Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B$_{12}$ (B$_{12}$) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B$_{12}$ deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B$_{12}$-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B$_{12}$ as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass.
daily oral administration of taurine in B12-deficient offspring was sufficient to prevent their growth defect and osteoporosis through normalization of the GH/IGF1 axis. These results identify B12 as an essential vitamin that regulates growth and bone mass and identify novel avenues to treat bone diseases associated with low bone formation.

Results

B12 deficiency causes growth retardation and low bone mass. To generate B12-deficient animals, we first crossed Gif+/– female mice with Gif−/− male mice, yielding first-generation Gif+/− [Gif+/−(F1)] and Gif−/−(F1) mice. Real-time PCR analysis of Gif expression across different tissues showed that Gif expression was restricted to the stomach.

Figure 1

B12 deficiency in mice causes growth retardation and low bone mass. (A) Real-time PCR analysis of Gif expression in WT and Gif−/− tissues. (B) Serum B12 levels in WT, Gif−/−(F1), and Gif−/−(F2) mice. (C) BW analysis of WT, Gif−/−(F1) and Gif−/−(F2) mice. (D) Morphological analysis of 8-week-old WT, Gif−/−(F1), and Gif−/−(F2) mice. (E and F) Histological analysis of vertebrae (E) and μCT analysis of long bone (F) of WT, Gif−/−(F1), and Gif−/−(F2) mice. Mineralized bone matrix (black) was stained by von Kossa reagent. BV/TV, bone volume relative to total volume. Ct.Th., cortical thickness. (G) Toluidine blue staining showing reduced osteoblast number on bone surface, with quantification of Ob.N/T.Ar. (H) Photomicrographs showing near-absence of calcein double labeling on the surface of trabecular bone in Gif−/− mice, with quantification of BFR. (I) Photomicrographs showing TRAP-stained osteoclasts on the bone surface (pink), with quantification of osteoclast surface per bone surface (OcS/BS). #P < 0.05, *P < 0.01. Values are mean ± SEM. n = 8 [WT and Gif−/−(F2)], 9 [Gif−/−(F2)]. Arrowheads on images indicate the location of cell types or parameters measured. Scale bars: 10 mm (D); 1 mm (E and F); 0.1 mm (G); 50 μm (H); 10 μm (H, insets); 0.05 mm (I). See also Supplemental Figure 1.
of WT mice, and this was abolished in Gif−/− mice (Figure 1A). Measurement of serum B12 levels in Gif−/− offspring revealed a >20-fold reduction compared with WT mice (600 ± 35 versus 12,000 ± 110 ng/l), yet these mice still harbored detectable levels of serum B12. To further deplete B12 levels in the offspring, we next crossed Gif−/− females with Gif−/− males to generate second-generation Gif−/− mice; WT control mice were generated by crossing Gif+/+ females with Gif+/+ males. Measurement of serum B12 revealed low levels of <45 ng/l (i.e., below the limit of detection of the assay) in Gif−/− mice, compared with >11,000 ng/l in WT mice (Figure 1B). These results revealed that lowered B12 levels in Gif−/− females resulted in inadequate B12 transfer to their progeny during pregnancy, which led to very low levels of B12 in their serum.

We used Gif−/− mice to address the effect of altered B12 levels on postnatal growth and bone mass accrual. There was no major difference in the growth of WT, Gif−/−, and Gif+/− animals until P21 (Figure 1C and Supplemental Figure 1, A and B; supplemental material available online with this article; doi:10.1172/JCI72606DS1). However, Gif−/− animals showed growth arrest between P21 and P26, as evidenced by their impaired BW gain and reduced body size compared with WT, Gif−/−, and Gif+/− animals (Figure 1, C and D, and Supplemental Figure 1C). These results indicated that although Gif−/− mice have normal early transfer to their progeny during pregnancy, which led to very low levels of B12 in their serum.

We used Gif−/− and Gif−/− mice to address the effect of altered B12 levels on postnatal growth and bone mass accrual. There was no major difference in the growth of WT, Gif−/−, and Gif+/− mice until P21 (Figure 1C and Supplemental Figure 1, A and B; supplemental material available online with this article; doi:10.1172/JCI72606DS1). However, Gif−/− mice showed growth arrest between P21 and P26, as evidenced by their impaired BW gain and reduced body size compared with WT, Gif−/−, and Gif+/− mice (Figure 1, C and D, and Supplemental Figure 1C). These results indicated that although Gif−/− mice have normal early

Figure 2
Maternal B12 regulates offspring growth and bone mass and B12 deficiency during aging regulates bone mass independently of body growth. (A) Growth curve analysis of WT/VEH, Gif−/−/VEH, and Gif−/−/B12 mice. (B and C) Histological analysis of vertebral bone (B) and μCT analysis of long bone (C) in 8-week-old WT/VEH, Gif−/−/VEH, and Gif−/−/B12 mice, with quantification of BV/TV, Ob.N/T.Ar., BFR, and OcS/BS, and Ct.Th. (D and E) BW (D) and nose-to-tail length (E) of 48-week-old WT and Gif−/− mice. (F and G) Histological analysis of vertebral bone (F) and Ct.Th. analysis of long bone (G) in 48-week-old WT and Gif−/− mice, with quantification of BV/TV, Ob.N/T.Ar., OcS/BS, and Ct.Th. *P < 0.05; "P < 0.01. Values are mean ± SEM. n = 4–6 [WT]; 5 [Gif−/−/VEH], 7 [Gif−/−/B12]; 6 [Gif−/−]. All mice shown are females. Scale bars: 1 mm (B, C, and F). See also Supplemental Figure 2.
postnatal development, the postweaning growth spurt observed in WT animals is severely compromised in these mice.

Histological and μCT analyses in 8-week-old WT, Gif–/–(F1), and Gif–/–(F2) mice revealed a severe decrease in bone mass in vertebra and long bone in Gif–/–(F2) animals, whereas levels were similar between Gif–/–(F1) and WT mice (Figure 1, E and F). The low bone mass in Gif–/–(F2) mice was caused by a >3-fold decrease in number of osteoblasts per trabecular area (Ob.N/T.Ar.), with a dramatic decrease in bone formation rate (BFR), compared with WT mice (Figure 1, G and H). In contrast to the deleterious consequences of B12 deficiency on osteoblast number and function, osteoclast parameters in Gif–/–(F2) mice were similar to those of WT mice (Figure 1I).

Together, these results obtained in first- and second-generation Gif–/– offspring showed (a) that maternally derived B12 is trans-
metabolites regulated by GH in hepatocytes are shown in red font. (B) Summary plot for quantitative enrichment analysis. Metabolite sets are ranked according to false discovery rate (FDR); dashed lines show FDR value cutoffs. (C) Metabolome view reflects on the x-axis increasing metabolic pathway impact according to the betweenness centrality measure, which shows key nodes in metabolic pathways that have been significantly altered upon B12 deficiency. Colored circles correspond to pathways in B. (D) PLSDA-VIP plot. Metabolites are ranked according to their increasing importance to group separation between WT and Gif–/– mice. (E) Measurement of taurine and its derivatives in WT/VEH, Gif–/–/VEH, and Gif–/–/B12 liver (n = 5 per group). *P < 0.05; **P < 0.01. Values are mean ± SEM. See also Supplemental Figure 4.

Figure 4

Metabolomics analysis identifies taurine as a critical metabolite that connects B12 deficiency with GH signaling. (A) Supervised hierarchical clustering plot of up- or downregulated metabolites in Gif–/– (F2) liver. Metabolites regulated by GH in hepatocytes are shown in red font. (B) Summary plot for quantitative enrichment analysis. Metabolite sets are ranked according to false discovery rate (FDR); dashed lines show FDR value cutoffs. (C) Metabolome view reflects on the x-axis increasing metabolic pathway impact according to the betweenness centrality measure, which shows key nodes in metabolic pathways that have been significantly altered upon B12 deficiency. Colored circles correspond to pathways in B. (D) PLSDA-VIP plot. Metabolites are ranked according to their increasing importance to group separation between WT and Gif–/– mice. (E) Measurement of taurine and its derivatives in WT/VEH, Gif–/–/VEH, and Gif–/–/B12 liver (n = 5 per group). *P < 0.05; **P < 0.01. Values are mean ± SEM. See also Supplemental Figure 4.

B12 deficiency causes GH resistance. Given that loss of B12 caused low bone mass and decreased osteoblast numbers in vivo, we considered the possibility that B12 may regulate osteoblast numbers and function by directly acting on these cells to regulate bone mass. To test this contention, we cultured primary osteoblasts in B12-deficient medium, treated them with different doses of B12, and measured their proliferation and differentiation. Reducing the concentration of B12 from 10,000 to 0 nM did not have any significant effect on proliferation or differentiation of osteoblasts (Supplemental Figure 3A). Consistent with these results, primary osteoblasts from B12-deficient mice proliferated and differentiated equally well as WT cells (Supplemental Figure 3A). These in vitro results were surprising, in contrast to the in vivo results of a 3-fold decrease in osteoblast numbers and function in B12-deficient animals, which suggests that B12 deficiency likely affects osteoblasts through an endocrine mechanism.

GH, a hormone made in the pituitary gland, appeared to be the likely candidate, given its role in postweaning growth and bone mass accrual (23, 27, 30). We therefore first analyzed serum levels of GH in 8-week-old WT and Gif–/– mice. Serum GH levels were increased approximately 3-fold in mutants compared with WT mice (Figure 3A). This increase in GH in Gif–/– animals was associated with increased expression of GH releasing hormone (Ghrh), which regulates pituitary GH production, in the hypothalamus (Figure 3B). These results suggested that B12-deficient animals display GH resistance or insensitivity, at the level of either GH receptor (Ghr) or one of its downstream effectors, in the liver. Analysis of Ghr showed normal expression in the liver and bone in Gif–/– animals; however, levels of serum IGF1 (through which GH mediates many of its peripheral actions) were reduced >4-fold (Figure 3, C and D). The decrease in IGF1 serum levels was associated with a decrease in IGF1 receptor (IGF1R) phosphorylation in the target tissues (Figure 3E).

Since IGF1 expression is regulated by STAT5 signaling downstream of GH, we next investigated whether activation of STAT5 and its major targets is perturbed in Gif–/– mice. In Gif–/– mice, STAT5 phosphorylation was nearly absent in the liver and muscle, 2 major GH target tissues, but not in other tissues (Figure 3F). The decrease in STAT5 phosphorylation was associated with a major increase in expression of Socs2, an inhibitor of STAT5, in Gif–/– liver (Figure 3G). In addition, mRNA levels of major STAT5 targets in the liver (31), such as IGF binding protein 1 (Igfbp1), was increased, whereas expression of Igf1, IGF binding protein acid labile subunit (Igfals), solute carrier organic anion transporter family member 1A1 (Slc1a1), major urinary proteins (Mup1–Mup3), and hydroxysteroid dehydrogenase 3b5 (Hsd3b5) was decreased.
Figure 5

GH regulates taurine synthesis in a STAT5- and B12-dependent manner. (A) Relationship between taurine, STAT5, and B12 in the liver. (B) Experimental regimen used to test B12 involvement in GH regulation of taurine synthesis. Also shown is RT-PCR analysis to detect Oleosin transcript in the cells after transfection with empty vector or TCOL construct. (C) STAT5 phosphorylation upon GH treatment in empty vector- or TCOL-transfected HepG2 cells. Blots were run continuously. (D) Taurine levels upon GH treatment in empty vector- or TCOL-transfected HepG2 cells. (E) PLSDA-VIP scores plot of metabolomics data from hepatocytes after empty or TCOL transfection. (F) Experimental regimen used to test STAT5 involvement in GH regulation of taurine production. Photomicrographs show immunohistochemistry of STAT5 in HepG2 cells. (F) Experimental regimen used to test STAT5 involvement in GH regulation of taurine production. Photomicrographs show immunohistochemistry of STAT5 in HepG2 cells transplanted with nontargeting (empty) or STAT5 (shSTAT5) shRNA. (G) Relative expression of IGF1 upon GH treatment in empty vector or STAT5 shRNA–transfected HepG2 cells. (H) Taurine levels upon GH treatment in empty or STAT5 shRNA–transfected HepG2 cells. (I) Real-time PCR analysis of enzymes in the taurine synthesis pathway in empty, TCOL, or STAT5 shRNA–transfected cells treated with vehicle or GH. (J) GH regulation of the taurine synthesis pathway. Red metabolites and genes, upregulated (only those upregulated by GH and that do not respond to GH upon STAT5 shRNA or TCOL transfection); green metabolites and genes, downregulated; black metabolites and genes, not altered; gray metabolites and genes, not measured. *P < 0.05; **P < 0.01. Values are mean ± SEM. Scale bars: 20 μm (F). See also Supplemental Figure 5.

(Figure 3H and Supplemental Figure 3B), similar to previous observations in Stat5−/− mice (32). This GH resistance was also present in aged Gif−/−(F1) mice, and maternal B12 injections normalized GH/IGF1 levels in Gif−/−(F2) offspring (Supplemental Figure 3, C and D). These results revealed that B12 deficiency results in major abrogation of GH action in the offspring.

We next investigated how B12 deficiency abrogates GH action, using liver tissue as a model. B12 derivatives in mammals act as cofactors for the function of only 2 known enzymes, MTR and MUT (Figure 3I); therefore, we first measured the metabolites downstream of these enzymes to observe the effect of B12 deficiency on their function. Methionine, a product of MTR, was significantly downregulated, and its substrate, homocysteine, was increased, whereas succinate, a downstream product of MUT, was not affected (Figure 3J). Methionine is a precursor for cellular production of S-adenosyl methionine (SAM), which is an essential methyl donor for histone and DNA methylation, 2 epigenetic modifications known to affect basal and ligand-stimulated gene expression levels (33). Because we observed a major decrease in the expression of liver Igf1, we first tested whether B12 deficiency alters the methylation status of this gene, using histone methylation as a marker. ChIP analysis of histone methylation in WT and Gif−/−(F2) liver tissues revealed a major decrease in histone (H3) methylation at the Igf1 locus (Figure 3K). These results suggested that a major decrease in histone methylation might lead to decreased responsiveness of target tissues to GH, resulting in development of GH resistance.

If the observed decrease in liver Igf1 synthesis alone is necessary and sufficient to cause growth retardation and osteoporosis in Gif−/−(F2) animals, then Igf1 administration to these animals should be able to overcome their growth retardation. To examine this possibility, we treated Gif−/−(F2) animals beginning at P20 with twice-daily injections of recombinant Igf1, which has previously been shown to prevent and/or cure growth abnormalities (34). To our surprise, Igf1 treatment led to early lethality of Gif−/−(F2) animals (Figure 3L). This extreme response to Igf1 can be explained by the lower basal glucose levels observed in these animals (15.1 ± 1.2 versus 25.5 ± 3.2 mmol/L), likely due to GH resistance, and Igf1 administration further decreased their glycemic state (5.2 ± 1.3 mmol/L; at this point, if animals were given a bolus of glucose,reviving them and preventing death), likely resulting in lethality (Figure 3L). Moreover, administration of SAM that normalized DNA methylation could not rescue the growth retardation and bone abnormalities caused by B12 deficiency (data not shown). These results suggest that the suppression and/or activation of another GH mediator in addition to SAM (dependent on B12), either acting independently or regulating Igf1 action, underlies GH resistance in B12-deficient animals.

Identification of taurine as a critical metabolite positively regulated by B12. To identify the mediators underlying the GH resistance observed upon B12 deficiency, we next carried out targeted metabolomic analysis in the liver of Gif−/−(F2) mice and compared this profile with GH-regulated metabolome. Analysis of metabolic data upon B12 deficiency revealed that most of the metabolites were downregulated and were involved in amino acid, betaine, primary bile acid, protein, and purine metabolism (Figure 4A and Supplemental Figure 4A). Metabolite profiling of GH-treated hepatocytes identified many metabolites that showed similar positive regulation by GH and B12 (Figure 4A and Supplemental Figure 4B) and might underlie the GH resistance observed upon B12 deficiency.

Quantitative enrichment analysis on B12-deficient metabolome showed major perturbations in the metabolic pathways associated with taurine and hypotaurine, folate and bile acid biosynthesis, nucleotide and amino acid metabolisms, and protein synthesis (Figure 4B). Pathway analysis identified that the taurine and hypotaurine pathways had a substantial effect on cellular function following B12 deficiency (Figure 4C). To identify which metabolites contribute to the group separation of WT and B12-deficient samples, we performed a supervised multivariate regression technique, partial least squares discriminant analysis (PLSDA). In the PLSDA model, the number of latent variables (LVs) to be used depends on the sum of squares captured by the model (R2), cross-validated R2 (Q2), and prediction accuracies based on cross-validations, with different numbers of LVs. Variable importance in projection (VIP) is one of the important measures of PLSDA, where it is a weighted sum of squares of the PLS loadings taking into account the amount of explained class variation in each dimension. PLSDA-VIP analysis of the liver metabolomics data identified that taurine had the highest VIP score and could serve as a biomarker for B12-deficient status (Figure 4D). Consistent with the notion that perturbation in taurine metabolism underlies the GH resistance observed upon B12 deficiency, measurement of taurine and its derivatives in Gif−/−(F2)/B12 liver showed complete rescue of these metabolites to the levels seen in WT liver (Figure 4E). Moreover, further suggesting a critical role of taurine in the GH/B12-dependent pathway, taurine deficiency has previously been shown to be associated with GH/IGF1 signaling downregulation in Ames dwarf mice (35), and methionine metabolism is significantly perturbed in patients with GH deficiency (36).

Taken together, these integrated metabolomic analysis in WT and Gif−/−(F2) mouse liver identified a hitherto-unanticipated suppression of taurine metabolism in B12 deficiency–mediated GH resistance.

GH regulates taurine synthesis in a STAT5/B12-dependent manner.

Thus far, our results provided correlative evidence that B12 deficiency in the liver results in reduced taurine production associated with abrogation of GH signaling. We next generated in vitro
models of B12 and STAT5 deficiency in hepatocytes and asked whether GH/STAT5 signaling regulates taurine production and, if so, whether this process is affected by B12 deficiency (Figure 5A). We used 2 strategies to investigate this question. First, to investigate the B12 regulation of GH-dependent taurine synthesis, we used a sequestration approach to ablate B12 action in hepatocytes using overexpression of a transcobalamin 2–oleosin construct (TCOL) in HepG2 cells. Upon expression, TCN2 binds to B12 in the cytoplasm, and oleosin immobilizes this TCN2-B12 complex to the endoplasmic reticulum, thereby chelating any B12 present in the cytosol (37). To this end, we synthesized TCOL fusion vectors and created stably transfected HepG2 cells with TCOL or an empty vector as a control. Measurement of Oleosin transcript in the cells showed that we successfully overexpressed TCOL (Figure 5B). Measurement of taurine in the transfected cells showed that while GH treatment significantly increased pSTAT5 and taurine production in the vector-transfected cells, this increase in pSTAT5 and taurine was completely abrogated in TCOL-transfected cells (Figure 5, C and D). PLSDA-VIP analysis of the metabolomics data derived from these cells showed that, once again, taurine was the main driver for the separation of the 3 groups (Figure 5E). Importantly, addition of taurine to TCOL-transfected cells fully restored GH responsiveness, as measured by IGF1 expression analysis (Supplemental Figure 5A).

The observations that B12-deficient animals had a major decrease in STAT5 phosphorylation, and that GH increased taurine production, led us to next investigate whether GH — through STAT5 signaling — regulates taurine production. We stably transfected hepatocytes (HepG2 cells) with shRNA against STAT5 or empty vector, followed by treatment of these cells with either vehicle or GH. Immunohistochemical analysis of STAT5 levels in these cells after transfection revealed that STAT5 expression was successfully abrogated in STAT5 shRNA–transfected compared with mock-transfected cells (Figure 5F). Measurement of IGF1 expression confirmed that we successfully abrogated GH action (Figure 5G). We next measured taurine production in response to GH. GH treatment significantly increased taurine production in the mock-transfected cells, but this increase was completely abrogated in STAT5 shRNA–transfected cells (Figure 5H).

Finally, we questioned which of the enzymes in the taurine synthesis pathway are regulated by GH in a STAT5- and B12-dependent manner. GH treatment of hepatocytes lead to an increase in the expression of gamma-glutamyltransferase 6 (GGT6), cystathionine beta synthase (CBS), dimethylglycine dehydrogenase (DMGDH), S-adenosylhomocysteine hydrolase-like 1 (AHCYL1), aldehyde dehydrogenase 7 family, member A1 (ALDH7A1), and glycine N-methyltransferase (GNMT), while it did not affect expression of other enzymes (BHMT, SHMT1, BAAT, and MAT1A) in this pathway (Figure 5I and data not shown). The increase in expression of these enzymes observed upon GH treatment was abrogated following loss of STAT5 or with sequestration of B12 in the cells (Figure 5I). Integrated analysis of GH-regulated metabolites and gene expression changes linking methionine to taurine metabolism showed that GH signaling affected taurine biosynthesis pathway at multiple levels (Figure 5J).

Figure 6
Oral taurine administration prevents growth retardation and osteoporosis in Gif−/− mice. (A) Growth curve analysis of WT/VEH, Gif−/−/VEH, and Gif−/−/TAU mice. (B and C) Serum GH (B) and IGF1 (C) levels in WT/VEH, Gif−/−/VEH, and Gif−/−/TAU mice. (D) Histological analysis of vertebra in WT, Gif−/−/VEH, and Gif−/−/TAU mice, with quantification of BV/TV, Ob.N/T.Ar., BFR, and OcS/BS. (E) Pearson correlation scatter plot between BV/TV and serum IGF1 levels in taurine-treated mice. *P < 0.05; **P < 0.01. n = 5 per group. Values are mean ± SEM. Scale bar: 500 μm. See also Supplemental Figure 6.
Figure 7
Taurine increases IGF1 synthesis from liver and its action in osteoblasts to regulate bone mass. (A–D) Liver samples. (A) Levels of methionine and homocysteine in WT, Gif−/−F2/VEH, and Gif−/−F2/TAU liver. (B) B12-dependent (MTR) and -independent (BHMT) methionine synthesis pathways. (C) Western blot analysis of BHMT levels in WT, Gif−/−F2/VEH, and Gif−/−F2/TAU liver. Lanes were run contiguously. U.D., undetectable. (D) Levels of betaine and dimethyl-glycine in liver of WT, Gif−/−F2/VEH, and Gif−/−F2/TAU mice. (E–G) MC3T3-E1 osteoblast cells. Changes in BrdU incorporation (E), IGF1R and ERK phosphorylation (F), and Ccnd1 expression (G) in cells treated for 24 hours with vehicle, OSI906, taurine, or taurine plus OSI906. Lanes in F were run contiguously, and blots were stripped and reprobed with IGF1R or ERK. Relative quantification of pIGF1R and pERK (normalized to IGF1R and ERK, respectively) is shown below. A representative blot from 3 different experiments is shown. (H) Growth curve analysis of WT and Gif−/−F2/TAU+OSI906 mice (n = 5 each). (I) Bone mass analysis (BV/TV) in the vertebra of WT and Gif−/−F2/TAU+OSI906 mice (n = 5 per group). (J) Gut/liver/bone endocrine axis, illustrating GH/STAT5/B12-dependent changes in serum IGF1 and taurine that regulate osteoblast proliferation and bone mass. *P < 0.05; **P < 0.01. Values are mean ± SEM. Scale bar: 500 μm. See also Supplemental Figure 7.
research article

Based on these results, we concluded (a) that GH increases taurine production in the hepatocytes in a STAT5- and B12-dependent manner and (b) that STAT5 and B12 regulate taurine synthesis by regulating expression of critical enzymes and metabolites in the taurine synthesis pathway. Together, these results showed that GH signals in the hepatocytes in a STAT5/B12-dependent manner to regulate production of taurine, whose deficiency in B12-deficient animals might underlie GH resistance and osteoporosis. Oral feeding of taurine to B12-deficient Gif–/–(F2) offspring normalizes the GH/IGF1 axis and prevents their growth retardation and osteoporosis. If the decrease in taurine levels is the cause of GH resistance and low bone mass phenotype in Gif–/–(F2) animals, then administration of taurine to these animals should be able to prevent postweaning growth and bone mass abnormalities. To this end, 16-day-old WT and Gif–/–(F2) females were given either vehicle or 500 mg/kg BW taurine daily (orally) [referred to herein as Gif–/–(F2)/VEH and Gif–/–(F2)/TAU mice, respectively]. Growth curve analysis showed that although Gif–/–(F2)/VEH offspring showed growth retardation from P21 to P26, Gif–/–(F2)/TAU mice grew normally between P21 and P26 and thereafter, and were in fact indistinguishable from WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A). This rescue of growth retardation in Gif–/–(F2)/TAU animals was associated with normalization of serum GH and IGF1 levels, which were restored to the levels seen in WT animals (Figure 6A).
of GH to regulate bone mass. The taurine-mediated increase in IGF1 synthesis suggested that taurine was able to overcome the consequences of B12 deficiency in the liver. Analysis of metabolite levels in the liver showed that methionine levels in taurine-treated animals were rescued to the levels seen in WT animals (Figure 7A). Because MTR, the principle enzyme that synthesizes methionine in mammals, cannot function in the absence of B12, we looked at alternate pathways of methionine synthesis that are not dependent on B12 as a cofactor and could explain the increase in methionine synthesis in response to taurine. Analysis of protein levels and activity of betaine-homocysteine S-methyltransferase (BHMT), an enzyme that carries out a parallel reaction to synthesize methionine, revealed a major increase in its protein levels in the liver of taurine-fed animals (Figure 7, B and C). Consistent with the increased protein levels of BHMT, its substrates (betaine and homocysteine) were decreased, whereas its products (dimethylglycine and methionine) were increased, in liver (Figure 7, B and D). Bbmt expression was found to be undetectable in bone (Supplemental Figure 7A). ChIP analysis of me2K36, a marker of histone methylation levels, at the Igf1 locus showed that this increase in methionine levels normalized the methylation status of Igf1 in the liver (Supplemental Figure 7B). In contrast to the changes in liver Igf1, methylation status of Igf1 in osteoblasts or its expression in the long bone was not different among WT, Gif–/–/VEH, and Gif–/–/TAU mice (Supplemental Figure 7, C and D). Together, these results revealed that taurine-mediated BHMT pathway activation led to the restoration of methylation status and responsiveness of Igf1, and other genes, to circulating GH.

Next, we investigated which aspects of osteoblast biology are affected by taurine, and whether taurine’s effect is dependent on IGF1 signaling. Taurine treatment (20 mM) specifically increased osteoblast proliferation, but had no effect on the differentiation or mineralization of these cells, and this increase in osteoblast proliferation was blocked by pretreatment with the IGF1R antagonist OSI906 (10 μM) (Figure 7E and Supplemental Figure 7, E–G). Analysis of signaling pathways downstream of taurine in osteoblasts revealed an increase in IGF1R phosphorylation and downstream activation of the ERK pathway, as reflected by increased pERK levels and increased expression of its transcriptional target, Ccnd1, both of which were abrogated by OSI906 pretreatment (Figure 7, F and G). This effect of taurine on IGF1R signaling was also seen in the long bone in vivo (Supplemental Figure 7, H and I). These results showed that taurine stimulates the IGF1R/ERK signaling cascade to increase osteoblast proliferation.

Finally, to investigate the importance of IGF1R in mediating the bone and growth abnormalities in Gif–/– mice, we treated these mice with either vehicle [Gif–/–/VEH] or taurine plus OSI906 (50 mg/kg BW/d) [Gif–/–/TAU+OSI906] from P16 onward. Growth curve and bone histomorphometric studies showed that Gif–/–/TAU+OSI906 mice remained growth retarded and osteoporotic (Figure 7, H and I). These results indicated that B12/taurine is an essential mediator of GH action that increases IGF1 synthesis from the liver and its signaling in osteoblasts to increase osteoblast proliferation and bone mass while it increases GH signaling in other tissues, such as cartilage, which is dependent on GH directly to increase longitudinal growth (Supplemental Figure 7J). Evidence for the B12/taurine/bone pathway in children and aged patients with B12 deficiency. Serum samples from children born of nutritionally B12-deficient mothers showed a significant decrease in their serum B12, taurine, and osteocalcin (as a marker of bone formation) levels compared with age-matched controls (Supplemental Figure 8, A and B). Correlation analysis using all samples showed a significant positive correlation between variation in serum B12 and taurine (R = 0.877, P = 0.00018), B12 and osteocalcin (R = 0.830, P = 0.00083), and taurine and osteocalcin (R = 0.742, P = 0.0057) levels (Figure 8, A–C).

Analysis of aged patients with B12 deficiency showed significantly decreased levels of taurine and osteocalcin (Supplemental Figure 8C). Further correlation analysis using all samples from aged subjects showed significant positive correlation between variation in serum B12 and taurine (R = 0.707; P = 0.001), B12 and osteocalcin (R = 0.946, P = 2.6 × 10−9), and taurine and osteocalcin (R = 0.699; P = 0.0012) levels (Figure 8, D–F). These data provide further support for a physiological role of B12 in regulating taurine synthesis and bone formation in humans. However, the human sample size in our studies was small; follow-up controlled clinical trials correlating the markers of the B12/taurine axis with bone formation using larger sample sizes would be needed.

Discussion

Our present findings uncovered an unanticipated regulation of growth and bone mass through a vitamin. These findings shift the focus to maternal nutritional milieu as a major player in skeletogenesis and provide conclusive evidence that maternally derived B12 regulates growth and bone accrual in the offspring via the GH/IGF1 axis.

Our studies demonstrating an effect of B12 derived from the mother on postnatal skeletogenesis of the offspring increases the repertoire of maternal effects on organ growth and bone mass. To our knowledge, B12 is the first vitamin of maternal origin whose deficiency or excess specifically manifests its consequence on postweaning bone formation. Our conclusion that alterations in maternal ability to transfer B12 to the offspring regulated growth and bone mass acquisition was based on 2 lines of evidence. First, only pups born from homozygous Gif–/– mothers, not those born from heterozygous Gif–/+ mothers, had early-onset growth retardation and osteoporosis. Second, a single injection of B12 to the homozygous mothers was able to transfer sufficient B12 to their progeny and prevented the development of growth retardation and osteoporosis. The onset of growth retardation in the offspring only after weaning indicated that only minimal B12 is required during critical periods of pregnancy for functional folate/methionine metabolism. A recent study reported that mutated methionine synthase reductase (Mtrr), which activates the MTR/B12 complex, caused transgenerational embryonic abnormalities and/or lethality that were much more severe than our B12-deficient mouse model (38). On the other hand, in our present study, the higher stability of B12 overcame this neonatal lethality and allowed us to investigate the effects of deficiency in methionine/folate metabolism on mouse postnatal growth and metabolism. Together, our results indicate that modifications in methionine/folate metabolism during development or postnatal life will have long-lasting consequences on growth and bone homeostasis.

B12 deficiency results in ablation in the activity of the enzymes MTR and MUT in mammals and, consequently, accumulation of their substrates, including homocysteine and methylmalonic acid (MMA), respectively. The observation that increased homocysteine and MMA levels in serum and tissues upon B12 deficiency have diverse effects on multiple intracellular pathways led us to investigate whether the B12 deficiency-mediated growth retardation and low bone mass observed during P21–P46 was caused by their
accumulation. Administration of homocysteine (50 mg/kg/d i.p.) or MMA (1 μmol/g BW/d i.p.) to WT mice beginning at P21 for 4 weeks, the period during which we observed growth retardation upon B12 deficiency, had no effect on the growth or bone mass of WT animals (Supplemental Figure 3, E and F). These results were consistent with prior reports that postnatal administration of MMA does not affect growth of rats (39). Our findings suggest that the growth retardation and low bone mass in B12-deficient animals observed from P21 was not caused by accumulation of MMA or homocysteine, but rather by downregulated production of other B12-dependent downstream metabolites. However, it is possible that the dose and duration of treatments used herein did not saturate the intracellular compartments of MMA or homocysteine, and that further increasing their levels, or levels of other metabolites, for longer durations may affect cellular processes underlying growth. Finally, our finding that taurine administration rescued the molecular and cellular abnormalities observed upon B12 deficiency suggested that taurine synthesis lies upstream of the metabolites perturbed upon B12 deficiency.

Analysis of Gif mutants for 2 generations showed that maternally derived B12 profoundly regulated GH-dependent processes in the offspring. Investigation into the GH resistance of B12-deficient mutants led to the identification of major liver metabolic pathways underlying this resistance. Multiple lines of evidence provide credence to our assertion that the decrease in bone mass and organ growth observed upon B12 deficiency is caused, at least in part, by GH resistance. First, B12-deficient mice closely phenocopy Ghr−/− and Stat5−/− mice (32, 40). These mutant mice have similar changes in hepatic gene expression, including reduced Igf1, Igfals, Mup1, Slco1a1, and Hsd3b5 mRNA and increased Igfbp1. Second, both B12-deficient and Stat5−/− mice show a major decrease in serum IGF1 levels. Third, there was a 10% reduction in serum total protein content in B12-deficient mice (40.1 ± 5.1 g/l, versus 50.4 ± 4.0 g/l in WT), an observation consistent with a major reduction in GH-mediated anabolic processes such as protein synthesis. Taken together, the striking similarities between B12-deficient and Stat5−/− mice strongly support the notion that the effects of B12 deficiency, at least on growth and bone mass, are mediated by abrogation of STAT5-dependent signaling downstream of GH.

Investigation into the downstream mediators of GH action that underlie growth retardation and osteoporosis in B12-deficient animals led to the discovery of taurine as a metabolite regulated by B12 and underlying GH resistance in B12-deficient offspring. Taurine is a poorly understood amino acid whose function in body physiology has not been clear. Our demonstration that one means of regulating liver taurine production is supported by STAT5-dependent signaling downstream from the GH/taurine axis, and may lead to the development of novel therapies to cure growth and bone diseases.
or the IGF1R antagonist OSI906 (50 mg/kg BW/d) from P16. Mice were culled at the indicated ages.

μCT and skeletal analyses

μCT analysis was performed on a SkyScan 1172 μCT system with standard software provided by the manufacturer (SkyScan). Histological analyses (Osteom/measure Analysis System; Osteometrics) and skeletal preparations were performed as described previously (42, 43). 6–12 animals were analyzed per group (see Supplemental Methods and figure legends).

Cell cultures and molecular assays

Primary osteoblasts or MC3T3 cells were cultured in B12-deficient medium or/and α-MEM, and cell proliferation (BrdU Cell Proliferation ELISA; Roche Applied Science) and differentiation (SensoLyte pNPP Alkaline Phosphatase Assay kit; AnaSpec Inc.) was performed as described previously (43). Western blot analysis was performed using standard methods using antibodies from Cell Signaling.

Human hematopoet HepG2 cells grown in α-MEM were stably transfected with STAT5b (SureSilencing shRNA Plasmid Kit; Qiagen) or TCOL (ref: 00DA0MFs_; 500A0Bty7; Origene) or with empty vector (mock) using Attractene (ShRNA) or Turbofect (plasmids).

Metabolomics and serum B12 analysis

Polar metabolites were extracted from mouse liver and cell samples, separated using Waters Acquity ultra performance liquid chromatography and, analyzed using triple quadrupole mass spectrometry. Serum B12 levels were analyzed using competitive immunoassay on a Siemens ADVIA Centaur Immunoassay analyzer. See Supplemental Methods for details.

Quantitative RT-PCR analysis

Total RNA was extracted using a Qiagen RNA extraction kit, and real-time PCR was performed using standard protocols.

Bioassays

Serum was prepared using BD Vacutainer SST, snap-frozen in liquid nitrogen, and stored at –80°C until analyzed. Serum GH was measured using Mouse Growth Hormone ELISA (Millipore Inc.), and IGF1 was measured using IGF1 Mouse/Human ELISA Kit (Abcam Inc.). Luciferase reporter assays were carried out using standard methods.

Human subjects

Children. All clinical evaluations and sample collections were performed by an experienced hematologist. Infants 3–24 months of age presenting with megaloblastic anemia and/or symptoms of B12 deficiency (weakness, failure to thrive, refusal to wean, vomiting, developmental delay, irritability, and tremor) were enrolled during their admission to the outpatient clinics of dermatics and pediatric hematology of Kocaeli University Hospital.

Received for publication February 3, 2014, and accepted in revised form April 24, 2014.

Acknowledgments

The authors are grateful to the Sanger mouse facility for help with animal experiments; Kevin McKinzees for μCT data generation and analysis; Miep Helfrich for generous support; and Vasudev Kantaes, Bhargavi Carasala, and Jonathan Broomfield for metabolite measurements. V.K. Yadav dedicates this study to his mother, Bhagwanti Devi, P. Roman-Garcia and I. Quiros-Gonzalez are supported by ERA-EDTA postdoctoral fellowships (ERA LTF-78/2011 and 107/2012). This work was supported by the Wellcome Trust (grant no. 098051).

Address correspondence to: Vijay K. Yadav, The Morgan Building (N235), Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom. Phone: 44.01223.496948; Fax: 44.01223.496826; E-mail: vy1@sanger.ac.uk.

Received for publication February 3, 2014, and accepted in revised form April 24, 2014.

Statistics

Results are given as mean ± SEM. Statistical analysis was performed by 2-tailed Student’s t test or χ2 test. A P value less than 0.05 was considered significant.

Study approval

Animal studies. All procedures performed on mice conformed to the ethical regulation guidelines of the Wellcome Trust Sanger Institute and to the guidelines of the UK Home Office (project license no. PPL80/2479).

Children. The ethical research committee of Kocaeli University Hospital approved the protocols (study no. 2013-1, site no. 12), and written consent was obtained from the adults accompanying the controls or patients.

Aged subjects. Clinical samples from aged subjects were from the previously described KIHD study (44).

References

2. Oury F, et al. Maternal and offspring pools of B12 for cell proliferation on a Siemens ADVIA Centaur with serum B12 levels <150 pmol/l were eligible for the study. Dietary history in the infants, especially consumption of breast milk and animal proteins (milk, yogurt, eggs, chicken, fish, and other meat products), as well as intake of vitamin pills during pregnancy/lactation in the mothers, was recorded.

Aged subjects

All samples used in this study were from the Kuopio Ischaeamic Heart Disease Risk Factor Study (KIHDD study), an ongoing, population-based cohort study to investigate the risk factors for coronary heart diseases, atherosclerosis, and other related outcomes in the Eastern Finnish population (44), and were donated by J. Kauhanen and T. Nurmi (University of Eastern Finland, Kuopio, Finland). Subjects with B12 levels <150 pmol/l were considered the B12-deficient group (45). According to this classification, 8 subjects in the B12-deficient group and 10 controls (age and gender matched) were included in this study. Clinical characteristics of the subjects are given in Supplemental Figure 8.

Human subjects

Children. All clinical evaluations and sample collections were performed by an experienced hematologist. Infants 3–24 months of age presenting with megaloblastic anemia and/or symptoms of B12 deficiency (weakness, failure to wean, vomiting, developmental delay, irritability, and tremor) were enrolled during their admission to the outpatient clinics of dermatics and pediatric hematology of Kocaeli University Hospital. Infants

