Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Sympathetic activity–associated periodic repolarization dynamics predict mortality following myocardial infarction
Konstantinos D. Rizas, Tuomo Nieminen, Petra Barthel, Christine S. Zürn, Mika Kähönen, Jari Viik, Terho Lehtimäki, Kjell Nikus, Christian Eick, Tim O. Greiner, Hans P. Wendel, Peter Seizer, Jürgen Schreieck, Meinrad Gawaz, Georg Schmidt, Axel Bauer
Konstantinos D. Rizas, Tuomo Nieminen, Petra Barthel, Christine S. Zürn, Mika Kähönen, Jari Viik, Terho Lehtimäki, Kjell Nikus, Christian Eick, Tim O. Greiner, Hans P. Wendel, Peter Seizer, Jürgen Schreieck, Meinrad Gawaz, Georg Schmidt, Axel Bauer
View: Text | PDF | Corrigendum
Clinical Research and Public Health

Sympathetic activity–associated periodic repolarization dynamics predict mortality following myocardial infarction

  • Text
  • PDF
Abstract

Background. Enhanced sympathetic activity at the ventricular myocardium can destabilize repolarization, increasing the risk of death. Sympathetic activity is known to cluster in low-frequency bursts; therefore, we hypothesized that sympathetic activity induces periodic low-frequency changes of repolarization. We developed a technique to assess the sympathetic effect on repolarization and identified periodic components in the low-frequency spectral range (≤0.1 Hz), which we termed periodic repolarization dynamics (PRD).

Methods. We investigated the physiological properties of PRD in multiple experimental studies, including a swine model of steady-state ventilation (n = 7) and human studies involving fixed atrial pacing (n = 10), passive head-up tilt testing (n = 11), low-intensity exercise testing (n = 11), and beta blockade (n = 10). We tested the prognostic power of PRD in 908 survivors of acute myocardial infarction (MI). Finally, we tested the predictive values of PRD and T-wave alternans (TWA) in 2,965 patients undergoing clinically indicated exercise testing.

Results. PRD was not related to underlying respiratory activity (P < 0.001) or heart-rate variability (P = 0.002). Furthermore, PRD was enhanced by activation of the sympathetic nervous system, and pharmacological blockade of sympathetic nervous system activity suppressed PRD (P ≤ 0.005 for both). Increased PRD was the strongest single risk predictor of 5-year total mortality (hazard ratio 4.75, 95% CI 2.94–7.66; P < 0.001) after acute MI. In patients undergoing exercise testing, the predictive value of PRD was strong and complementary to that of TWA.

Conclusion. We have described and identified low-frequency rhythmic modulations of repolarization that are associated with sympathetic activity. Increased PRD can be used as a predictor of mortality in survivors of acute MI and patients undergoing exercise testing.

Trial registration. ClinicalTrials.gov NCT00196274.

Funding. This study was funded by Angewandte Klinische Forschung, University of Tübingen (252-1-0).

Authors

Konstantinos D. Rizas, Tuomo Nieminen, Petra Barthel, Christine S. Zürn, Mika Kähönen, Jari Viik, Terho Lehtimäki, Kjell Nikus, Christian Eick, Tim O. Greiner, Hans P. Wendel, Peter Seizer, Jürgen Schreieck, Meinrad Gawaz, Georg Schmidt, Axel Bauer

×

Figure 5

PRD in post-MI patients.

Options: View larger image (or click on image) Download as PowerPoint
PRD in post-MI patients.
(A) Typical dT° signal (blue line) obtained
 fr...
(A) Typical dT° signal (blue line) obtained from a 50-year-old post-MI patient who survived the 5-year follow-up period. The signal shows characteristic low-frequency oscillations. For better illustration of these oscillations, a low-pass filter was applied and plotted on top of the original signal (black line). (B) Typical dT° signal (red line) from a 75-year-old post-MI patient who suddenly died 8 months after MI. Compared with the survivor, the amplitude of PRD was substantially enhanced. (C) Cumulative mortality rates of patients stratified by PRD of 5.75 deg2 or more. (D) Cumulative mortality rates of patients stratified by PRD of 5.75 deg2 or more and presence of diabetes mellitus.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts