

## Osteopenia and decreased bone formation in osteonectin-deficient mice

A.M. Delany, M. Amling, M. Priemel, C. Howe, R. Baron, E. Canalis

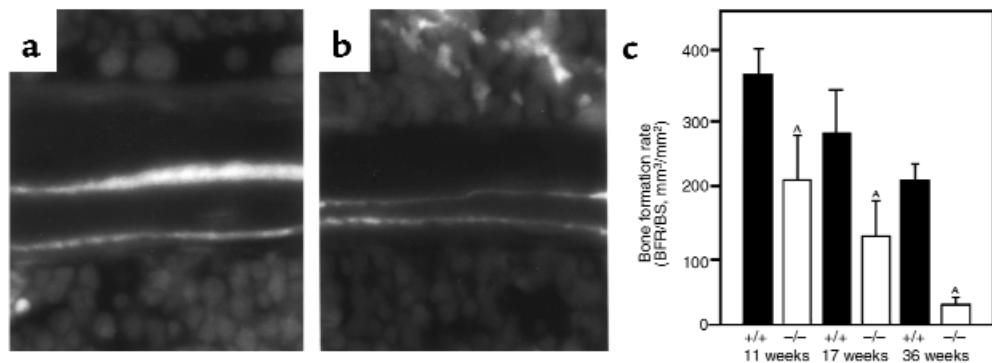
*J Clin Invest.* 2000;105(9):1325-1325. <https://doi.org/10.1172/JCI7039C1>.

### Corrigendum

During preparation of this manuscript for publication, an error in Figure 5 was introduced. The correct version, accompanied by the legend, appears below. Figure 5Trabecular bone-formation rate in tibiae of control (+/+) and osteonectin-null (−/−) mice. In vivo dual calcein labeling allows an estimate of bone-formation rate, which considers the distance between 2 fluorescent labels. Representative data from 11-week-old control (a) and osteonectin-null (b) mice are shown. Bars show mean ± SEM ( $n \geq 4$ ). AP  $<0.01$  between control and mutant mice, as determined by 2-way ANOVA.

**Find the latest version:**

<https://jci.me/7039C1/pdf>




**Osteopenia and decreased bone formation in osteonectin-deficient mice**

A.M. Delany, M. Amling, M. Priemel, C. Howe, R. Baron, and E. Canalis

*J. Clin. Invest.* **105**:915–923 (2000).

During preparation of this manuscript for publication, an error in Figure 5 was introduced. The correct version, accompanied by the legend, appears below.

**Figure 5**

Trabecular bone-formation rate in tibiae of control (+/+) and osteonectin-null (-/-) mice. In vivo dual calcein labeling allows an estimate of bone-formation rate, which considers the distance between 2 fluorescent labels. Representative data from 11-week-old control (a) and osteonectin-null (b) mice are shown. Bars show mean  $\pm$  SEM ( $n \geq 4$ ).  $^{\wedge}P < 0.01$  between control and mutant mice, as determined by 2-way ANOVA.