gao^{1,2}, Garnett Kelsoe^{1,5}, Laurent Verkoczy^{1,2,9}, Georgia D. Tomaras^{1,5,10}, Hua-Xin Liao^{1,2}, Thomas B. Kepler¹¹, David C. Montefiori^{1,10}, John R. Mascola⁴, and Barton F. Haynes^{1,2,5}.

¹ Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA;

² Department of Medicine, Duke University Medical Center, Durham, NC, USA;

³ Thayer School of Engineering, Dartmouth College, Hanover, NH, USA;

⁴ Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA;

⁵ Department of Immunology, Duke University Medical Center, Durham, NC, USA;

⁶ Duke University School of Medicine, Durham, NC, USA;

⁷ Department of Pediatrics, Duke University Medical Center, Durham, NC, USA;

⁸ Department of Pathology, Stanford University, Palo Alto, CA, USA;

⁹ Department of Pathology, Duke University Medical Center, Durham, NC, USA;

¹⁰ Department of Surgery, Duke University Medical Center, Durham, NC, USA;

¹¹ Department of Microbiology, Boston University, Boston, MA, USA.

Supplemental Figure 1 - Identification of neutralizing CD4bs antibodies in CH5329 serum. Binding of serial dilutions of CH5329 serum (x-axis) to RSC3 (solid circles) and RSC3 Δ 371I/P363N (open circles) proteins, expressed as optical density at a 450 nm wavelength (y-axis). Error bars represent standard error of the mean from two independent experiments.

	V _{H/L}	$\mathbf{D}_{\mathbf{H}}$	$\mathbf{J}_{\mathbf{H/L}}$	CDR3 length ¹	Mutation frequency	Isotype
Heavy chain	3-30	1-IR1	4	21	25.3%	G1
Light chain	λ 2-23		3	12	15.8%	

Supplemental Table 1 - Characteristics of the $V_{\rm H/L}(D)J_{\rm H/L}$ rearrangement of monoclonal antibody CH98

¹ amino acids

Supplemental Figure 2 - Phylogeny of $V_H DJ_H$ sequences from memory B cells and pyrosequencing. The ancestral reconstruction of the CH98 clonal lineage was performed as described in the Methods. The isolated mature antibody CH98 is shown in red. Pyrosequencing-derived sequences are shown in black. The inferred evolutionary paths to observed matured antibody and pyrosequencing-derived sequences starts with the inferred unmutated common ancestor (UCA) and encompasses three maturationally intermediate $V_H DJ_H$ sequences (I4, I3 and I1, shown in circles).

	10	20	30	40	50	60	70	8	0	90
			.						.	
UCA	CAGGTGCAGCTGGTG	GAGTCTGGGGGA	GGCGTGGT	CAGCCTGG	JAGGTCCC	TGAGACTCT	CCTGTGCAG	CCTCTGGAT	ICACCTT	CAGT
14				-G-AC	A	C	C-	TG·	A-A-	-GAG
CH98	GT			-G-AC/	A-A	C-G	-GC-	TG	A-A-	TGAC
13	G		<u>r</u>	-G-AC-A	A	C		TG	A-A-	-GAG
2	G		<u>r</u>	-G-AC-A	<u>A</u>	C	-AC-	TG	A-A-	-GAG
11	AG		<u>T</u>	-G-AC-A	:-A	C	C-	TG·	A-A-	-GAG
4	AG		TT	-G-AC-A	:-A	C	C-	:TG·	A-A-	-GAG
3	AG		T	-G-AC-A	C-A	C	C-	TG·	A-A-	-GAG
1	AG		T	-G-AC-A	C-A	C	C-	TG	A-A-	-GAG
	100	110	120	130	140	150	16	0 1	70	180
									.	
UCA	AGCTATGGCATGCAC	TGGGTCCGCCAG	GCTCCAGGG	CAAGGGGCT	GAGIGGG	TGGCAGTTA	TATCATATG.	ATGGAAGTA	ATAAATA	CTAT
14	-CA			T		CTT	CTCA	GA-	-CTCG-T	-A
СНЭ8	-CGA-T-C			T		CTG-T	GTA-CA	GGAAC	-CTCT-T	-A-C
13	-CA			T		CT-CT	CTCA	GA-(JCTCG-T	-A
2	-CA			T		CT-CT	CTCA	G-A-(3-TCG-T	-A
11	-CA			T		CT-CT	CTCA	GA-(CTCG-T	-A
4	-CA			T		CT-CT	CTCA	GA-0	CTCG-T	-A
3	-CA			T		CT-CT	CTCA	GA-(3CTCG-T	-A
1	-CA			T		CT-CT	CTCA	GA-0	3CTCG-T	-A
	190	200	210	220	230	240	25	0 20	50	270
			•••						$ \cdot\cdot\cdot $	•••
UCA	GCAGACTCCGTGAAG	GGCCGATTCACC	ATCTCCAG	AGACAATTC	CAAGAACA	CGCTGTATC	TGCAAATGA	ACAGCCTGA	JAGCTGA	.GGAC
I4	ATT	(G(3	G	G-GA-T	G	GC-		C
СН98	ATTC	CT-G-(G(3ATC	3-G	AAAAC-T	G	CGAG-C-	ſG-T	C
13	TATT	A	GTC	3	G	G-GA-T	GC	GC-	C	C
2	TATT	A	GTC	3	G	G-GA-T	GC	GCCC	C	C
11	TATT	A	GTC	3	GA	G-GAT	GC	GC-	C	C
4	TATT	A	GTC	3	GA	G-GAT	GC	GC-	C	C
3	TATT	A	GTC	3	GA	G-GAT	GC	GT-C-	C	C
1	TATT	A	GTC	3	GA	G-GA-T	GC	GC-	C	C
	280	290	300	310	320	330	34	0 3!	50	360
			.						$ \cdot\cdot\cdot $	· · ·
UCA	ACGGCTGTGTATTAC	TGTGCGAAAGAG	AGGGGAAG	ACACAGAAC	AAGGGACA	CACTCGAGT	TCGGGGAGT	TCTTTGACT	ACTGGGG	CCAG
I4	CC	T					<u>A</u> A	(]	T
СН98	ACAC-T-	TG		C	-C	TA-	AAGA-	-T(:A	G
13	CC	T					AA	(3	т
2	CC	T	C-	(3		AA	(2	T
I1	CC	TGG		3			AA	C(3	т
4	CC	TGG	(3			AA	C(3	т
3	CC	TGG	(3			AA	C(3	т
1	CCC	TGG		3			AA	C(3'	т
	370	380								
UCA	GGAACCCTGGTCACC	GTCTCCTCA								
I4	GG	G								
СН98	GG	G								
I3	GGA	G								
2	GGA	G								

 2
 ---G---G-----A-----G--

 11
 ---G---G-----A-----G--

 4
 ---G---G-----A-----G--

 3
 ---G---G-----A-----G--

 1
 ---G---G-----A-----G--

Supplemental Figure 3 - Alignment of the CH98 bNab, 454 pyrosequencing-derived, and inferred $V_{\rm H}DJ_{\rm H}$ sequences.

Supplemental Figure 4 - VL nucleotide sequence of monoclonal antibody CH98. The CH98 V_L/J_L sequence (CL900031) was aligned to its inferred unmutated ancestor sequence (CH98 LC UA). The CH98 LCDR1 (orange line) presents a 15-nucleotide deletion preceded by an activation-induced cytidine deaminase (AID) hotspot (AGT) (blue box). A TGT motif is also present near the start and the end of this deletion in the V_L unmutated gene sequence (red line). The N-nucleotides in-between the V_L and J_L sequences are shown with a blue line.

Supplemental Table 2 – CH98 and VRC01 binding profile to RSC3 protein, YU2 gp120 Env and Outer Domain protein 4.0 (OD4.0) and respective mutants.

