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Recent advances in defining the genetic mechanisms of disease causation and modification in autosomal domi-
nant polycystic kidney disease (ADPKD) have helped to explain some extreme disease manifestations and other 
phenotypic variability. Studies of the ADPKD proteins, polycystin-1 and -2, and the development and character-
ization of animal models that better mimic the human disease, have also helped us to understand pathogenesis 
and facilitated treatment evaluation. In addition, an improved understanding of aberrant downstream pathways 
in ADPKD, such as proliferation/secretion-related signaling, energy metabolism, and activated macrophages, in 
which cAMP and calcium changes may play a role, is leading to the identification of therapeutic targets. Finally, 
results from recent and ongoing preclinical and clinical trials are greatly improving the prospects for available, 
effective ADPKD treatments.

Introduction
Polycystic kidney disease (PKD) encompasses a group of inherited 
disorders that result in cyst development in the kidney in addition 
to a range of extrarenal manifestations (1, 2). Autosomal domi-
nant PKD (ADPKD) and autosomal recessive PKD (ARPKD) are 
common, simple forms of PKD, in which renal and liver disease 
account for most of the morbidity. Additionally, a number of syn-
dromic diseases, such as Meckel (MKS), Joubert (JBTS) and Bardet 
Biedl (BBS) syndromes, have PKD as a major phenotypic manifes-
tation (3). ARPKD has a frequency of approximately 1:20,000, and 
the typical presentation is of severe PKD detected in utero or in the 
perinatal period with greatly enlarged kidneys, which is associated 
with significant neonatal mortality (4). However, ARPKD may first 
present later in childhood or even in adulthood with less evident 
renal enlargement and complications of congenital hepatic fibro-
sis as the major cause of symptomatic disease (5).

Clinical characteristics of ADPKD
ADPKD is the most common form of PKD (frequency 1:400–
1:1,000) and one of the most common monogenic diseases 
(1). The disease is characterized by progressive cyst formation 
and development during the lifetime of the patient, resulting 
in bilateral renal enlargement and often end-stage renal dis-
ease (ESRD) (1). ADPKD accounts for approximately 4%–10% 
of ESRD populations worldwide; approximately 30,000 US 
patients have ESRD resulting from ADPKD (1:3,500 individu-
als aged 65–69 years) (6). However, the disease course is highly 
variable and a significant minority of patients do not reach 
ESRD even in old age, while a small number (<1%) exhibit ear-
ly-onset disease, with a diagnosis made in utero or in infancy 
by the identification of enlarged echogenic kidneys (7–9). Clin-
ically significant extrarenal manifestations include a higher 
frequency of intracranial aneurysms (ICAs), which cause mor-
bidity and mortality by subarachnoid hemorrhage, and severe 
polycystic liver disease (PCLD), for which resection or other 
surgery may be required (10, 11).

Most ADPKD patients have an affected parent, but at least 10% of 
cases can be traced to an apparent de novo mutation (12). Presymp-
tomatic diagnostics of at-risk ADPKD individuals can generally be 
made by the detection of multiple cysts by renal ultrasound imag-
ing, where specific diagnostic criteria have been defined. More sen-
sitive magnetic resonance (MR) or computed tomography imaging 
can be helpful in equivocal cases and for longitudinal analysis of 
disease progression (13). Patients typically only show a significant 
decline in renal function (measured by estimated glomerular fil-
tration rate [eGFR]) 10 to 15 years before the onset of ESRD. Total 
kidney volume, measured by MR, may be employed as a measure of 
disease severity before a detected decline in eGFR and has been used 
to monitor disease progression in clinical trials (14, 15).

The ADPKD genes, mutations, and disease mechanism
ADPKD is genetically heterogeneous with two loci identified, 
PKD1 (16p13.3), which encodes polycystin-1 (PC1), and PKD2 
(4q22), which encodes PC2 (16–19). Further genetic heteroge-
neity has been suggested; however, a recent study of five appar-
ently unlinked ADPKD families found that three had a PKD1 
and one a PKD2 mutation. The unresolved case had an atypical 
presentation with renal atrophy (20). Mutation screening can be 
of value for ADPKD diagnostics, especially to assess living related 
donors with equivocal imaging, but also to understand etiology 
in patients with a negative family history, atypical radiological 
presentations, early-onset or mild disease, and potentially to 
define trial/treatment populations (21, 22). Mutation screening 
of PKD1 is complex due to segmental duplication of the 5′ part of 
the gene to exon 33, matching six pseudogenes (P1–P6) located 
approximately 15 Mb further proximal in 16p (17, 23). A high 
level of similarity with the pseudogenes (98%–99%) means that 
locus-specific long-range PCR (LR-PCR) products are required 
to specifically amplify PKD1 (12).

In groups identified via the renal clinic, PKD1 accounts for 
approximately 78% of pedigrees and PKD2 for approximately 13%, 
with no mutation detected (NMD) in approximately 9% of cases 
(24, 25). It is unclear whether all NMD cases are explained by atyp-
ical and thus undetected mutations at the known loci or whether, 
despite recent data (20), a further ADPKD locus exists. PKD2 may 
represent up to approximately 25% of mutation characterized cases 
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in population-based studies (9). PKD1 mutation is associated with 
significantly more severe disease, with an average age at ESRD of 
58.1 years compared with 79.7 years for PKD2 (26). ADPKD displays 
extreme allelic heterogeneity, with any fully inactivating mutation 
to a PKD1 or PKD2 allele causing ADPKD. In the latest version 
of the ADPKD Mutation Database (PKDB), 1,272 PKD1 muta-
tions are described that account for 1,874 families, and 202 PKD2 
mutations are described that cause disease in 438 families (27). For 
PKD1, approximately 65% of mutations are predicted to truncate 
the protein and approximately 35% are nontruncating (24, 25). Cor-
responding levels for PKD2 are approximately 87% truncating and 
approximately 13% nontruncating; approximately 3% of ADPKD 
mutations are larger rearrangements involving deletion or duplica-
tion of at least one exon (24, 25, 28). Recently, a next-generation 
sequencing method has been described for ADPKD screening based 
on sequencing the locus-specific LR-PCR products (29). Such meth-
ods can identify unusual mutations such as gene conversions with 
one of the pseudogenes (29).

Embryonic lethality with cyst development (∼E14.5) of mice 
homozygous for a fully inactivating Pkd1 or Pkd2 mutation indi-
cates that complete loss of PC1 or PC2 is incompatible with life, and 
cystogenesis is associated with protein loss (30, 31). Through the 
generation of a range of viable ADPKD mouse models with disease 
of varying severity, we are beginning to understand pathogenesis, 
and this knowledge is aiding preclinical testing (Table 1). Dominant 
inheritance, the focal nature of cyst development, loss/mutation of 
the normal allele of the affected ADPKD gene in cystic cells, and a 
hypermutable Pkd2 model (WS25), suggest a two-hit hypothesis of 
cystogenesis (32, 33). Although somatic mutation may be a means 
to form a cyst and may be important in cyst progression, there is 
increasing evidence that cysts can develop with some PC present and 
that cyst development is a dynamic process (34–37).

Viable ADPKD cases that are homozygous or compound 
heterozygous for PKD1 pathogenic variants suggest the presence 
of hypomorphic alleles (35). Recently, up to 50% of nontruncat-
ing changes have been suggested to be hypomorphic, resulting in 
ESRD at 55 years in patients with truncating PKD1 mutations and 
67 years for those with nontruncating mutations (26, 38). Some 
cases of early-onset ADPKD, or cases mimicking ARPKD, are due 
to an in trans combination of two PKD1 mutations, at least one 
of which is hypomorphic (35, 39). Studies of a Pkd1 mouse model 
with a missense change, p.R3277C, confirmed the hypomorphic 
nature of this allele and its role in causing early-onset disease (ref. 
36 and Table 1). Unilateral parental disomy involving a hypo-
morphic PKD2 allele also has been described to cause early-onset 
ADPKD (40). Mutations in other cystogenes, such as HNF1B (asso-
ciated with the renal cysts and diabetes syndrome) or the ARPKD 
gene PKHD1 in combination with a PKD1 mutant allele have also 
been suggested to be associated with early-onset PKD (41). Addi-
tive cystogenic effects associated with mutations to more than one 
cystogene have also been suggested by interbreeding of conditional 
Pkd1 or Pkd2 models, or a hypomorphic Pkhd1 model, with con-
ditional PCLD models Sec63 or Prkcsh (42). In this case, enhanced 
cystic disease was found with an ADPKD/ARPKD and a PCLD 
mutation, and reintroducing functional PC1, but not PC2, rescued 
the phenotype, suggesting a critical role for PC1 in cystogenesis.

A hypothesis is now becoming accepted in which cysts develop 
below a specific PC threshold, with the dosage of functional 
PC associated with disease severity (36, 43, 44). Reaching this 
threshold may occur by a combination of one or more of the fol-
lowing factors: somatic mutation, variants at the ADPKD genes 
and beyond, stochastic expression differences between cells, and 
environmental factors such as renal injury (36, 45, 46). In exper-
imental systems, the timing of loss of the second ADPKD allele 

Figure 1
An abnormal crosstalk of calcium and cAMP 
signaling disrupts multiple signaling path-
ways and leads to the cystic phenotype. 
Activation of calcium-inhibitable adenylyl 
cyclase 6 (AC6) and inhibition of calcium/
calmodulin-dependent phosphodiesterase 
1 (PDE1) causes abnormal accumulation 
of cAMP and activation of PKA. Disrupted 
intracellular calcium homeostasis interferes 
with aquaporin-2 (AQP-2) targeting to the api-
cal membrane. Sustained PKA activation of 
PC2 and RyRs makes these channels leaky 
and leads to reduced intracellular calcium 
stores, further driving cAMP/PKA signaling. 
PKA activation also disrupts tubulogenesis, 
activates proproliferative signaling pathways, 
stimulates chloride and fluid secretion, and 
promotes STAT3-induced transcription of 
chemokines and cytokines. Vasopressin V2 
and somatostatin (SST) stimulation of their 
respective receptors (V2R and SSTR) results 
in increased cAMP. Gs and Gi refer to gua-
nosine nucleotide-binding proteins s and i, 
respectively. Yellow indicates proteins that are 
reduced in PKD; blue indicates proteins that 
are increased in PKD.
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has been shown to significantly influence the severity of cystic 
disease; mutations before ∼P13 in the mouse are associated with 
much more severe disease than loss after that time (refs. 45, 47, 
and Table 1). This period corresponds to the completion of renal 
development in the mouse and suggests that the timing of second-
ary events may influence disease severity in human ADPKD.

Structure and roles of the ADPKD proteins
PC2 (968 aa; ∼110 kDa) is a six-transmembrane, Ca2+-responsive 
cation channel of the transient receptor potential family (17, 
48). PC1 (4,303 aa; ∼600 kDa, uncleaved and glycosylated) is a 
receptor-like protein with a large ectodomain (3,074 aa) that 
comprises a number of domains involved in protein-protein and 
protein-carbohydrate interactions, including 16 PKD repeats 
with an Ig domain–like fold (18, 19). PC1 also has 11 transmem-
brane domains and a cytoplasmic tail. PC1 and PC2 are thought 
to interact via their C-terminal tails with the resulting PC com-
plex (the precise ratio of PC1 and PC2 is still debated; refs. 49, 
50) thought to play a role in intracellular Ca2+ regulation (48, 51, 
52). Autoproteolytic cleavage of PC1 at the GPS domain, medi-
ated by a larger GAIN domain, is an important step to form a 
functional protein (53–55). After embryonic development, the 
full-length protein is rarely seen, with approximately 130-kDa 
GPS C-terminal (CT) and two large N-terminal (NT) products; 
the NT and CT products are thought to stay associated after 
cleavage (36, 55). Enzyme treatments to remove glycosylation 
have demonstrated that the two NT products are glycoforms, 
one mature form that is transmitted through the Golgi and 
likely surface localized/secreted and one that may be retained 
in the ER (36, 56, 57).

A number of different localizations of the PCs have been pro-
posed, including localization to the ER (likely a major site of PC2) 
or to the apical and basolateral membranes, or secretion on microve-
sicles (exosomes) (56, 58, 59). Although these localizations are likely, 

there are several lines of evidence that primary cilia are central to 
pathogenesis in PKD, making it a ciliopathy (3). C. elegans PC homo-
logs are localized exclusively to cilia, and in the Tg737 mouse model 
of PKD, disease is caused by mutation to IFT88 (60–62), a protein 
central to intraflagellar transport, which is required for construct-
ing functional cilia. In addition, cyst development results from cilia 
loss in the kidney, and mammalian PCs localize to the cilium (63–
65). The relationship between cilia and PKD is best understood in 
the syndromic ciliopathies involving PKD (66). For instance, many 
of the BBS proteins form a complex (the BBSome) that plays a role 
in trafficking membrane proteins to the cilium, while the MKS/
JBTS proteins are proposed to complex at the transition zone at the 
base of the cilium and form a selective barrier that determines the 
protein composition of the cilium (66–69).

The precise function of the PC complex on the cilium is a hotly 
debated and unresolved issue. It has been suggested that the cil-
ium functions as a flow detector, facilitating calcium influx when 
flow is present and curtailing Ca2+ import in response to a lack of 
flow or loss of the PC complex (70, 71). The nanomechanical prop-
erties of the multiple PKD repeats that form the majority of the 
PC1 ectodomain are consistent with this role (72, 73). This in turn 
alters multiple signaling pathways triggering characteristic PKD 
phenotypes, such as increased proliferation and altered secretion 
(Figure 1). However, there are questions whether PC1 and PC2 are 
the polycystins regulating the cilia Ca2+ compartment (PC1L1 and 
PC2L1 have been implicated), and whether changes in the cilium 
can have such global cytoplasmic effects (74). Recent experiments 
ablating cilia after the inactivation of Pkd1 or Pkd2 in the mouse 
kidney showed that the combined loss results in less severe cystic 
disease than loss of PC alone (44). This has been interpreted as 
the PC complex playing a role in regulating an as yet unidentified 
cilia-based signaling pathway that actively promotes ciliogenesis, 
although the role of cilia in regulating cell division also needs to 
be taken into consideration (3).

Figure 2
Network of pathways and transcription func-
tions that regulate cell cycle progression, 
energy metabolism, and cell proliferation and 
death that are abnormal in PKD. Upregulation 
of B-Raf/Mek/ERK, PI3K/AKT, and Wnt/β-cat-
enin pathways and MYC and HIF transcrip-
tion factors and downregulation of the LKB1/
AMPK/TSC pathway, GSK3, and p53 promote 
aerobic glycolysis and cell cycle progression. 
Upregulation of MYC and downregulation 
of p53 exert proapoptotic and antiapoptotic 
effects, respectively. Downregulation of AMPK 
stimulates ion transport and fluid secretion. At 
multiple levels in this network, PKA activity 
stimulates proproliferative and inhibits antipro-
liferative signals. Yellow indicates proteins that 
are reduced in PKD; blue indicates proteins 
that are increased in PKD. OXPHOS, oxidative 
phosphorylation.
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A role for the polycystins directly in the vascular disease associated 
with ADPKD and the increased risk for developing ICAs has been sug-
gested from expression analysis and inducement of vascular events in 
the Pkd2WS25/– and the Pkd1nl hypomorphic models (75, 76). A differ-
ent role for PC1 and PC2 has also been suggested in the vasculature, 
whereby the ratio of the two proteins regulates pressure sensing, act-
ing through stretch-activated ion channels (77). However, conditional 
mice generated with loss of PC1 in vascular smooth muscle cells and 
endothelial cells do not have a clear vascular phenotype (78).

Arrested tubular epithelial cell differentiation in PKD
PC1 and PC2 are dispensable during early stages of nephrogenesis (30, 
31) but essential for differentiation of the tubular epithelium during 
late stages (45, 47) or for recovery from acute kidney injury (AKI) 
(46, 79). Both are expressed at high levels in murine renal tubules 
from E14 through P7; the expression of PC1 but not PC2 decreases 
thereafter (80, 81). The expression pattern correlates with initia-
tion of cysts at ∼E14.5 in the pars recta of proximal tubules, rapidly 

extending to the cortical and medullary collecting ducts, in Pkd1null  
mice (30). Cyst formation also occurs at ∼E14.5 in Pkd2null mice, 
with death by ∼E16.5 due to cardiac malformations and failure (31). 
Cystogenesis occurs more slowly in mice with less aggressive disease 
caused by a reduction but not complete loss of PC1 (36). In this case, 
cyst formation parallels the rate of epithelial cell proliferation, which 
is high in proximal tubules during nephrogenesis but lower than in 
the distal nephron and collecting duct after maturation (82, 83).

Enhanced apoptosis accompanies increased cell proliferation in 
polycystic kidneys (84, 85), as occurs during renal development 
(86–88) and tubular regeneration following AKI (89, 90), where 
it is important for morphogenesis. An imbalance favoring prolif-
eration over apoptosis contributes to the development of cysts, 
epithelial hyperplasia, and microscopic adenomas in PKD (91, 
92), but enhanced apoptosis may be sufficient to reduce the risk 
for development of renal cell carcinoma (93). Recent data indicate 
that further enhancement of apoptosis within cyst linings in a 
Pkd1 model is of value in decreasing cystogenesis (94).

Figure 3
A model for the contribution of macrophages to PKD progression. Activation of signaling pathways and transcription factors (e.g., STAT3, NF-κB) 
in cyst-lining cells stimulates the production and release of chemokines (e.g., MCP-1, osteopontin) attracting monocytes, promoting the polariza-
tion of invading monocytes and resident macrophages to a proinflammatory phenotype, and activating Th1 lymphocytes with further release of 
mediators and tissue damage. Opsonization of apoptotic cells by pentraxin-2 and secretion of IL-10 and TGF-β by immunosuppressive regulatory 
T cells promote the polarization of macrophages to a proproliferative phenotype, releasing antiinflammatory cytokines that induce cell prolifer-
ation. Incomplete epithelial healing, ongoing injury, and release of IL-4 and IL-13 by Th2 lymphocytes promote the polarization of macrophages 
to a profibrotic phenotype, releasing TGF-β and connective tissue growth factor (CTGF), which induces the differentiation of fibroblasts into 
collagen-secreting myofibroblasts.
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Primum movens in PKD: relevance for therapy
Many genes that control proliferation and death during embry-
onic development (95–97) and tissue regeneration also control 
cystogenesis in PKD and are constitutively activated (proto-on-
cogenes) or inactivated (tumor suppressor genes) in cancer cells. 
These genes regulate a network of growth factors, growth factor 
receptors, signal transduction pathways, and transcription fac-
tors. Activation of proliferative pathways during development 
or regeneration of nontransformed cells elicits counteracting 
inhibitory processes to prevent aberrant cell growth and tumor 
development. In cancer cells, mutations that constitutively acti-
vate proto-oncogenes or inactivate tumor suppressor genes cir-
cumvent the counteracting measures (98). In PKD, mutations to 
the PKD genes result in persistent expression of developmental 
genes normally downregulated in mature kidneys and in failure 
to suppress cell proliferation (99, 100).

Exactly how mutations to PKD1 or PKD2 cause the pleomorphic 
cystic phenotype remains uncertain. This is important because 
treatments that target primary rather than downstream second-
ary mechanisms are likely to be more effective. Many hypotheses 
have been proposed, among them an aberrant cross-talk between 
intracellular calcium and cAMP signaling (refs. 101, 102, and Fig-
ure 1). PC2 is predominantly found in the ER/sarcoplasmic reticu-
lum (SR) where it interacts with ryanodine receptors (RyRs) (103). 
In the heart, PC2 stabilizes RyR2 in its closed position. Loss of 
PC2 inhibition results in higher frequency of spontaneous calcium 
oscillations, reduced SR calcium stores, and heart failure in zebraf-
ish (104). Opening of PC2 and RyRs is modulated by PKA phos-
phorylation (105, 106). Persistent catecholaminergic stimulation 
and PKA-induced hyperphosphorylation of RyR2 or RyR1 makes 
these channels leaky, depleting SR calcium stores and causing 
heart failure or muscle fatigue, respectively (107, 108). Sustained 
upregulation of cAMP/PKA signaling in PC1/PC2 cyst epithelial 
cells may result in leaky PC2 and RyR1 channels and account for 
the reduced ER calcium stores observed in these cells (75, 103, 109, 
110). A review of treatment strategies, preclinical studies, and clin-
ical trials targeting cAMP signaling (Figure 1) has been recently 
published (111). The following sections review other downstream 
mechanisms targeted for treatment in PKD.

Growth factors/receptors as targets for PKD treatment
Increased and/or altered expression of growth factors and recep-
tors that regulate ureteric bud (UB) branching and collecting duct 
elongation in late stages of nephrogenesis (112–118) and promote 
tubular regeneration after renal injury (119–124) may play a role 
in PKD pathogenesis. These include members of the EGF family 
(EGF, TGF-α, heparin-binding EGF, and amphiregulin), HGF and 
IGF1, and their tyrosine kinase receptors, ErbB1 to ErbB4, MET, 
and IGF1R, respectively. In most cases, the mechanisms respon-
sible for their upregulation in PKD are not known, but the acti-
vation of cAMP response element–binding transcription factor 
(CREB) and activator protein 1 enhances amphiregulin promoter 
activity and expression in PC1-mutated cells (125).

ErbB1, ErbB2, and c-MET kinase inhibitors and dietary-induced 
reduction of IGF1 limit disease severity in various rodent models 
of PKD (126–129). As in renal development, in which activation of 
ErbB1 and c-MET act cooperatively to regulate UB branching and 
mediate maintenance of the mature collecting duct (114), redun-
dancy of these growth factors in PKD development may limit the 
efficacy of therapies that target only one receptor.

Signaling pathways as targets in PKD treatment
Many signaling pathways and transcription factors control the 
development and growth of polycystic kidneys. Because of redun-
dancies, reciprocal reinforcements, and feedback loops, they 
should be viewed as components of a network rather than as indi-
vidual axes. A reductionist representation of the network com-
ponents, their interaction with cAMP/PKA signaling, and their 
effects on cell cycle and energy metabolism is shown in Figure 2.

Tyrosine receptor kinases and PKA activate the Src/Ras/
Raf/MEK/ERK pathway. PKA inhibits Raf/MEK/ERK signal-
ing in wild-type tubular epithelial cells, but in PKD or where 
intracellular calcium is reduced, PKA activates MEK/ERK in a 
Src/Ras/B-Raf–dependent manner (130). Src is an advantageous 
treatment target because it links several pathways activated in 
PKD (127). The Src/Abl inhibitor SKI-606 (bosutinib) retards 
cyst growth in nonorthologous models and Pkd1 heterozygous 
mice (127, 131), and a phase II clinical trial is currently ongoing 
(NCT01233869). However, targeting of the Ras/Raf/MEK/ERK 
pathway has given inconsistent results, possibly due to redun-
dancies with other pathways. PLX5568, a Raf kinase inhibitor, 
attenuated cyst enlargement in vitro and in a nonorthologous 
rat model but failed to ameliorate renal enlargement or func-
tion and promoted hepatic and renal fibrosis (132). Sorafenib, 
a Raf kinase inhibitor with activity against vascular endothelial 
growth factor receptor and platelet-derived growth factor recep-
tor kinases, inhibited cAMP-dependent activation of B-Raf/MEK/
ERK signaling, cell proliferation, and growth of ADPKD cysts in 
vitro (133) but increased cyst growth, cell proliferation, and ERK 
activation in Pkd2 conditional knockout mouse livers (134). The 
MEK inhibitor PD184352 slowed cyst growth in a nonortholo-
gous mouse model (135), but the MEK inhibitor UO126 had no 
protective effect in Pkd1 conditional knockout mice (136). These 
and other studies underline the importance of employing orthol-
ogous models (Table 1) for preclinical testing.

There is overwhelming evidence for enhanced mTORC1 sig-
naling in PKD cystic tissues, and preclinical trials of mTOR-in-
hibiting rapalogs (sirolimus and everolimus) in rodent models 
have been mostly encouraging. At doses and blood levels achiev-
able in humans, sirolimus and everolimus were effective in a rat 
model of PKD affecting proximal tubules (137, 138) but not in 
a model of ARPKD affecting the distal nephron and collecting 
duct (139). Mice tolerate much higher doses and blood levels 
than rats and humans, and these high doses of rapalogs were 
consistently effective in orthologous and nonorthologous mouse 
models (140, 141). However, the results of clinical trials have been 
mostly discouraging (142–144) (NCT00346918; NCT00491517; 
NCT00414440), likely because blood levels capable of inhibit-
ing mTOR in peripheral blood mononuclear cells do not inhibit 
mTOR in the kidney (145).

Several strategies may overcome the systemic toxicity and limited 
renal bioavailability of rapalogs. The targeting of sirolimus specifi-
cally to the kidney by conjugating it to folate was effective in reduc-
ing renal cyst growth and preserving kidney function without tox-
icity in a nonorthologous mouse model (141). Another approach 
takes advantage of the mechanism of action of the rapalogs. 
Phosphatidic acid, a phospholipase D product generated by the 
hydrolysis of phosphatidylcholine, is required for the association 
of mTOR with Raptor in mTORC1 and with Rictor in mTORC2. 
The rapalogs form a complex with FKBP12 that competes with 
phosphatidic acid for binding to mTOR. A recent study showed 
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that phospholipase D activity is high in PKD cells and that its inhi-
bition decreases mTORC1 activity and proliferation (146). A third 
approach is the use of mTOR catalytic inhibitors that are more 
potent and durable inhibitors of mTORC1 compared with rapalogs 
and are currently being tested in rodent PKD models (147).

Increased expression of Myc in human and rodent PKD is asso-
ciated with high rates of proliferation and apoptosis, despite 
increased expression of the antiapoptotic factor Bcl-2 and unaltered 
or reduced expression of proapoptotic p53 (148, 149). Proapoptotic 
effects of Myc, via Arf-mediated inhibition of MDM2 and activa-
tion of p53, safeguard against malignant transformation, but Myc 
may also exert antiapoptotic effects by increasing the expression 
and activity of the NAD-dependent deacetylase sirtuin 1 (SIRT1), 
repressing p53 activity (Figure 2 and refs. 150–152). Downregula-
tion of Myc in a nonorthologous mouse model with a Myc antisense 
morpholino blunted the development of cystic disease both in the 
kidney and the liver (153). A more recent study has shown that Myc 
upregulates SIRT1 in Pkd1-deficient murine and human ADPKD 
cells and kidneys. The genetic elimination of SIRT1 or treatment 
with the pan-sirtuin inhibitor nicotinamide (vitamin B3) or the 
SIRT1-specific inhibitor EX-527 blocked epithelial cell prolifera-
tion, induced p53-mediated apoptosis, and delayed cyst growth in 
Pkd1-null or -depleted embryonic or postnatal kidneys (94).

Drugs that activate AMPK may be beneficial in PKD by inhibit-
ing both cell proliferation and chloride-driven fluid secretion (Fig-
ure 2). Metformin inhibited the growth of Madin-Darby canine 
kidney cysts in collagen gels and cyst growth in metanephric organ 
cultures and Pkd1 conditional knockout mice (154). Berberine, an 
AMPK activator used in traditional Chinese medicine, inhibited 
the growth of human and mouse ADPKD cystic cell lines (155). 
Thiazolidinediones, which inhibit mitochondrial respiratory com-
plex I to elevate the AMP/ATP ratio, have been effective in several 
(156, 157), but not all (158), animal models of PKD. Interestingly, 
germ-free conditions that markedly inhibit the development of 
PKD (see below) protected from diet-induced obesity by enhancing 
AMPK signaling in skeletal muscle and liver (159).

Energy metabolism as a target for PKD treatment
Warburg described reprogramming of energy metabolism in 
cancer cells from oxidative phosphorylation to aerobic glycolysis 
(160–162). Dependency on aerobic glycolysis renders cancer and 
possibly cyst-derived cells more susceptible to death than con-
trol cells after glucose deprivation or interference with glycolysis 
(163–165). Observations that Pkd1−/− mouse embryonic fibroblasts 
(MEFs) acidify culture medium faster than wild-type cells, have 
lower glucose and higher lactate and ATP concentrations, and 
have increased transcription of key glycolytic enzymes suggested a 
shift of energy metabolism toward aerobic glycolysis in PKD (163). 
Higher glucose uptake, lactate production, and ATP concentra-
tions in the kidneys of conditional Pkd1 knockout mice, along with 
transcriptional deregulation of key glycolytic enzymes in these 
kidneys and in ADPKD cysts from patients with PKD1 mutations, 
provided further support. Glucose deprivation induced apopto-
sis in Pkd1–/– cells (instead of autophagy as observed in wild-type 
cells), which was blocked by rapamycin. The amelioration of the 
cystic disease in conditional and hypomorphic Pkd1 mice treated 
with the nonmetabolizable glucose analog 2-deoxyglucose (163) 
and in a nonorthologous rat model treated with the sodium glu-
cose co-transporter inhibitor phlorizin (166) points to aerobic gly-
colysis as a potential treatment target in PKD.

Activated macrophages as a treatment target in PKD
Three decades ago it was noted that a germ-free environment 
inhibits cyst development in CFWwd mice (167) and in a model 
of PKD induced by nordihydroguaiaretic acid; the administration 
of endotoxin rescued the cystic phenotype (168). Chemokines and 
cytokines were found at high concentrations in cyst fluid and pro-
duced by cyst-lining epithelial cells (169). Recently, alternatively 
activated macrophages aligned along cyst walls were detected 
in polycystic kidneys from conditional Pkd1 knockout and the 
Pkd2WS25/– model (170, 171). Macrophage depletion inhibited 
epithelial cell proliferation and cyst growth and improved renal 
function. These observations led to the hypothesis that alterna-
tively activated M2 macrophages contribute to cell proliferation 
in PKD, as has been described during development (172, 173), 
recovery from AKI (174, 175), and in cancer (176).

Macrophages appear early in developing organs to eliminate 
apoptotic cells and secrete trophic factors. In mice, macrophages 
appear within the renal interstitium between E11.5 and E12 (172) 
and wrap around tubules as they elongate and become intimately 
associated with the tubular basement membrane, expressing 
M2-associated genes found in alternatively activated macrophages. 
After development, macrophages continue to exert clearing as well 
as trophic functions essential for repair after tissue injury.

Macrophages differentiate into functional phenotypes depend-
ing on the microenvironment, but classifications based on in 
vitro conditions into classically activated M1 and alternatively 
activated M2a, M2b, and M2c do not adequately reflect the in 
vivo environment. To overcome this limitation, a classification 
according to the predominant macrophage role in the phases of 
inflammation (proinflammatory macrophages), epithelial heal-
ing (antiinflammatory macrophages), and fibrosis (profibrotic 
macrophages) has been proposed (177). Antiinflammatory and 
profibrotic alternatively activated macrophages likely contribute 
to the progression of PKD (Figure 3).

As described in cancer, a dialog between cystic cells and their 
inflammatory microenvironment may play an important role in 
the initiation and progression of PKD. In cancer, this dialog is 
under the control of two interacting transcription factors, STAT3 
and NF-κB (178, 179). While there is little information on NF-κB 
in PKD, evidence supports an important role for STAT3 (180), 
which has high activity during renal development, following kid-
ney injury, and in polycystic kidneys but is low in normal mature 
kidneys. Activated STAT3 in cyst-lining cells may, as described in 
cancer cells, promote transcription of chemokines, cytokines, and 
growth factors that in turn activate STAT3 on alternatively acti-
vated macrophages, resulting in a feed-forward loop that further 
promotes cystogenesis. Consistent with this, two STAT3 inhibi-
tors, pyrimethamine and S3I-201, inhibited cyst growth in a neo-
natal and an adult Pkd1 model (181). A similar protective effect 
was seen with curcumin, a compound with a broad spectrum of 
activity that also inhibits STAT3 (182, 183).

In conclusion
Many advances have been made in understanding the pathogene-
sis of ADPKD since the identification of the disease genes nearly 
20 years ago. Despite some questions (44, 74), strong evidence 
supports a role of cilia and cilia-associated signaling in ADPKD, 
although the precise role that PC1 plays is not fully resolved. The 
development of orthologous mouse models that better match the 
disease course in ADPKD (Table 1) has aided preclinical testing, 
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although a case for orthologous rat models and possibly even 
larger animal models can be made. Therapies based on limiting 
levels of cAMP have shown the most promise so far (111), but it is 
likely that some of the defective processes and possible treatments 
highlighted in this Review will also play a therapeutic role. Com-
bination therapies are likely to be necessary to preserve kidney 
function sufficiently to avoid ESRD and have a low adverse effect 
profile, as treatment will be needed over many years. Going for-
ward, treatments more proximal to the primary defect are another 
avenue that should be explored, as in other genetic diseases (184).
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