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Basal autophagy is a crucial mechanism in cellular homeostasis, underlying both normal cellular recycling and
the clearance of damaged or misfolded proteins, organelles and aggregates. We showed here that enhanced levels
of autophagy induced by either autophagic gene overexpression or voluntary exercise ameliorated desmin-relat-
ed cardiomyopathy (DRC). To increase levels of basal autophagy, we generated an inducible Tg mouse expressing
autophagy-related 7 (Atg?), a critical and rate-limiting autophagy protein. Hearts from these mice had enhanced
autophagy, but normal morphology and function. We crossed these mice with CryABR'2%C mice, a model of DRC
in which autophagy is significantly attenuated in the heart, to test the functional significance of autophagy activa-
tion in a proteotoxic model of heart failure. Sustained Atg7-induced autophagy in the CryABR129G hearts decreased
interstitial fibrosis, ameliorated ventricular dysfunction, decreased cardiac hypertrophy, reduced intracellular
aggregates and prolonged survival. To determine whether different methods of autophagy upregulation have
additive or even synergistic benefits, we subjected the autophagy-deficient CryABR!20¢ mice and the Atg7-crossed
CryABR120G mijce to voluntary exercise, which also upregulates autophagy. The entire exercised Azg7-crossed
CryABRI20G cohort survived to 7 months. These findings suggest that activating autophagy may be a viable thera-

peutic strategy for improving cardiac performance under proteotoxic conditions.

Introduction
Autophagy is a conserved catabolic process that is essential for
maintaining cellular homeostasis. Normal autophagic processes
degrade long-lived proteins and cytoplasmic organelles, providing
their components for recycling (1, 2). More recently, autophagy
has been identified as being a major contributor in the clearance
of misfolded and aggregated proteins in the cytosol of mamma-
lian cells (3, 4). The biological importance of basal autophagy in
the clearance of misfolded proteins under physiological condi-
tions can be inferred from conditional gene ablation for some of
the essential autophagy genes: Atg7 deletion in hepatocytes, AtgS
and Arg7 deletion in neurons, and A#g$ deletion in cardiomyocytes
led to the accumulation of ubiquitin-positive protein aggregates
in inclusion bodies (5-8). Impairment of autophagy leads to
decreased cytosolic protein turnover and increased aggregate pro-
tein accumulation under normal metabolic conditions (9).
Recent studies have shown that a primary failure in autopha-
gy could be responsible for the accumulation and aggregation
of misfolded proteins in neurodegenerative disorders, such as
Alzheimer’s disease, transmissible spongiform encephalopathy,
Parkinson’s disease, and Huntington’s disease (10). Induction of
autophagy using pharmacological intervention (11), autophagic
gene overexpression (12), and voluntary exercise (13-15) protected
cells against the toxic insults of aggregate-prone proteins associ-
ated with neurodegeneration by promoting their clearance. Simi-
lar to the cytoplasmic phenomena observed in neurodegenerative
diseases, desmin-related cardiomyopathy (DRC) is characterized
by the accumulation of cytotoxic misfolded proteins in the form of
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preamyloid oligomers and protein aggregates (16). Earlier studies
from our laboratory showed that Tg mice with cardiomyocyte-spe-
cific expression of mutated aB-crystallin (CryABR?0G mice; ref. 17)
accurately recapitulated the human DRC phenotype, with dilated
cardiomyopathy and heart failure (18-21). Ultrastructural obser-
vations (18) and autophagic flux assays in CryABRI20G.expressing
cardiomyocytes revealed reduced autophagic function, which we
hypothesized contributed to failed clearance of the misfolded pro-
teins and aggregates (22).

To determine whether morbidity and mortality could be
improved in the CryABRI206 model by restoration of autophagy,
we generated Tg mice overexpressing Atg7 in cardiomyocytes, in
an attempt to increase autophagic flux in the hearts. ATG7 is a
noncanonical El-like enzyme that uniquely recognizes 2 distantly
related ubiquitin-like proteins, ATG8 and ATG12, directing them
to their respective E2 partners, ATG3 and ATG10. They are then
typically conjugated to the substrates phosphatidylethanolamine
and ATGS, respectively (23-26). Genetic deletion of Atg7 by condi-
tional knockdown impaired autophagosome formation and con-
stitutive turnover of cytoplasmic components, which suggests that
ATG?7 is necessary for autophagosome formation (5).

Herein, we demonstrated that increased Atg7 expression was suf-
ficient to increase autophagy in the heart and that this increase
did not cause any detectable pathology or compromise cardiac
function in normal mice. When these mice were crossed with
CryABRI20G mice, the probability of survival was increased, and
morbidity decreased significantly.

Results
Generation of Tg mice in which enbanced levels of Atg7 can be induced. In
an attempt to induce high levels of basal autophagy, we generated
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Figure 1

Generation and characterization of cardiomyocyte-
specific inducible Atg7-overexpressing mice (Atg7xtTA).
(A) Construct design of the binary Tg system regulated
by Dox to inducibly overexpress Atg7 in the heart. (B)
Representative Western blot showing ATG7 cardiac pro-
tein from 2 lines (line 132 and line 151) of 3-month-old
Ntg, tTA-Tg, Atg7-Tg, and Atg7xtTA mice without or with
Dox (17). (C) Autophagy-related transcript analyses in
Atg7xtTA hearts. Shown is a direct groupwise compari-
son of fold change in mRNA levels in male Atg7xtTA and
Ntg hearts at 5 months (n = 3 per group). (D) Western
blot showing ATG7 expression and expression levels
of autophagy-related proteins in the hearts of 3-month-
old Ntg, tTA-Tg, Atg7-Tg, and Atg7xtTA (line 132x55)
mice. (E) Quantitation of Atg7 expression for line 132.
***P < 0.001 versus all other groups, Tukey’s post-hoc test.

generate double-Tg Atg7xtTA mice (Figure 1A). Typi-
cal expression patterns for 2 lines (line 132 and line
151) showed that Dox treatment effectively inhib-
ited transgene expression (Figure 1B). As the trans-
gene in line 132 was very tightly regulated by Dox
treatment, we selected this line for further study. We
titrated other transcripts associated with autoph-
agy in Atg7xtTA mice and noted no significant
upregulation of those RNAs compared with control
nontransgenic (Ntg) mice (Figure 1C). We validated
these data using selective Western blot analyses and
confirmed that upregulation of Atg7 expression did
not lead to increased steady-state levels of other
autophagy- and lysosomal-associated proteins (Fig-
ure 1D). Quantitation of transgene expression via
Western blotting confirmed 10-fold overexpression
of Atg7 in the hearts of Atg7x¢tTA mice relative to con-
trol Ntg, Atg7-Tg, or tTA-Tg hearts (Figure 1E). We
also observed Atg7 expression-dependent regulation
of p62 in the 2 Atg7xtTA lines, line 132 and line 151,

GAPDH

as Dox treatment effectively inhibited p62 expres-
sion (Supplemental Figure 1A; supplemental mate-
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an inducible Tg mouse (17) containing the ATG7 cDNA behind a
modified myosin heavy chain (a-MHC) promoter cassette to gen-
erate responder Atg7-Tg mice (27). We hypothesized that overex-
pression of a single, potentially rate-limiting protein might result
in increased autophagic activity. The responder Atg7-Tg mice were
crossed with doxycycline-controlled (Dox-controlled) transcrip-
tional activator mice (referred to herein as tTA-Tg mice; ref. 28) to
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rial available online with this article; doi:10.1172/
JCI70877DS1). Quantitation of p62 expression
showed 4.5-fold overexpression in Atg7xtTA com-
pared with Ntg, Atg7-Tg, and tTA-Tg hearts in line
132 (Supplemental Figure 1, B and C).

Elevated Atg7 levels are sufficient to trigger increased
cardiac autophagy in Tg mice. To evaluate whether
autophagy was induced by Atg7 overexpression,
we carried out an autophagic flux assay (28, 29).
Mice were treated with chloroquine (50 mg/kg)
for 5 days to block lysosomal function. The assay
showed increased levels of the auophagosome
membrane-associated lipidated protein LC3-II in
Atg7xtTA hearts (Figure 2, A and B). Quantitation of p62 expres-
sion showed no significant changes after chloroquine treatment in
both Atg7xtTA and Ntg hearts (Supplemental Figure 1, D and E).
We also crossed Atg7-Tg and Atg7xtTA mice with reporter mice
expressing a GFP-labeled marker of autophagosomes, GFP-LC3,
to evaluate autophagic flux in vivo. The number of GFP-LC3
puncta was significantly increased by Atg7 overexpression in the
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Autophagy in Atg7xtTA mouse hearts. (A) Autophagic flux assay (see Methods) showed increased LC3-Il levels by Western blot analysis in Ntg and
Atg7xtTA hearts (n = 4 per treatment). (B) Densitometry analysis of LC3-Il expression relative to GAPDH. ***P < 0.001 vs. Ntg, Tukey’s post-hoc test.
(C) Representative images of GFP-LC3 puncta (autophagosomes) in hearts from male GFP-LC3 control, GFP-LC3xAtg7, and GFP-LC3xAtg7xtTA
mice. (D) Quantification of GFP puncta per microscopic field (220,000 um?) in LV. (E) Ultrastructural analyses confirmed an increase in autophagic
structures in Atg7xtTA hearts. Arrows denote amphisomes; asterisks denote multilamellar bodies. Scale bars: 10 um (C); 500 nm (E).

GFP-LC3xAtg7xtTA mice (Figure 2, C and D). Evaluation of the
ultrastructure of Atg7xtTA hearts after lysosomal inhibition by
chloroquine treatment also showed marked upregulation of the
number of intracellular autophagic structures. Most notably,
Atg7xtTA hearts showed a large number of amphisomes (Figure
2E), an intermediate structure that develops after an autophago-
some engulfs its cargo and fuses with other vesicular structures
such as multivesicular endosomes.

Normal beart function and morphology are preserved when autophagy
is upregulated. We anticipated that upregulation of autophagy for
prolonged periods under basal conditions might lead to cardiac
disease. Heart weight/body weight (HW/BW) ratios at 3, 6, and
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12 months of age in Ntg, Atg7-Tg, tTA-Tg, and Atg7xtTA mice
showed no significant differences (Figure 3A). Serial changes in
LV mass index by echocardiography at 4-8 months across geno-
types also showed normal heart size in Atg7xtTA mice (Figure 3B).
Atg7xtTA hearts displayed normal LV dimensions, as measured
by LV internal diameters in end-diastole and end-systole (LVIDd
and LVIDs, respectively; Figure 3, C and D). LV function, as mea-
sured by percent fractional shortening (%FS) and ejection fraction
(%EF), was also unaffected by increased autophagic flux (Figure 3,
E and F). H&E- and Masson’s trichrome-stained histological sec-
tions showed no pathological features in the hearts of Arg7xtTA
mice compared with tTA-Tg, Atg7-Tg, and Ntg litctermates (Figure
Number 12
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3G). Despite our expectations that increased autophagy might be
pathologic in healthy hearts, we concluded that Atg7x¢TA animals
lack any notable cardiac pathology and have normal anatomy and
function through at least mid-adulthood.

Atg7-induced autophagy has a beneficial effect in a proteotoxic DRC
mouse model. To test the hypothesis that upregulating basal
autophagy in a proteotoxic model of cardiomyopathy is ben-
eficial, we crossed Atg7xtTA mice with CryABR2%G animals. Previ-
ously, we extensively characterized the CryABR2%¢ model, which
accurately recapitulates human DRC: the hearts display protein
aggregation, myofibrillar disarray, and dysfunction and fail by 6-8
months of age (18-21). We previously reported reduced autopha-
gic activity in mutant CryABR20¢ mouse hearts, as shown both
by ultrastructural observation (18) and by decreased autophagic
flux in CryABRI20G-expressing cardiomyocytes (22). In the present
study, we analyzed autophagic gene expression in more detail in
CryABRI29G hearts. As expected on the basis of our previous data,
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direct groupwise comparison of CryABR20G and control hearts
at 5 months revealed significant downregulation of autophagy-
related and -regulatory genes in CryABRI206 versus control mice
(Supplemental Figure 2A). We confirmed the transcript data at
the protein level by Western blot analyses of selected markers
of autophagy, including ATG10, ATGS, ATG5-ATG12 complex,
Beclin 1, and BNIP3 (Supplemental Figure 2B).

To evaluate whether autophagy is induced by Atg7 overexpression
in CryABRI20G hearts, we carried out an autophagic flux assay (28,
29) and treated the mice with chloroquine (50 mg/kg) for 5 days to
block lysosomal function. The assay showed increased LC3-II lev-
els in hearts of the induced Atg7-crossed CryABRI20G triple-Tg mice
(referred to herein as CryABRI?06x Atg7xtTA mice; Figure 4, A and B).
Quantitation of p62 expression showed significantly increased
expression of p62 in CryABR1?%6xAtg7xtTA hearts (Supplemental
Figure 3, A and B), and no changes were observed after chloroquine
treatment in CryABRI209x Atg7xtTA or CryABR2%GxtTA hearts (Sup-
Number 12 5287
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Figure 4

Autophagy flux analysis in CryABR120Gx
Atg7xtTA mouse hearts. (A) Autophagic
flux assay showed increased LC3-Il levels
in CryABR120GxAtg7 hearts (n = 3 per treat-
ment). (B) Densitometry analysis showed
increased LC3-1l relative to GAPDH in
CryABFR1206xAtg7 hearts. ***P < 0.001 vs.
vehicle-treated CryABR120G; #P < 0.001 vs.
chloroquine-treated CryABR20G; §§P < 0.01
vs. vehicle-treated CryABR120GxAtg7xtTA,
Tukey’s post-hoc test. (C) Representative
images of GFP-LC3 puncta (autopha-
gosomes) in hearts from male GFP-LC3
control, GFP-LC3xCryABR120G and GFP-
LC3xCryABR120GxAtg7xtTA mouse hearts.
Immunofluorescence analysis of heart
sections showing punctate LC3 stain-
ing in 4-month-old mice. DAPI (blue) was
used to identify nuclei. Original magnifi-
cation, x60. (D) Representative images
of autophagosomes (yellow puncta)
(mRFP-GFP-LC3) and their matura-
tion into autolysosomes (red puncta) in
hearts from male tf-LC3xCryABR120G and
tf-LC3xCryABR120Gx Atg7 xtTA mice. Boxed
regions are shown enlarged at right. (E)
Quantification of GFP puncta per micro-
scopic field (220,000 um?) in LV. (F)
Mean numbers of GFP green and mRFP
red puncta per cell. (G) Mean numbers
of autophagosomes and autolysosomes
(represented by yellow and red puncta,
respectively, in D) per cell. (H) Representa-
tive TEM of CryABR120G, CryABR120GxAtg7,
and CryABR120GxAtg7xtTA hearts showing
increased membranous structures (aster-
isks) and autophagosomes (arrows) in
CryABR120GxAtg7xtTA hearts. Scale bars:
10 um (C and D); 500 nm (H).
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Histology and morphometry of CryABR720GxAtg7xtTA mouse hearts. (A) H&E (top) and Masson’s trichrome (bottom) staining of cardiac sections
from 4-month-old CryABR20G CryABR120GxAtg7, CryABR120GxtTA, and CryABR120GxAtg7xtTA mice (n = 6 per group). (B and C) mRNA expres-
sion of Postn (B) and Acta2 (C). Values are expressed as fold change versus Ntg (n = 3 per group). (D) HW/BW ratio at 4, 5, and 6 months of
age. (E) Serial changes in LV mass index by echocardiography across genotypes (n = 10 mice per group). (F-H) mRNA expression of Myh7
(F), Nppa (G), and Nppb (H). Values are expressed as fold change versus Ntg control (n = 6 per group). P values were determined by Tukey’s

post-hoc test. Scale bars: 100 um.

plemental Figure 1, C and D). We also used reporter mice to mea-
sure relative levels of autophagic activity. CryABR?06x Atg7xtTA mice
were crossed with the GFP-LC3 reporter mouse (30). The result-
ing induced quadruple-Tg GFP-LC3xCryABRI209x Atg7xtTA mice
showed significantly increased numbers of GFP-LC3 green puncta
compared with the different control cohorts (Figure 4, C and E).

Recently, Sadoshima’s group developed reporter mice that
transgenically overexpress a tandem fluorescent mRFP-GFP-LC3
(tf-LC3) in a cardiac-specific manner and used these animals to
evaluate autophagic flux in vivo (31). These tf-LC3 mice can be
used to measure autophagosome and autolysosome formation
simultaneously, as LC3 puncta labeled with both GFP and mRFP

The Journal of Clinical Investigation  http://www.jci.org ~ Volume 123 ~ Number 12 December 2013 5289
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fraction in CryABR120GxAtg7xtTA mice (n = 6 per group). P values were determined by Tukey’s post-hoc test. Scale bars: 10 um.

represent autophagosomes, whereas those labeled with mRFP
alone represent autolysosomes (31). We crossed tf-LC3 reporter
mice with CryABRI20Gx Atg7xtTA mice. In hearts of the resulting
tf-LC3xCryABRI20Gx Atg7xtTA mice, Atg7 overexpression increased
autophagic flux, as shown by significantly increased autophago-
some and autolysosome levels (Figure 4, D, F, and G). Ultrastruc-
tural analyses confirmed the increased numbers of autolysosomes:
their accumulation was widespread and easily observed (Figure 4H).

We next sought to determine whether enhanced autophagy
affects the developing pathology of the CryABR2%G mouse heart.
Hearts from CryABRI?0¢ mice at 4 months displayed pathological
remodeling, characterized by cardiomyocyte disarray and exten-
sive interstitial fibrosis (Figure SA). Markers for genetic activation
of enhanced fibrosis, including Postn (encoding periostin) and
Acta2 (encoding SMA), were significantly elevated in CryABRI20G
versus Ntg hearts (Figure 5, B and C). HW/BW ratios at 4, 5, and
6 months of age and serial echocardiographic determination
of the LV mass index at 4-7 months showed significant reduc-
tions in CryABRI20Gx Atg7xtTA hearts (Figure 5, D and E). Expres-
sion of 3 genetic markers of cardiac distress and hypertrophy
in the mouse — 3-MHC (Myh?), atrial natriuretic factor (Nppa),
and B-type natriuretic peptide (Nppb) — were also significantly
reduced at 4 months compared with CryABRI20G, CryABRI29Gx Atg7,
and CryABRI20GxtTA mice (Figure 5, F-H).

Induction of autophagy reduces CryABM20S-induced aggregate forma-
tion. CryABR120G-mediated DRC is a protein misfolding disease
characterized by deposition of insoluble proteins, whose accu-
mulation can have both toxic (14) and protective functions (16).
Immunofluorescent staining for CRYAB was used to quantitate
aggregate accumulation on a per-cell-area basis. Although both
CryABRI20GxtTA and CryABRI2%Gx Atg7xtTA hearts contained pro-
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tein aggregates, aggregate size per cell was significantly reduced
in the latter (Figure 6, A and B). We also evaluated the effect of
induced autophagy on the amount of CRYAB protein accumu-
lation in aggregates, compared with soluble CRYAB, by West-
ern blot analysis of soluble and insoluble proteins fraction-
ated from CryABRI20G CryABRI29Gx Atg7, CryABRI2%GxtTA, and
CryABRI20Gx Atg7xtTA hearts. As expected, these analyses showed
significant aggregate accumulations in CryABR20¢ hearts com-
pared with Ntg controls, while CryABRI206x Atg7xtTA hearts
showed decreased aggregate levels (Figure 6, C and D). These
results suggest that autophagy can effectively prevent and/or help
clear the proteotoxic aggregates in cardiomyocytes.

CRYAB levels were examined in the different cohorts in order
to determine whether the Atg7 overexpression simply downregu-
lates steady-state levels in CryABR206x Atg7xtTA animals; this did
not appear to be the case (Figure 7A). The sustained Atg7-induced
autophagy in CryABR206x Atg7xtTA hearts prolonged survival by
40%, although the mice did die prematurely, with no survivors by
10.5 months of age (Figure 7B). Upregulation of autophagy also
had beneficial effects on conserving LV dimension and perfor-
mance (Figure 7, C-F).

Effect of voluntary exercise on survival and cardiac function in
CryABRI20Gx Atg7xtTA mice. Exercise can increase autophagy levels
in both normal and diseased tissues (32-35). We previously showed
that exercise could prolong survival in the CryABR29¢ model (17),
and sought to determine whether the effects of exercise and autoph-
agic induction by Atg7 expression were additive or even synergistic.
We therefore subjected mice to long-term voluntary wheel exercise:
32 1-month-old male CryABRI?%6xtTA and CryABM209x Atg7xtTA
mice were housed in regular cages (nonexercised control; n = 8 per
genotype) or in cages equipped with voluntary running wheels
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Figure 7

Cardiac hemodynamics in CryABR120GxAtg7xtTA mice. (A) Western blot showing ATG7 and CRYAB expression in Ntg, CryABR120G,
CryABR120Gx Atg7, and CryABR120GxAtg7 xtTA mice. (B) Kaplan-Meier curves of CryABR20G (n = 20), CryABR'20GxtTA (n = 17), CryABR120GxAtg7
(n = 14), and CryABR120GxAtg7xtTA (n = 15) mice. (C—F) Echocardiography indices of LV end-diastolic diameter, measured by (C) LVIDd and
(D) LVIDs, and LV function, measured by (E) %FS and (F) %EF (n = 10 mice per group). *P < 0.05 vs. CryABR20G; #P < 0.05 vs. CryABR120GxtTA;

§P < 0.05 vs. CryABR120GxAtg7, Tukey’s post-hoc test.

(exercised group; n = 8 per genotype), with 1 mouse per cage.
There were no significant differences between the CryABRI206xtTA
and CryABM206x Atg7xtTA mice with respect to average total run-
ning distance (Figure 8A). All nonexercised CryABR206x¢tTA mice
died from heart failure by 7 months, whereas 50% of exercised
CryABM20GxtTA mice were alive at this time (Figure 8B). Induction
of autophagy via Atg7 overexpression in the CryABM206x Atg7xtTA
group resulted in additive benefits, with 100% survival at 7 months
(Figure 8B). This group also showed conserved LV function, as mea-
sured by LVIDs, %FS, and %EF (Figure 8, C-E).

Exercise had no effect on the induction of fibrosis or HW/
BW ratios in CryABR20GxtTA hearts (Figure 9, A and C). As noted
above, Atg7 overexpression and the resulting increase in autoph-
agy did effectively decrease the fibrotic response, and exercised
CryABRI206x Atg7xtTA mice showed further decreases, as demonstrat-
ed by decreased Postn mRINA levels and reduction of extensive intet-
stitial fibrosis (Figure 9, A and B). However, exercise had no effect on
any of the experimental groups in terms of either HW/BW ratio or
LV mass as assessed by echocardiography (Figure 9, C and D).

The additive beneficial effects of exercise in the CryABRI206x
Atg7xtTA cohorts implied that exercise might be affecting autoph-
agy in a manner different from simple Atg7 overexpression. Exer-
cise can induce autophagy-related and -regulatory genes in both
human cardiac and skeletal muscle (36). To better define the
autophagy response in exercised CryABR206x Atg7xtTA hearts, we
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again titrated transcripts involved in the autophagy-lysosomal
pathways that might be regulated by voluntary exercise (Figure
10). Interestingly, in contrast with the data obtained in Arg7xtTA
hearts, exercised CryABRI209x Atg7xtTA hearts showed significant
upregulation in essentially all analyzed transcripts encoding pro-
teins involved in autophagic vacuole formation and protein trans-
port (Atg3, Atgl0, Atgl2, Map1lc3b, Rab24, Gabarapl2, Becnl, and
Wipil) and protein targeting to membranes/vacuoles and linking
autophagosomes to lysosomes (Gabarap), compared with both
nonexercised control groups (Figure 10A). Exercised mice also
showed significantly increased levels of transcripts that mediate
autophagy in response to other, intracellular signals (e.g., Dram2),
as well as transcripts encoding proteins that function as coregula-
tors of autophagy and apoptosis (Bcl2, Prkaal, and Pten). We con-
firmed changes at the cognate protein levels as well for selected
peptides by Western blot analyses (Figure 10B). Quantitation of
these data showed significant upregulation of the autophagy-relat-
ed proteins ATG3, ATG10, ATGS, ATG12, ATGS-ATG12 complex,
and WIPI1 in exercised versus nonexercised CryABRI20Gx Atg7xtTA
mice (Figure 10, C-H). Coimmunoprecipitation experiments
showed that voluntary exercise decreased the BCL2/Beclin 1 inter-
action (Supplemental Figure 4), indicative of increased autophagy
by voluntary exercise.

We performed autophagic flux assays to confirm increased
autophagy in the hearts of exercised CryABM206x Atg7xtTA mice
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Figure 8

Effect of voluntary exercise on CryABR120GxAtg7xtTA mice. (A) Average running distance traveled by mice subjected to voluntary exercise for
7 months. (B) Kaplan-Meier survival curves of CryABR120GxtTA (n = 8) and CryABR120GxAtg7xtTA (n = 9) mice. (C—E) Echocardiography indices
of (C) LV end-diastolic diameter, measured by LVIDs function, and LV function, measured by (D) %FS and (E) %EF, in male nonexercised and
exercised mice (n = 8 per group). *P < 0.05 vs. nonexercised CryABR120GxtTA; #P < 0.05 vs. exercised CryABR120GxtTA; $P < 0.05 vs. nonexercised

CryABR120Gx Atg7xtTA, Tukey’s post-hoc test.

and found increased levels of LC3-II compared with nonexercised
control hearts (Supplemental Figure 5, A and B). Immunostaining
with LC3 antibody also showed increased levels of LC3 in exer-
cised CryABRI206x Arg7xtTA hearts (Supplemental Figure 5, C-E).
Ultrastructural analyses confirmed high numbers of autolyso-
somes, relative to those seen in control sections, in the exercised
CryABRI20Gx Atg7xtTA cohort (Supplemental Figure SF). Although
these data clearly showed that autophagy was upregulated, we
wished to determine whether other pathways, such as the ubiqui-
tin proteasome system and ER stress responses, were also activated,
as these might each or both play an important role in the observed
response. However, we did not find any marked changes in the
expression of proteins involved in the ubiquitin proteasome system
(198, 20S, and 26S) or ER stress response (Atf6a, XBP1, pelF2a,
and GRP78) after voluntary exercise (Supplemental Figure 6).

Discussion

The normal housekeeping functions of basal or constitutional
autophagy are important or even essential for intracellular clear-
ance of cellular waste, including protein aggregates, damaged or
senescent organelles, and misfolded proteins. This key protective
mechanism is crucial for maintaining healthy cells, as evidenced by
studies of mice lacking the autophagy genes Atg7 and AtgS. Those
animals develop symptoms of neurodegeneration and neuronal
cell death even in the absence of any overtly harmful gene products
(6,7,37). Accumulation of protein aggregates and aggresomes are
also detected in human hearts with DRC (38, 39), idiopathic or
ischemic cardiomyopathies (40, 41), and load-induced heart fail-
ure (42), all of which can ultimately lead to contractile dysfunction
and heart failure. Basal autophagy is particularly vital in cardio-
myocytes, as these cells are normally terminally differentiated and
cannot decrease toxic concentrations of waste by cell division. By
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generating mice with cardiac-specific, inducible Atg7 expression,
we attempted to define the in vivo physiological and pathological
role, if any, of induced autophagy, and addressed a hypothesized
beneficial role for upregulation of autophagy in a proteotoxic
heart failure model of DRC.

Cardiac-specific Atg7 overexpression induces basal autophagy. ATG7 is
an essential protein for basal autophagy, as its ablation resulted in
complete loss of autophagy, accumulation of abnormal organelles,
and ubiquitinated protein aggregates, with death occurring within
1 day after birth (5). Although numerous in vitro (30, 43, 44) and
invivo (30, 45) genetic models have been developed with increased
cellular autophagy, they were limited to preconditioning by star-
vation. In the present study, using inducible, cardiac-specific
expression of Atg7, our data showed that even in the absence of
starvation or some other stimulus, high Atg7 expression enhanced
autophagic flux. Strikingly, cardiomyocyte-specific expression of
Atg7 resulted in normal cardiac morphometry and functionality
despite increased autophagic flux. This novel model thus allows
for studying the chronic effect of constitutively high levels of
autophagy in a normal organ system, challenging the concept that
significantly elevated levels of autophagy are necessarily detrimen-
tal to an otherwise healthy organ system. The lack of any increase
in the other autophagic proteins (Figure 1C) is somewhat surpris-
ing and implies that ATG?7 is a key rate-limiting component for
autophagy in this model. However, this may be somewhat mislead-
ing, as we did not undertake a comprehensive analysis of all the
potential key players in the pathway. Further studies using com-
prehensive array analyses for the different mice used in this study
will be necessary to fully understand the sufficiency of ATG7’s role
in the overall regulation of cardiomyocyte autophagy.

Induced autophagy in the heart is protective in a model of cardiac pro-
teinopathy. Accumulation of intracellular aggregates has been
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reported in different genetic models of cardiac disease induced
by the expression of Tg Mst1, truncated Mybpc3, DesA7, PO83, and
CryABRI20G but the prevalence of autophagic deficiency in a major-
ity of these models is unclear (16, 39, 46-48). Clearance of aggrega-
tion-prone proteins dependent upon autophagy has been reported
for different cell-based models, in which either autophagy inhibi-
tors were added (49, 50) or Atg gene expression was decreased by
siRNA transfection (51). Autophagic inhibition resulted in delayed
or compromised clearance of the protein aggregates, whereas
induction of autophagy enhanced clearance (49, 50). Prior studies
from our laboratory using the CryABR206 model of cardiac proteo-
toxicity reported reduced autophagic activity (22). Notably, in the
present study, we found that increasing autophagy in CryABRI20G
hearts by Atg7 overexpression attenuated and/or delayed the onset
of the morphological and functional pathologies and significantly
increased the probability of survival into mid-adulthood. We also
observed significant reductions in activation of the gene programs
normally associated with developing cardiac pathology, such as
activation of the fetal gene program seen during the development
of pathological hypertrophy (52) and cardiac fibrosis (17).
Physical exercise has numerous health benefits, decreasing the
probabilities of developing cardiovascular disease, diabetes, can-
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cer, and neurodegenerative disease (53). The beneficial protective
effects of voluntary exercise are evident from different mouse
models of neurodegenerative disease which, upon exercise, show
delayed onset of neurological deficits (14), decreased amyloid load
(13), and significantly decreased levels of neural amyloid deposits
(15). Moreover, evidence from observational and randomized trials
also demonstrates that regular exercise contributes to primary, sec-
ondary, and tertiary prevention of cardiovascular disease (54, 55).
In the present study, we sought to determine whether the effects
of exercise and autophagic induction by ATG7 expression were
additive or even synergistic. We chose the voluntary cage wheel as
the exercise intervention because it avoids the physical and psycho-
logical stressors associated with forced exercise paradigms (20).
Voluntary exercise is relatively mild in nature, compared with more
intense forced exercise models (56), and had little or no effect on
LV mass across genotypes, as assessed by echocardiography (Figure
8, C-E). As we previously showed (20), long-term voluntary exercise
increased the survival probability of CryABR2%6xtTA mice to 50%,
whereas the genetically identical nonexercised control group died
from heart failure by 7 months. The data from this group closely
matched that obtained with the nonexercised CryABR206x Atg7xtTA
control cohort; however, induction of autophagy by voluntary exer-
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cise in this group resulted in additive benefits, with 100% survival
at 7 months (Figure 8B). Whether this is simply due to even higher
levels of autophagic flux is currently being explored, but we believe
a more likely hypothesis is that multiple pathways able to augment
survival are being activated. Consistent with the observed effects on
survival probability, exercise resulted in significant improvements
in maintaining cardiac function, as assessed by echocardiogra-
phy, and these beneficial effects were increased in the presence of
increased Atg7 overexpression (Figure 8, C-E).

In contrast to the Atg7-overexpressors, assessment of autophagy-
related gene expression in the mice subjected to voluntary exercise
showed elevated levels of virtually all test transcripts involved in a
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variety processes associated with autophagy, including autopha-
gic vacuole formation, protein ubiquitination, and protein trans-
port. These data are consistent with previous reports defining the
effects of physical exercise on autophagy-related and -regulatory
genes such as ATGI12, MAPILC3B, GABARAPLI, and ATG4B in
human muscle (34, 35). Interestingly, voluntary exercise signifi-
cantly induced Bcl2 and Becnl in CryABRI20Gx Atg7xtTA mice. A
recent study also showed that exercise induces autophagy by regu-
lating BCL2/Beclin 1 signaling in skeletal and cardiac muscle of
fed mice, but not in autophagy-deficient mice (36).

The observed increase in p62 expression in CryABR206x Atg7xtTA
mice is somewhat surprising, as earlier studies showed marked
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accumulation of p62 in the brain and liver of Atg7-deficient mice
(57). Although total p62 expression can be inversely correlated with
autophagic activity (58), p62 levels were unchanged after chloro-
quine treatment in Atg7xtTA mice. Moreover, CryABR1206x Arg7xtTA
mice also showed increased p62, along with increases in autopha-
gic flux. However, it is not yet clear whether p62 is degraded solely
through the autophagy pathway, and it can be transcriptionally
regulated during autophagy (59), which may confound the inter-
pretation of p62 levels as an overall indicator of autophagic flux.

In summary, the present study demonstrated that basal autoph-
agy cleared cytosolic misfolded and aggregated proteins by engulf-
ing them in autophagic vesicles that ultimately fused with the lys-
osome for degradation of their content. CryABRI206 hearts showed
extensive aggregate formation. Isolated regions in some of these
misfolded proteins are able to assume a p-pleated sheet structure
and interact with each other to form a series of intermediate but
stable structures, resulting in cytotoxic soluble preamyloid oligo-
mers (16). Further upregulation of autophagy via the different
mechanisms associated with voluntary exercise had additional
beneficial effects, which implies that induced autophagy by vari-
ous means may be therapeutically beneficial.

Methods

Animals. Atg7xtTA mice (cardiomyocyte-specific inducible Atg7-overex-
pressing mice) were generated by first inserting ATG7 cDNA into the
aMHC promoter cassette to generate responder Atg7-Tg mice (27). Tg
mice were identified by PCR analysis of genomic DNA isolated from ear
clips. The responder Atg7-Tg mice were crossed with tTA-Tg (tet-controlled
transcriptional activator) mice to generate the double-Tg Atg7xtTA mice.
2 mouse lines, line 132 and line 152, were treated with 1% (w/v) Dox in
drinking water supplemented with 2% sucrose to confirm inducible trans-
gene expression by Dox. Male CryABRI206 mice (FVB/N mice with cardiac-
specific overexpression of CryAB containing the R120G missense muta-
tion) have been described previously (39).

Autophagic flux. For the assessment of autophagic flux in the heart, mice
were subjected to intraperitoneal injection with chloroquine diphosphate
(50 mg/kg body weight; Sigma-Aldrich) (60) every 24 hour for S days. Hearts
were harvested, and LC3-II protein levels were determined by Western blot
analysis. For in vivo determination of autophagic flux, mice were crossed
with GFP-LC3 and tf-LC3 Tg mice, each of which provides an efficient in
vivo reporter for autophagy (31, 61). To avoid autophagic induction dur-
ing sample collection, hearts were perfused with 4% paraformaldehyde in
cardioplegic buffer (0.1 M PBS, pH 7.4, 50-100 mM KCl, and 5% dextrose).
Tissues were harvested and further fixed with 4% paraformaldehyde in PBS
overnight (7-12 hours), followed by treatment with 15% sucrose in PBS for
4 hours and then with 30% sucrose solution overnight. Tissue samples were
embedded in Tissue-Tek OCT (Sakura Finetechnical Co. Ltd.) and stored
at -80°C. Frozen tissue samples were then sectioned at 5 um thickness, air
dried for 30 minutes, rehydrated in PBS for 5§ minutes, mounted using a
reagent containing DAPI, and viewed under a fluorescence microscope. The
number of GFP and mRFP dots was determined by manual counting of
fluorescent puncta in 5 fields from 3 different myocyte preparations using
a x60 objective as described previously (31, 61).

Autophagy-related transcript analyses. The mouse Autophagy RT? Profiler
PCR Array (SABiosciences) was used to study autophagy-specific gene
expression profiles in accordance with the manufacturer’s recommenda-
tions. Briefly, total RNA was isolated with TRI reagent (Molecular Research
Center) and further purified using the RNeasy Mini Kit (SABiosciences).
DNA contamination was removed from the samples by treatment with
RNase-free DNase, and RNA concentration and purity was determined
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with a NanoDrop ND-1000 (Thermo Scientific). The first-strand cDNA
was synthesized from total RNA, and real-time PCR was performed with
the SuperArray PCR master mix using SYBR green mastermixes (SABiosci-
ences) and a CFX-96 real-time cycler (Bio-Rad Laboratories). All data were
normalized to Gapdh, and the amplification data (fold change in Ct of all
genes) were analyzed by the AACt method.

Echocardiography. Cardiac ultrasound was performed on isoflurane-
anesthetized mice from 3 to 7 months of age with a VisualSonics Vevo
770 Imaging System using a 30-MHz transducer. 2-dimensional directed
M-mode echocardiographic images along the parasternal short axis were
recorded to determine LV systolic function and expressed as %FS. M-mode
measurements of LV end-diastolic and end-systolic chamber size were cal-
culated as (LVIDd - LVIDs)/LVIDd and expressed as a percentage.

Histological analysis. Hearts were collected, fixed in 10% buffered forma-
lin, and embedded in paraffin. Serial 5-pum heart sections from each group
were stained with H&E or Masson’s trichrome. Interstitial fibrotic regions
were quantified using Metamorph analysis of the percentage of blue area
in the Masson’s trichrome-stained sections.

Immunofluorescence microscopy. Paraffin-embedded heart sections were
used for immunofluorescence analyses as described previously (39). The
following primary antibodies were used: rabbit anti-ATG7 (1:100; Novus),
rabbit anti-LC3 (1:50; Cell Signaling Technology Inc.), mouse anti-
troponin I (1:1,000; Millipore), rabbit anti-CRYAB (1:400; Assay Designs).
Alexa Fluor 488- or Alexa Fluor 568-conjugated secondary antibody
(Molecular Probes) directed against mouse or rabbit IgG was used, and
DAPI (Invitrogen) was used to identify nuclei. Immunofluorescent stain-
ing for CRYAB was used to quantitate the cytoplasmic area occupied by
the aggresomes, as described previously (18, 39). Other antibodies used in
these studies included anti-ATG3, anti-ATG10, anti-ATG12, and pelF2a
(1:1,000; Cell Signaling); anti-ATG10 (1:1,000; Millipore); anti-ATGS,
anti-WIPI1, and anti-GRP78 (1:200; Santa Cruz Biotechnology); anti-p62
(1:1,000; ProGen); anti-BNIP3, anti-BCL2, anti-proteasome 19S, anti-
proteasome 20S, and anti-proteasome 26S (1:1,000; AbCam); anti-ATF6a
(1:1,000; Imgenex); and anti-XIBP1 (1:1,000; LifeSpan BioSciences).

Electron microscopy. Hearts were perfused with 1% paraformaldehyde and
2% glutaraldehyde in cardioplegic buffer, then with 1% paraformaldehyde
and 2% glutaraldehyde in 0.1M cacodylate buffer (pH 7.2), postfixed in 1%
0Os0y, and processed for thin sectioning. Sections were counterstained with
uranium, and lead salts and examined with a Hitachi 7600 transmission
electron microscope. Images were acquired with an AMT digital camera.

RNA isolation and quantitative real-time PCR analysis. Total RNA was isolat-
ed with TRI reagent (Molecular Research Center) according to the manu-
facturer’s protocol. Quantitative real-time PCR (qQRT-PCR) was performed
with a CFX-96 instrument (Bio-Rad) using Tagman probes (Applied Bio-
systems) for Postn (Applied Biosystems), Acta2 (Applied Biosystems), and
cardiac fetal genes (Myh7, Nppa, and Nppb; Applied Biosystems). All data
were normalized to Gapdh (Applied Biosystems) content and expressed as
fold increase over the control group.

Cell fractionation, SDS-PAGE, and immunoblotting. To prepare soluble and
insoluble fractions, hearts were harvested in cold PBS (pH 7.4) containing
1% Triton-X100, 2.5 mM EDTA, 0.5 mM PMSF, and a complete protease
inhibitor mixture and then vortexed for 30 seconds. The heart extracts
were centrifuged at 12,000 g for 15 minutes, and the supernatants were
collected (soluble fraction). The pellets were dissolved in DNAase (1 mg/kl
in 10 mM Tris, 15 mM MgCl,; Roche) and sonicated on ice, and the protein
was quantitated with a modified Bradford assay. The insoluble protein was
then diluted in RIPA buffer, and 3 ug resuspended insoluble protein was
used for subsequent immunoblotting with appropriate antibodies.

Protein lysates were separated on SDS-PAGE using precast 7.5%-15% Cri-
terion Gels (BioRad) and transferred to PVDF membranes (BioRad). Mem-
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branes were blocked for 1 hour in 5% nonfat dried milk and exposed to
primary antibodies overnight. The following primary antibodies were used
for immunoblotting: anti-ATG7 (1:1,000; ProSci); anti-ATG1 (1:1,000;
Sigma-Aldrich); anti-ATGS-ATG12 (1:1,000; Cosmo Bio Co.); anti-Beclin 1,
anti-cathepsin D, anti-LAMP1, and anti-LAMP2 (1:200; Santa Cruz Bio-
technology); anti-LC3 (1:1,000; Cell Signaling Technology Inc.); anti-
CRYAB (1:5,000; Assay Designs); and anti-GAPDH (1:7,500; Chemicon).
Membranes were then washed, incubated with alkaline phosphatase-
conjugated secondary antibodies (Santa Cruz Biotechnology), and exposed
with ECF reagent (Amersham), and the resultant signal was quantitated
on a STORM 820 fluorescent scanner (Molecular Dynamics) using
ImageQuant version 5.2 (Molecular Dynamics).

Voluntary exercise studies. We used 32 1-month-old male CryABRI206xTA
and CryABRI?06x Atg7xtTA mice randomly divided into 4 groups (n = 8 per
group): nonexercised CryABRI206xtTA, exercised CryABR2%0xtTA, nonex-
ercised CryABRI209x Atg7xtTA, and exercised CryABRI290x Atg7xtTA. Mice
were housed in regular cages or in cages equipped with voluntary running
wheels, with 1 mouse per cage.

Statistics. Data are expressed as mean + SEM. All statistical tests were done
with SigmaPlot 9.0 software. Statistical analyses between 2 groups were

analyzed by 2-tailed Student’s ¢ test. Groups of 3 or more were analyzed
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with 1-way ANOVA, followed by Tukey’s post-hoc test. A P value less than
0.05 was considered statistically significant.

Study approval. Animals were handled in accordance with the principles
and procedures of the Guide for the Care and Use of Laboratory Animals. The
Institutional Animal Care and Use Committee at Cincinnati Children’s
Hospital approved all experimental procedures.
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