
## Supplemental Figures



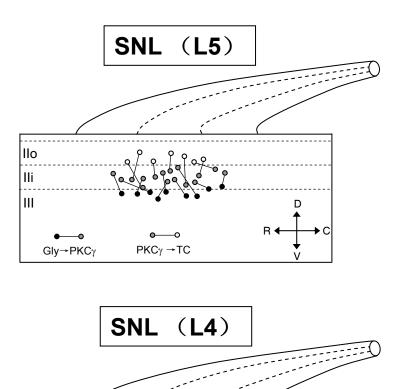



Figure S1. The relative positions of the recorded neuronal pairs in L4 and L5 slices. C, Caudal; D, dorsal; R, rostral; V, ventral. Gly: glycinergic cell;  $PKC\gamma$ :  $PKC\gamma$  positive cell; TC: transient central cell.

o—o PKCγ →TC D

► C

R <

llo Ili Ill

Gly→PKCγ

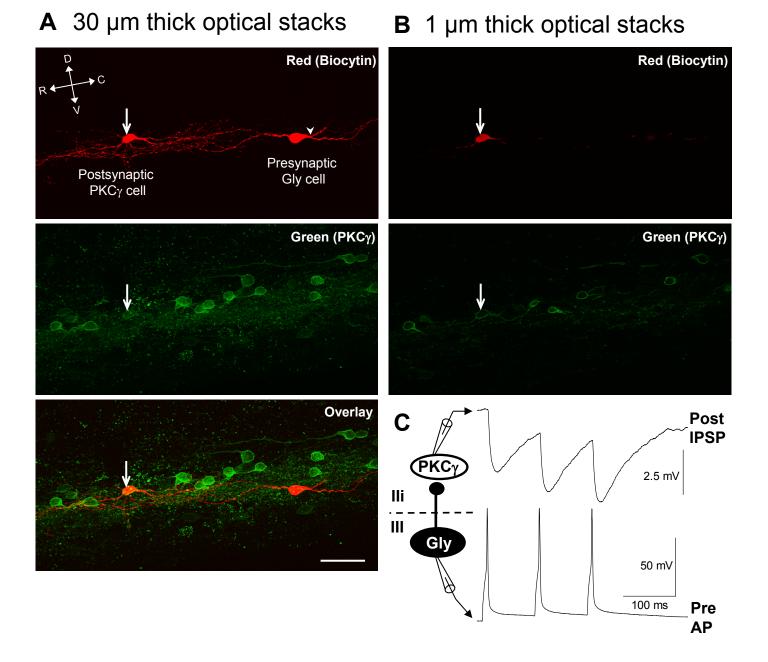



Figure S2. An example of monosynaptic inhibitory connection between Gly and PKC $\gamma^+$  neurons sampled from naïve rats. (A) 30 µm thick optical stack image of morphology and location of the recorded neuronal pair. Arrows indicate the presynaptic PKC $\gamma^+$  cell, arrowhead indicates putative axon. (B) 1 µm thick optical stacks of the recorded PKC $\gamma^+$  cell. Scale bar, 100 µm. (C) Bottom trace recorded from the presynaptic Gly neuron shows action potentials (APs) initiated by three successive depolarizing pulses. Top trace recorded from the postsynaptic PKC $\gamma^+$  neuron shows evoked unitary IPSPs which display short-term potentiation.

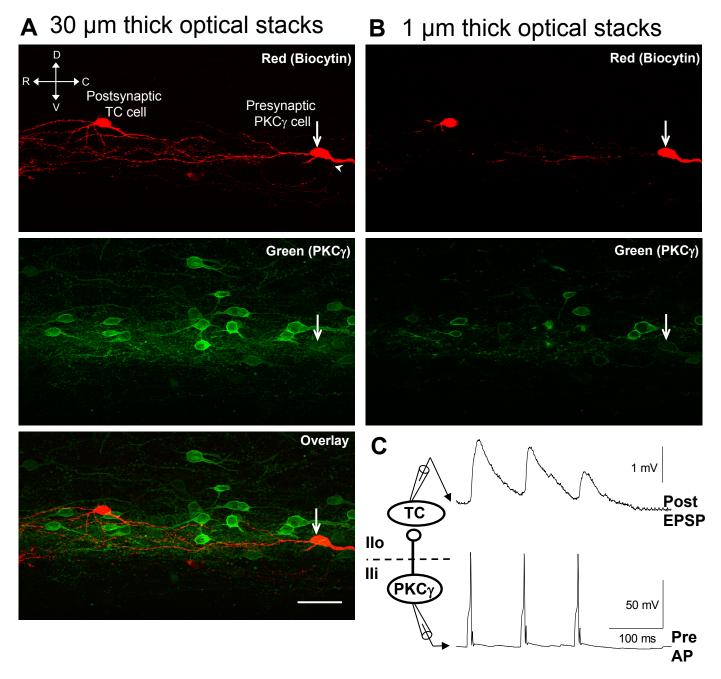



Figure S3. An example of a monosynaptic excitatory connection between PKC $\gamma^+$  and transient central (TC) neurons sampled from naïve rats. (A) 30 µm thick optical stack image of morphology and location of the recorded neuronal pair. Arrows indicate the presynaptic PKC $\gamma^+$  positive cell, arrowhead indicates putative axon. (B) 1 µm thick optical stacks of the recorded PKC $\gamma^+$  cell. Scale bar, 100 µm. (C) Bottom trace recorded from the presynaptic PKC $\gamma^+$  neuron shows APs initiated by three successive depolarizing pulses. Top trace recorded from the postsynaptic TC neuron shows evoked unitary EPSPs which display short-term depression.

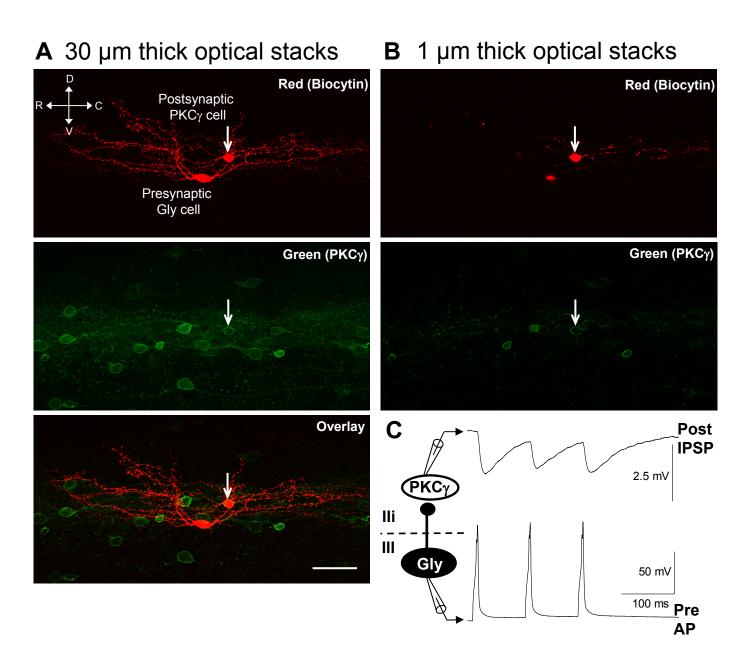



Figure S4. An example of a monosynaptic inhibitory connection between Gly and PKC $\gamma^+$  neurons sampled from SNL rats. (A) 30 µm thick optical stack image of morphology and location of the recorded neuronal pair. Arrows indicate the presynaptic PKC $\gamma^+$  positive cell. (B) 1 µm thick optical stacks of the recorded PKC $\gamma^+$  cell. Scale bar, 100 µm. (C) Bottom trace recorded from the presynaptic Gly neuron shows APs initiated by three successive depolarizing pulses. Top trace recorded from the postsynaptic PKC $\gamma^+$  neuron shows evoked unitary IPSPs which display short-term depression.

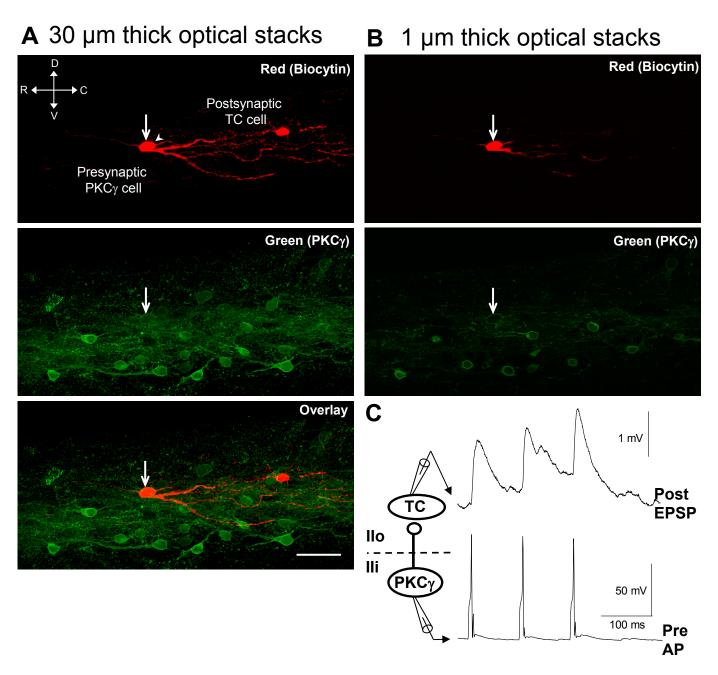



Figure S5. An example of a monosynaptic excitatory connection between PKC $\gamma^+$  and transient central (TC) neurons sampled from SNL rats. (A) 30 µm thick optical stack image of morphology and location of the recorded neuronal pair. Arrows indicate the presynaptic PKC $\gamma^+$  positive cell, arrowhead indicates putative axon. (B) 1 µm thick optical stacks of the recorded PKC $\gamma^+$  cell. Scale bar, 100 µm. (C) Bottom trace recorded from the presynaptic PKC $\gamma^+$  neuron shows APs initiated by three successive depolarizing pulses. Top trace recorded from the postsynaptic TC neuron shows evoked unitary EPSPs displaying short-term potentiation.

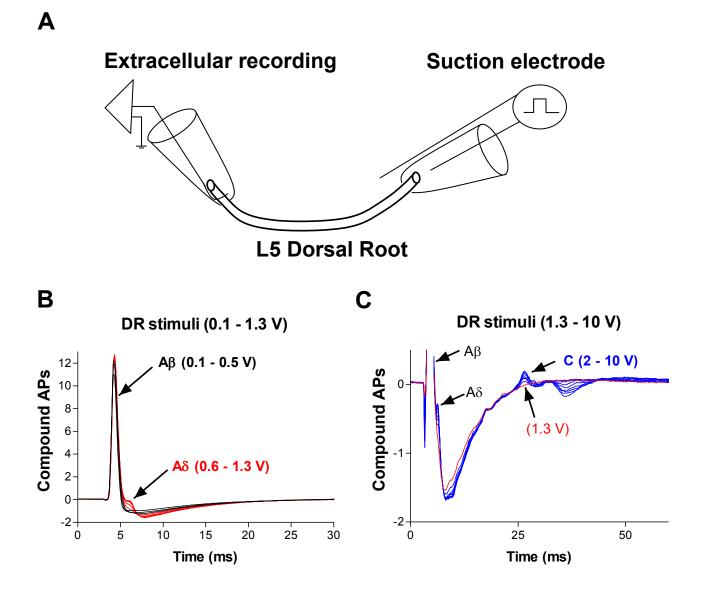



Figure S6. Dorsal root compound AP recordings to determine the response thresholds for the activation of A $\beta$ , A $\delta$  and C fibers. (A) Schematic of the experimental setup for recording compound APs from the L5 dorsal root (DR) under our recording conditions. A suction electrode was placed at one end to stimulate dorsal root and another at the opposite end to record extracellular compound APs. (B-C) Representative compound APs recorded from the DR at different stimulus intensities. The stimulus intensities for activation of A $\beta$ , A $\delta$ and C fibers were determined at the range of 0.1-0.5 V, 0.6-1.3 V and 2-10 V, respectively.

|                         | Normal (L5)      |                   |                  | SNL (L4)        |                   |                 | SNL (L5)        |                   |                 |
|-------------------------|------------------|-------------------|------------------|-----------------|-------------------|-----------------|-----------------|-------------------|-----------------|
| Cell type               | Gly              | ΡΚϹγ              | TC               | Gly             | ΡΚϹγ              | TC              | Gly             | ΡΚϹγ              | TC              |
| RMPs<br>(-mV)           | 50.7±3.1<br>(16) | 60.2±2.7<br>(34)  | 61.3±4.7<br>(16) | 49.9±4.2<br>(6) | 60.7±2.7<br>(12)  | 60.5±3.6<br>(6) | 50.2±2.7<br>(9) | 60.5±3.9<br>(16)  | 61.4±4.4<br>(7) |
| AP<br>pattern           | tonic            | transient         | transient        | tonic           | transient         | transient       | tonic           | transient         | transient       |
| AP<br>frequency<br>(Hz) | 8.5±2.2<br>(16)  | 17.3±5.3*<br>(34) | 4.2±1.6<br>(16)  | 8.3±3.4<br>(6)  | 16.1±5.2*<br>(12) | 4.6±2.9<br>(6)  | 8.7±3.7<br>(9)  | 21.6±6.7*<br>(16) | 5.1±3.1<br>(7)  |

Supplementary Table 1. Comparison of electrophysiological features between naïve and SNL rats

Gly: glycinergic cell; PKC $\gamma$ : PKC $\gamma$  positive cell; TC: transient central cell; RMPs: resting membrane potentials; AP pattern: action potential discharge patterns to prolonged (1000 ms) depolarizing pulses; AP frequency: action potential discharge frequency to prolonged (1000 ms) depolarizing pulses; Tonic pattern: at moderately superthreshold depolarizations, Gly cells uniformly discharged tonically (repetitively at relatively regular intervals); Transient pattern: TC and PKC $\gamma$  neurons were equally consistent in exhibiting a burst of impulses followed by silence during maintained depolarization, but the latter with higher frequency (\**P* < 0.01, compared with TC cells). Results were reported as mean ± SEM (*n*).