Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria
Kaori Hayashi, … , Yusuke Sakamaki, Hiroshi Itoh
Kaori Hayashi, … , Yusuke Sakamaki, Hiroshi Itoh
Published May 8, 2014
Citation Information: J Clin Invest. 2014;124(6):2523-2537. https://doi.org/10.1172/JCI69557.
View: Text | PDF
Research Article Nephrology

KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria

  • Text
  • PDF
Abstract

The transcription factor Kruppel-like factor 4 (KLF4) has the ability, along with other factors, to reprogram somatic cells into induced pluripotent stem (iPS) cells. Here, we determined that KLF4 is expressed in kidney glomerular podocytes and is decreased in both animal models and humans exhibiting a proteinuric. Transient restoration of KLF4 expression in podocytes of diseased glomeruli in vivo, either by gene transfer or transgenic expression, resulted in a sustained increase in nephrin expression and a decrease in albuminuria. In mice harboring podocyte-specific deletion of Klf4, adriamycin-induced proteinuria was substantially exacerbated, although these animals displayed minimal phenotypical changes prior to adriamycin administration. KLF4 overexpression in cultured human podocytes increased expression of nephrin and other epithelial markers and reduced mesenchymal gene expression. DNA methylation profiling and bisulfite genomic sequencing revealed that KLF4 expression reduced methylation at the nephrin promoter and the promoters of other epithelial markers; however, methylation was increased at the promoters of genes encoding mesenchymal markers, suggesting selective epigenetic regulation of podocyte gene expression. Together, these results suggest that KLF4 epigenetically modulates podocyte phenotype and function and that the podocyte epigenome can be targeted for direct intervention and reduction of proteinuria.

Authors

Kaori Hayashi, Hiroyuki Sasamura, Mari Nakamura, Tatsuhiko Azegami, Hideyo Oguchi, Yusuke Sakamaki, Hiroshi Itoh

×

Figure 8

KLF4 expression increases nephrin promoter activity in podocytes.

Options: View larger image (or click on image) Download as PowerPoint
KLF4 expression increases nephrin promoter activity in podocytes.
(A) Ma...
(A) Map of nephrin promoter regions included in the luciferase constructs. CpG 1–5 correspond to the sites shown in Supplemental Figure 8. (B) Luciferase activity 48 hours after transfection of KLF4-overexpressing podocytes (KLF4) or control podocytes (empty) with constructs containing regions a–c (n = 6). (C) ChIP assay for the presence of KLF4 in the promoter region of nephrin in KLF4-overexpressing podocytes (KLF4) or control podocytes (empty). The amplified fragment corresponds to region B in Figure 8A. The bar graph shows the quantification of KLF4/input intensity (n = 4). (D) Effect of KRE deletion on nephrin promoter activity. Luciferase activity was assayed 48 hours after transfection of luciferase constructs containing region B with (KRE[–]) or without (KRE[+]) specific deletion of the KRE (shown boxed in the upper panel of Supplemental Figure 8) into KLF4-overexpressing podocytes or control podocytes (n = 6). (E) Effect of KRE deletion on DNA binding to podocyte nuclear extracts analyzed by EMSA. Nuclear extracts from KLF4-overexpressing podocytes were pretreated with or without unlabeled competitor DNA or KLF4 antibody before incubation with labeled probes for EMSA to confirm specificity of the complexes. KRE (–) and (+) refer to probes with or without a deletion of the KRE sequence, respectively. **P < 0.01 vs. controls. †P < 0.05, ††P < 0.01 vs. the respective groups.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts