Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Autoimmunity risk alleles: hotspots in B cell regulatory signaling pathways
John C. Cambier
John C. Cambier
Published April 24, 2013
Citation Information: J Clin Invest. 2013;123(5):1928-1931. https://doi.org/10.1172/JCI69289.
View: Text | PDF
Commentary

Autoimmunity risk alleles: hotspots in B cell regulatory signaling pathways

  • Text
  • PDF
Abstract

Autoimmunity is the consequence of the combination of genetic predisposition and environmental effects, such as infection, injury, and constitution of the gut microbiome. In this edition of the JCI, Dai et al. describe the use of knockin technology to test the mechanism of action of a polymorphism in the protein tyrosine phosphatase nonreceptor 22 (PTPN22) (LYP) that is associated with susceptibility to multiple autoimmune diseases. The function of this allele, and that of a disproportionate number of autoimmune disease risk alleles, suggests that inhibitory signaling pathways that maintain B lymphocyte immune tolerance may represent an Achilles’ heel in the prevention of autoimmunity.

Authors

John C. Cambier

×

Figure 1

Proximal activating and regulatory signal transduction by B lymphocyte antigen receptors.

Options: View larger image (or click on image) Download as PowerPoint
Proximal activating and regulatory signal transduction by B lymphocyte a...
Antigen aggregation of receptors composed of membrane Ig (mIg) and transducers CD79a and CD79b leads to tyrosine phosphorylation of CD79 immunoreceptor tyrosine-based activation motifs (ITAMs) (green) by Lyn/Fyn Src family tyrosine kinases. Participation of Src family kinases in this signaling pathway is negatively regulated by CSK-mediated phosphorylation of their C-terminal tyrosines. Phosphorylation of conserved ITAM motif tyrosines leads to recruitment of SH2 domain–containing effectors, including Syk, Lyn, and Fyn, and further activation of these effectors, initiating downstream pathways leading to cell activating (green arrows) and opposing regulatory signaling (red arrows). Among these proximally acting kinases, Lyn uniquely initiates both activating and regulatory circuitry by phosphorylation of immunoreceptor tyrosine-based inhibitory motifs (ITIMs) embedded in cytoplasmic tails of membrane proteins, including FCRLs, CD72, CD22, FcγRIIB, and other molecules. These phosphorylated motifs propagate inhibitory signals via activation of SHP and SHIP phosphatases. Lyn may also act through other intermediaries, e.g., monophosphorylated antigen receptor ITAMs, casein kinase 2, and components of the BLK/BANK1/InsP3 receptor complex on ER membranes, to trigger regulatory circuitry. Shown in red lettering are molecules in which certain allelic forms have been shown to increase risk of development of SLE.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts