Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1
Mattia Bonsignori, … , John R. Mascola, Barton F. Haynes
Mattia Bonsignori, … , John R. Mascola, Barton F. Haynes
Published March 10, 2014
Citation Information: J Clin Invest. 2014;124(4):1835-1843. https://doi.org/10.1172/JCI73441.
View: Text | PDF
Research Article Immunology

An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1

  • Text
  • PDF
Abstract

Broadly HIV-1–neutralizing antibodies (BnAbs) display one or more unusual traits, including a long heavy chain complementarity-determining region 3 (HCDR3), polyreactivity, and high levels of somatic mutations. These shared characteristics suggest that BnAb development might be limited by immune tolerance controls. It has been postulated that HIV-1–infected individuals with autoimmune disease and defective immune tolerance mechanisms may produce BnAbs more readily than those without autoimmune diseases. In this study, we identified an HIV-1–infected individual with SLE who exhibited controlled viral load (<5,000 copies/ml) in the absence of controlling HLA phenotypes and developed plasma HIV-1 neutralization breadth. We collected memory B cells from this individual and isolated a BnAb, CH98, that targets the CD4 binding site (CD4bs) of HIV-1 envelope glycoprotein 120 (gp120). CH98 bound to human antigens including dsDNA, which is specifically associated with SLE. Anti-dsDNA reactivity was also present in the patient’s plasma. CH98 had a mutation frequency of 25% and 15% nt somatic mutations in the heavy and light chain variable domains, respectively, a long HCDR3, and a deletion in the light chain CDR1. The occurrence of anti-dsDNA reactivity by a HIV-1 CD4bs BnAb in an individual with SLE raises the possibility that some BnAbs and SLE-associated autoantibodies arise from similar pools of B cells.

Authors

Mattia Bonsignori, Kevin Wiehe, Sebastian K. Grimm, Rebecca Lynch, Guang Yang, Daniel M. Kozink, Florence Perrin, Abby J. Cooper, Kwan-Ki Hwang, Xi Chen, Mengfei Liu, Krisha McKee, Robert J. Parks, Joshua Eudailey, Minyue Wang, Megan Clowse, Lisa G. Criscione-Schreiber, M. Anthony Moody, Margaret E. Ackerman, Scott D. Boyd, Feng Gao, Garnett Kelsoe, Laurent Verkoczy, Georgia D. Tomaras, Hua-Xin Liao, Thomas B. Kepler, David C. Montefiori, John R. Mascola, Barton F. Haynes

×

Figure 1

Identification of neutralizing CD4bs antibodies in CH5329 serum.

Options: View larger image (or click on image) Download as PowerPoint
Identification of neutralizing CD4bs antibodies in CH5329 serum.
(A) CH5...
(A) CH5329 plasma and mAb CH98 neutralization profiles, measured as ID50 and IC50,respectively, in TZM-bl assay. Transmitted/founder HIV-1 isolates are italicized. For plasma neutralization: red, ID50 >1,000; orange, ID50 100 to 1,000; yellow, ID50 >20 and <100; white, ID50 <20 (absence of neutralization). For CH98 BnAb: red, IC50 <1 μg/ml; orange, IC50 1 to 50 μg/ml; white, IC50 >50 μg/ml (absence of neutralization). (B) Differential binding by CH5329 serum to the RSC3 protein and the CD4bs knockout RSC3Δ371I/P363N, graphed as ELISA endpoint titer (final reciprocal serum dilution with background-corrected OD ≥0.1). (C) CD4bs-directed neutralizing activity in CH5329 serum, shown as percent reduction in ID80 in the presence of RSC3 compared with the knockout RSC3Δ371I/P363N against HIV-1 JRFL and HxB2 strains. Values for the BnAbs VRC01 and 2F5 are included as positive and negative control, respectively. In B and C, error bars represent SEM from 2 independent experiments.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts