
Supplemental Material

G9a regulates CD4 T cell differentiation during intestinal inflammation in mice Antignano et al.

Supplemental Figure 1. Comparable expansion of *G9a*^{fl/fl} and *G9a*^{-l-} T_{reg} cells after transfer with *G9a*^{fl/fl} CD4⁺CD25⁻CD45RB^{high} T cells into *Rag1*^{-l-} mice. (A) Representative CD4 and Foxp3 staining of donor cells after FACS sorting. (B) CD4⁺CD25⁻CD45RB^{high} naïve *G9a*^{fl/fl} T cells (4 x 10⁵) were transferred into *Rag1*^{-l-} alone or in the presence of *G9a*^{fl/fl} or *G9a*^{-l-} T_{regs} (2 x 10⁵) and the mice were monitored for weight loss (percentage of initial weight) over 7 weeks. (C) Representative CD4 and Foxp3 staining of spleen, mLN and LP cells 7 weeks after transfer. Data shown is representative of three independent experiments (n=3 per experiment). Numbers represent frequency of CD4⁺Foxp3⁺ cells. Error bars indicate SEM.

Supplemental Figure 2. Treatment with either IFN- γ or IL-12 does not result in weight loss from transferred $G9a^{-/-}$ T cells. CD4⁺CD25⁻CD45RB^{high} naïve T cells (4 x 10⁵) from $G9a^{-/-}$ mice were transferred into $Rag1^{-/-}$ mice and treated i.p. with 250 ng IFN- γ or IL-12 3x per week for the first 4 weeks. Mice were analyzed at 8 weeks post induction for (**A**) intracellular IFN- γ produced by LP CD4⁺ cells, (**B**) Foxp3-expression of LP CD4⁺ cells, (**C**) weight loss, (**D**) gross colon pathology, (**E**) colon length and (**F**) spleen weight. Data is from a single experiment with n=5-6 mice per group. *, P < 0.05; ***, P < 0.001. Errors bars indicate SEM.

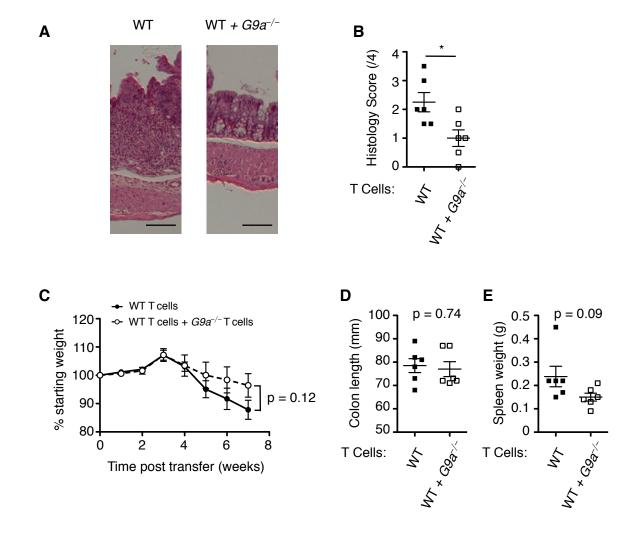
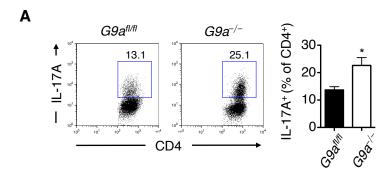
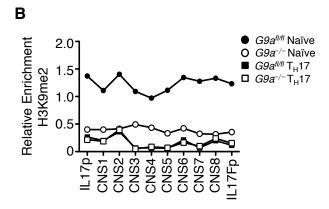
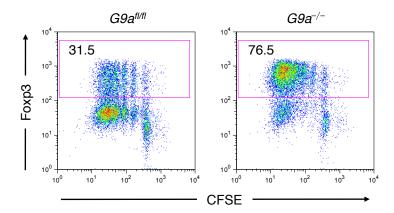
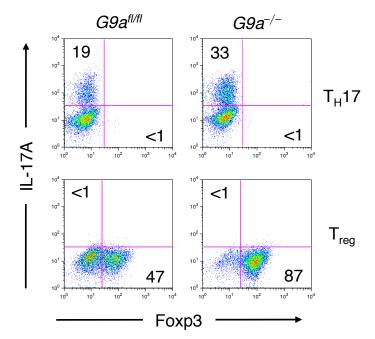
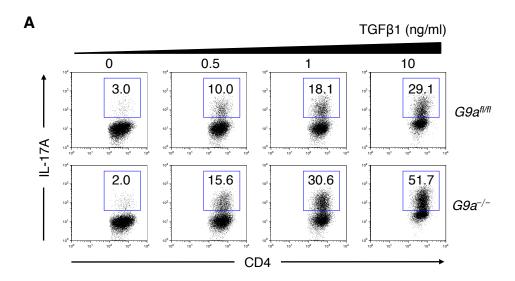
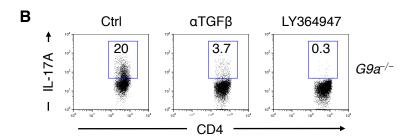





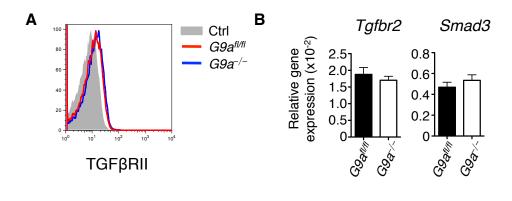
Figure 3. Co-transfer of $G9a^{-l-}$ and WT T cells into $Rag1^{-l-}$ recipients results in reduced colon damage but similar weight loss as WT T cells alone. $Rag1^{-l-}$ mice were reconstituted with either WT T cells alone or in combination with $G9a^{-l-}$ T cells at a 1:1 ratio. (A) Representative sections of H&E stained proximal colons. Bar, 50 μ m. (B) Colitis was assessed histologically at 7 weeks post transfer and severity of inflammation was scored. (C) Weight loss was monitored for 7 weeks Mice were sacrificed at 7 weeks and (D) Colon length, and (E) spleen weight determined. Weight loss is from 2 independent experiments; otherwise data shown is one representative experiment of three (n=5-6 mice per experiment). Error bars indicate SEM. *, P < 0.05; P value is shown for non statistically significant results.

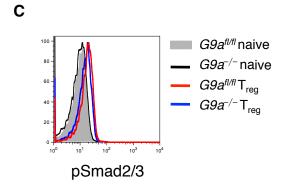


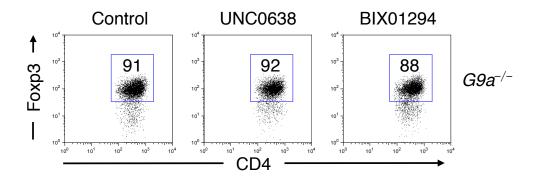

Supplemental Figure 4. G9a-dependent H3K9me2 is required to limit T_H17 cell differentiation in vitro. (A) Naïve CD4⁺ T cells from $G9a^{fl/fl}$ or $G9a^{-l-}$ mice were differentiated for 6 days under T_H17 cell-promoting conditions and analyzed for IL-17A production. Representative flow cytometry data and quantification of IL-17A⁺ CD4⁺ cells (n=7) is shown. (B) $G9a^{fl/fl}$ or $G9a^{-l-}$ naïve CD4⁺ cells were differentiated to T_H17 cells and analyzed by ChIP for H3K9me2 levels at the II17a/f locus. Data shown is the mean from 3 independent experiments performed in duplicate. Numbers represent frequency of CD4⁺IL-17A⁺ cells. *, P < 0.05. Errors bars indicate SEM.



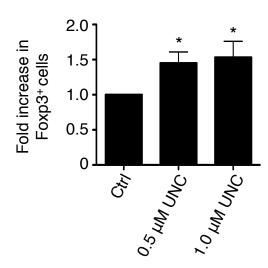
Supplemental Figure 5. G9a deficiency does not affect proliferation during T_{reg} cell differentiation. Naïve CD4⁺CD25⁻ T cells from $G9a^{fl/fl}$ or $G9a^{-l-}$ mice were stained with CFSE and differentiated for 4 days under T_{reg} cell promoting conditions and analyzed for Foxp3 expression and CFSE dilution. Data shown is representative of 3 independent experiments. Numbers represent frequency of CD4⁺Foxp3⁺ cells.

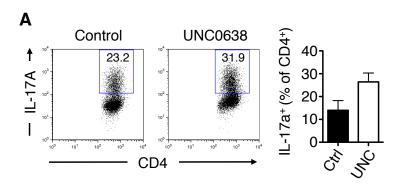



Supplemental Figure 6. G9a is not required for repression of lineage-promiscuous IL-17A or Foxp3 expression. $G9a^{fl/fl}$ and $G9a^{-l-}$ T_H cells were polarized to T_H17 or T_{reg} cells for 6 days and the cells were analyzed by flow cytometry for the expression of IL-17A and Foxp3. Data shown is representative of more than 3 independent experiments. Numbers represent frequency of cells in each quadrant.



Supplemental Figure 7. Enhanced sensitivity to TGF β 1 leads to increased T_H 17 cell differentiation from $G9a^{-l-}$ T cells. (A) $G9a^{fl/fl}$ and $G9a^{-l-}$ naïve CD4⁺ cells were differentiated under T_H 17 cell-promoting conditions with the indicated dose of TGF β 1 and analyzed at day 6 for intracellular IL-17A by flow cytometry. Numbers represent frequency of CD4⁺IL-17A⁺ cells. (B) Naïve $G9a^{-l-}$ T cells were differentiated under T_H 17 cell-promoting conditions in the presence of vehicle, neutralizing antibody to TGF β 1 (10 μg/ml) or TGF β signaling inhibitor (LY364947, 5μM). Data shown is representative of at least 3 independent experiments. Numbers represent frequency of CD4⁺IL-17A⁺ cells.




Supplemental Figure 8. G9a-deficiency does not affect expression of TGF β signaling components. (A) Naïve $G9a^{fl/fl}$ and $G9a^{-l-}$ CD4⁺ cells were analyzed by flow cytometry for the expression of TGF β RII (isotype control is shown in filled grey, $G9a^{fl/fl}$ in red and $G9a^{-l-}$ in blue). (B) Tgfbr2 and Smad3 mRNA expression in naïve $G9a^{fl/fl}$ or $G9a^{-l-}$ CD4⁺ cells was analyzed by qRT-PCR. (C) $G9a^{fl/fl}$ and $G9a^{-l-}$ naïve and T_{reg} cells were analyzed by flow cytometry for phosphorylated Smad2/3. Data shown is representative of at least 2 independent experiments. Error bars indicate SEM.

Supplemental Figure 9. Inhibition of the methyltransferase activity of G9a has no effect on T_{reg} cell differentiation in G9a-deficient T cells. Naïve $G9a^{-/-}$ CD4⁺ T cells were differentiated under T_{reg} cell-promoting conditions for 6 days in the absence (control) or presence of the G9a-specific inhibitor UNC0638 (1 μ M) or BIX01294 (0.5 μ M) and analyzed by flow cytometry for the expression of CD4 and Foxp3. Data shown is representative of 3 independent experiments. Numbers represent frequency of CD4⁺Foxp3⁺ cells.

Supplemental Figure 10. Inhibition of the methyltransferase activity of G9a in human T cells results in enhanced generation of Foxp3 $^+$ cells. Naïve human conventional T cells were cultured for 13-14 days in the absence (Ctrl) or presence of the indicated concentration of the G9a-specific inhibitor UNC0638 (UNC) and analyzed by flow cytometry for the expression of Foxp3. Data is shown as a fold increase in Foxp3-expression above control for each of 8 healthy donors. *, P < 0.05. Errors bars indicate SEM.

Supplemental Figure 11. The methyltransferase activity of G9a is required to dampen T_H17 cell generation. Naïve $CD4^+$ T cells from C57BL/6 mice were differentiated under T_H17 cell-promoting conditions for 6 days in the absence (ctrl) or presence of the G9a-specific inhibitor UNC0638 (UNC, $0.5~\mu M$) and analyzed by flow cytometry for the expression of CD4 and IL-17A. Results are from 3 independent experiments. Numbers represent frequency of $CD4^+IL-17A^+$ cells. Error bars indicate SEM.