		IC50 (µg/ml)									
		RSC	23		YU2 gp12	OD4.0					
	WT	G367R	Δ371I/P363N	WT	D368R	1420R	WT	I371N			
CH98	0.51	-	-	0.03	-	0.11	-	-			
VRC01	0.02	0.46	-	0.01	0.71	0.04	0.53	-			

Heavy	Chain
-------	-------

-	HFR1 (1-25)	HCDR1 (26-33)	HFR2 (34-50)	HCDR2 (51-58)	HFR3 (59-96)	
CH103 CH98	1 10 20 	30 GGSMGGTY GVNIDTYD *	40 50 WSWLRLSPGKGLEWIGY FHWVRQAPGKGLEWVAC * * ******	IFHTGET. CSNSGEHS **	60 70 80 90 .	 FC FC **
	HCDR3 (97-118) (1	HFR4 19-129)				
СН103 СН98	100 110 120) 2GSLVSVTA 2GARVTVSS * * *				
Light	Chain			I CDD 0		
	(1-26)	(27-35)	(36-50)	(51-57)	(58-89)	
CH103 CH98	1 10 20 SYELTQPPSVSVSPGQTATITC STGDQSALTQPAFVSESPGKSVTIAC * **** ** *** ** *	30 SGA.STNVC LGATSDYVC ** * **	40 50 WYQVKPGQSPEVVIF WYQHYPGRAPKLLIF *** ** * **	ENYKRPS G EANRRPS G * *** *	60 70 80 . IPDRFSGSKSGSTATLTIRGTQAIDEADYYC VSDRFSGSKSGHTAALTISGLQSDDEADYYC ********* ** ** * ******	
	LCDR3 LFR4 (90-101) (102-111)					
СН103 СН98	90 100 110 . .QVWDSFS.TFV FGSGTQVTV. CISPFLGSNKWV FGGGTRLTVL * * ** ** **					

Supplemental Figure 5 - Amino acid alignment of CH98 and CH103 heavy and light chain V(D)J rearrangements. Conserved amino acids are indicated with asterisks.

Supplemental Table 3 - Percentage of homology between amino acid sequences of CH98 and CH103 heavy and light chain V(D)J rearrangements.

Heavy Cha	ain		Light Chain				
HFR-1	11/25	44.0%	LFR-1	13/26	50.0%		
HCDR-1	1/8	12.5%	LCDR-1	5/9	55.6%		
HFR-2	9/17	52.9%	LFR-2	9/15	60.0%		
HCDR-2	2/8	25.0%	LCDR-2	4/7	57.1%		
HFR-3	14/38	36.8%	LFR-3	24/32	75.0%		
HCDR-3	4/22	18.2%	LCDR-3	1/12	8.3%		
HFR-4	5/11	45.5%	LFR-4	6/10	60.0%		
Total	46/129	35.7%	Total	62/111	55 .9 %		

Supplemental Table 4 - CH98 regions predicted to make contact with the observed YU2 gp120 core contact residues by threading CH98 onto the gp120-complexed CH103 crystal structure.

YU2 gp120 co	re Predicted CH98 contact regions
contact residu	es
K282	HCDR3, LCDR2
S365	HCDR1, HCDR3
S368	HCDR1, HCDR2, HCDR3, LCDR3
G473	HCDR1, HCDR3
D461	LCDR1, LCDR2

Supplemental Figure 6 - Predicted LCDR1 conformation of the mature and LCDR1 deletion-reverted CH98 bNAb. (A) Detail of the CH98 model (heavy chain in dark blue and light chain in light blue) based on threading onto the gp120-complexed CH103 crystal structure showing the short LCDR1 (green), which is predicted to make contact with residue 461 (yellow) of the gp120 molecule (gray). (B) Threading of the CH98 LCDR1 deletion-reverted antibody. Upon reversion of the 15-nucleotide deletion, the CH98 LCDR3 adopts the canonical conformation for a LCDR1 of length 14 as defined by North and colleagues (45) thus avoiding steric clashes but with a less favorable binding energy (see Results).

Supplemental Figure 7 - Binding to dsDNA of CH98 BnAb and antibodies from the CH103 CD4bs BnAb clonal lineage. CH98 BnAb binding to dsDNA was compared with the binding of mature CD4bs BnAb CH103, CH104, CH105, CH106 and maturational intermediate mAbs CH103-I1 and CH103-I2 described in Liao HX et al. Nature 496:469-476, 2013). Serial dilutions of each antibody (x-axis) were tested using the AtheNA Multi-Lyte ANA assay and binding to dsDNA is expressed as relative units (RU) (y-axis). CH98 is shown in red. The dotted line indicates the threshold for positivity. Results from an experiment representative of multiple experiments for each antibody are shown.

Supplemental Figure 8 - CH98 and CH5329 plasma binding to STUB-1. (A) CH98 BnAb (red) and negative control mAb palivizumab (blue) binding to STUB-1 (circles). HIV-1 A244 Δ 11 gp120 Env (triangles) was used as positive control for CH98 binding. The *x*-axis shows each monoclonal antibody concentration expressed as µg/ml and the *y*-axis shows the optical density reading at 450 nm. Experiments were run in duplicate, each point indicates the average and the error bars show the SEM. (B) CH5329 plasma binding to STUB-1 (circles) and HIV-1 A244 Δ 11 gp120 Env (triangles; positive control). The *x*-axis shows CH5329 plasma titer expressed as 1/plasma dilution (i.e. lowest dilution tested was 1:30) and the *y*-axis shows the optical density reading at 450 nm. Experiments were run in duplicate, each point indicate, each point indicates the average and the error bars shows the optical density reading at 450 nm. Experiments were run in duplicate, each point indicates the average was 1:30) and the *y*-axis shows the optical density reading at 450 nm. Experiments were run in duplicate, each point indicates the average and the error bars show the SEM.

	1 10	20	30	40	50	60	70	80 90
	-	-						
Consensus	MGGKWSKRKMG	GWPEVRERMR	RTEPAAEGVGA	ASRDLEKYGAL	TSSNTVANNA	DCAWLAAQEEEI	CEEVGFPVTPQV	PLRPMTYKGALDLSHFLKEK
CH5329_3.1								
CH5329_3.2							R	FF
CH5329_3.4							K	FF
CH5329_3.5				D			K	FF
CH5329_3.6				D				FF
CH5329_3.7								
CH5329_3.8								
CH5329_3.10								
CH5329_3.11								
CH5329_3.12				D				
CH5329_3.13								
CH5329_3.14							K	FF
CH5329_3.15							K	FF
CH5329_3.16								
CH5329_3.17				D				
CH5329_3.19								
CH5329_3.20								
CH5329_3.21								FF
CH5329_3.23								
CH5329_3.24								
CH5329_3.26								
CH5329_3.27								
СН5329 3.28				D			K	FF
CH5329 3.29								
CH5329 3.30								
CH5329 3.32								
CH5329 3.34								
CH5329 3.36							R	
CH5329 3 37				D				
CH5329_3.38								
CH5329_3.30								
CH5329_3.40								
CH5329_3.10				K				
CH5329_3.11								
CH5329_3.42								
CH5329_5.45								
CH5329_3.44		K						
CH5329_3.45		K						
CH5329_3.40								 E
CH5529_5.47								F
CH3329_3.40								
CH5329_5.50								
CH5329_3.51								
CH5329_5.55	D						K	F
CH5529_5.54							ח ת	
CII2222 2.22				 D	U_		K	r
CH5329_3.50				D	п			F
CH5329_3.50								G
CH5329_3.59								
CH5329_3.60							R	kk
CH5329_3.61							R	FF
CH5329_3.62							R	
CH5329_3.63								
CH5329_3.71								
CH5329_3.73							R	
CH5329_3.75							R	
CH5329_3.78								
CH5329_3.80				D			K	FF
CH5329_3.83							R	
СН5329_3.86								FF
СН5329_3.88								
СН5329_3.95				D				
CH5329_3.110								
CH5329_3.112							R	
CH5329_3.142								FF

	100	110	120	130	140	150	160	170	18	30 3	190
~											-
Cursana a 1	GLQGLIYSQ	2KRKDILDLV	₩VYHTQGYFPDWQ	NYTPGPGTRF		VPVEPEEVE	QANEGENNVI	LHPMSQHO	JMDDPEK	KEVLKWVFD;	SKLAFH
CH5329 3.2	D										
СН5329_3.4	D						K				LR
CH5329_3.5	D		F				K				LR
CH5329_3.6	H										
CH5329_3.7											
CH5329_3.8	E										
CH5329_3.10 CH5329_3.11											
CH5329 3.12											
СН5329_3.13											
СН5329_3.14	D										
CH5329_3.15	D		F								
CH5329_3.16											
CH5329_3.17											
CH5329_3.19 CH5329_3.20											
CH5329 3.21	DK	<	F					• 			
CH5329_3.23											
СН5329_3.24	E										
CH5329_3.26											
CH5329_3.27											
CH5329_3.28	D		F				К				LR
CH5329_3.29											
CH5329_3.30											
CH5329_3.34											
СН5329_3.36	E						-T				
CH5329_3.37											
CH5329_3.38											
CH5329_3.39											
CH5329_3.40											
CH5329_3.42				D							
CH5329 3.43	E										
СН5329_3.44											
CH5329_3.45											
CH5329_3.46											
CH5329_3.47	D						К				
CH5329_3.40											
CH5329_3.50											
CH5329_3.53	D						K				
CH5329_3.54											
CH5329_3.55	D										
CH5329_3.56	D		F				K				LR
CH5329_3.58	<u>E</u>										
CH5329_3.59 CH5329_3.60	D										
CH5329 3.61	D						К				
СН5329_3.62	E										
CH5329_3.63											
CH5329_3.71	E										
CH5329_3.73	E										
CH5329_3.75	E										
CH5329_3.78 CH5329_3.80	D		F				K				T.R
CH5329 3.83	E										
CH5329_3.86	H										
СН5329_3.88											
СН5329_3.95											
CH5329_3.110											
CH5329_3.112	E										
CHD327 3.142	n										

	200
Consensus	HVAQELHPEYYSKDR
CH5329_3.1	
CH5329_3.2	
CH5329_3.4	M
CH5329 3.5	M
CH5329 3 6	
CH5320 3 7	
CUE220 2 0	
CH5529_5.0	
CH5329_3.10	
CH5329_3.11	
CH5329_3.12	
CH5329_3.13	
CH5329_3.14	
CH5329_3.15	
CH5329 3.16	
CH5329 3.17	
СН5329 3 19	
CII5525_5.15	
CH5329_3.20	
CH5329_3.21	
CH5329_3.23	
CH5329_3.24	
CH5329_3.26	
CH5329_3.27	
CH5329 3.28	M
CH5329 3 29	
CH2320 3 30	
CII5529_5.50	
CH5329_3.32	
CH5329_3.34	
CH5329_3.36	
CH5329_3.37	
CH5329_3.38	
CH5329 3.39	
CH5329 3.40	
СН5329 3 41	
CHE220 2 42	
CIIJJZJ_J.42	
CH5329_3.43	
CH5329_3.44	
CH5329_3.45	
CH5329_3.46	
CH5329_3.47	
CH5329_3.48	
CH5329 3.50	
CH5329 3.51	
CH5329 3 53	
CUE220 2 54	
CH5529_5.54	
CH5329_3.55	
CH5329_3.56	M
CH5329_3.58	
CH5329_3.59	
CH5329_3.60	
CH5329_3.61	
CH5329 3.62	
СН5329 3 63	
CH5320 3 71	
CIIJJZJ_J.71	
CH5329_3.73	
CH5329_3.75	
СН5329_3.78	
CH5329_3.80	M
CH5329_3.83	
CH5329 3.86	
CH5329 3.88	
CH5329 3 95	
СН5329 2 110	
CHE220 2 110	
СПЭЗДУ 3.142	

Supplemental Figure 9 - Nef gene sequences from subject CH5329. Analysis of 64 3'-half genome amino acid sequences generated by the single genome amplification method showed an intact *nef* gene in all sequences.

Isolate	Accession No.	Clade	Origin	Contributor(s)
Q23.17	AF004885	А	Kenya	Julie Overbaugh
Q842.d12	AF407160	А	Kenya	Julie Overbaugh
Q168.a2	AF407148	А	Kenya	Julie Overbaugh
92RW020.2	EU855131	А	Rwanda	
MN.3	HM215430	В	USA	David C. Montefiori
SF162.LS	EU123924	В	USA	Leonidas Stamatatos
MW965.26	U08455	С	Malawi	Beatrice Hahn, Feng Gao
Bal.26	DQ318211	В	USA	John Mascola
Bx08.16	GQ855765	В	France	David C. Montefiori
SS1196.1	AY835442	В	USA	David C. Montefiori
6535.3	AY835438	В	USA	David C. Montefiori
6240_08_TA5_4622	EU289190	В	USA	George Shaw, Truman Grayson
6244_13_B5_4576	EU289191	В	USA	George Shaw, Truman Grayson
AC10.0.29	AY835446	В	USA	David C. Montefiori
CAAN5342.A2	AY835452	В	USA	Beatrice Hahn, Denise Kothe
PVO.4	AY835444	В	Italy	David C. Montefiori
QH0692.42	AY835439	В	Trinidad	David C. Montefiori
REJO4541.67	AY835449	В	USA	Beatrice Hahn, Jesus Salazar
RHPA4259.7	AY835447	В	USA	Beatrice Hahn, Jesus Salazar
SC422661.8	AY835441	В	Trinidad	Beatrice Hahn
THRO4156.18	AY835448	В	USA	Beatrice Hahn, Denise Kothe
TRJO4551.58	AY835450	В	USA	Beatrice Hahn, Xiping Wei
TRO.11	AY835445	В	Italy	David C. Montefiori
WEAU_d15_410_5017	EU289202	В	USA	George Shaw, Truman Grayson
WITO4160.33	AY835451	В	USA	Beatrice Hahn, Jesus Salazar
6101.10	AY835434	В	USA	David C. Montefiori
1394C9G1(Rev-)	FJ444529	С	Malawi	Beatrice Hahn, Jesus Salazar
246F C1	FJ496194	С	Zambia	Beatrice Hahn, Truman Grayson
BF1266.431a	HM215360	С	Malawi	Ronald Swanstrom, Elizabeth Russell
CAP45.2.00.G3	DQ435682	С	S. Africa	Lynn Morris
Ce0682_E4	FJ444325	С	Malawi	Ronald Swanstrom, Li-Hua Ping, Jeffrey Anderson
Ce2060_G9	FJ444600	С	Malawi	Ronald Swanstrom, Li-Hua Ping, Jeffrey Anderson
Ce703010054_2A2	FJ443808	С	Malawi	Ronald Swanstrom, Li-Hua Ping, Jeffrey Anderson
Du156.12	DQ411852	С	S. Africa	David C. Montefiori
TV1.21	HM215437	С	S. Africa	David C. Montefiori
Du422.1	DQ411854	С	S. Africa	David C. Montefiori
Du151.2	DQ411851	С	S. Africa	David C. Montefiori
3016.v5.c45	HM215283	D	Tanzania	Jerome Kim, Sodsai Tovanabutra, Eric Sanders-Buell
P0402_c2_11	EU885759	G	Portugal	Michael Thomson, Ana Revilla, Elena Delgado, Yolanda Vega
CM244.ec1	AY713425	CRF01_AE	Thailand	Jerome Kim, Sodsai Tovanabutra, Eric Sanders-Buell
TH023.6	AF009393	CRF01_AE	Thailand	Jerome Kim, Sodsai Tovanabutra, Eric Sanders-Buell
NP03.13	KC822430	CRF01_AE	Thailand	Jerome Kim/ Sodsai Tovanabutra/ Eric Sanders-Buell

Supplemental Table 5 - Viruses used in neutralization assays.